Fitting and understanding multilevel (hierarchical) models

Andrew Gelman

Department of Statistics and Department of Political Science
Columbia University

8 December 2004

- ► The problem: not enough data to estimate effects with confidence
- ▶ The solution: make your studies *broader* and *deeper*
 - outcomes,
 - Deeper interences for individual states, demographic substrouts. Commenced of outcomes.
- The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ▶ The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes,....
- The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies broader and deeper
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- The solution: multilevel modeling
 Regression with coefficients grouped into batches

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling
 - Regression with coefficients grouped into batches
 - No such thing as "too many predictors"



- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling
 - Regression with coefficients grouped into batches
 - No such thing as "too many predictors"

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling
 - Regression with coefficients grouped into batches
 - ▶ No such thing as "too many predictors"

- ▶ The effectiveness of multilevel models
- Multilevel models in unexpected places
- ► Multilevel models as a way of life
- collaborators
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - David Park, Dept of Political Science, Washington University
 - Joe Bafumi. Dept of Political Science. Columbia University
 - Boris Shor. Dept of Political Science. Columbia University
 - ▶ Noah Kaplan, Dept of Political Science, University of Houston
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
- Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - David Park, Dept of Political Science, Washington University
 - ▶ Joe Bafumi, Dept of Political Science, Columbia University
 - ▶ Boris Shor, Dept of Political Science, Columbia University
 - Noah Kaplan, Dept of Political Science, University of Houston
 - ▶ Shouhao Zhao, Dept of Statistics, Columbia University
 - ► Zaiving Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
- ► Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - David Park, Dept of Political Science, Washington University
 - Joe Bafumi, Dept of Political Science, Columbia University
 - ▶ Boris Shor, Dept of Political Science, Columbia University
 - Noah Kaplan, Dept of Political Science, University of Houston
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
- ► Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - David Park, Dept of Political Science, Washington University
 - Joe Bafumi, Dept of Political Science, Columbia University
 - ▶ Boris Shor, Dept of Political Science, Columbia University
 - Noah Kaplan, Dept of Political Science, University of Houston
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
- Multilevel models in unexpected places
- ▶ Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - David Park, Dept of Political Science, Washington University
 - ▶ Joe Bafumi, Dept of Political Science, Columbia University
 - Boris Shor, Dept of Political Science, Columbia University
 - Noah Kaplan, Dept of Political Science, University of Houston
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- ▶ Multilevel models in unexpected places

▶ Multilevel models as a way of life

- ▶ The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places

Multilevel models as a way of life

- ▶ The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 Referenalities
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - ▶ Estimating incumbency advantage and its variation
 - ▶ Before-after studies
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- Multilevel models as a way of life

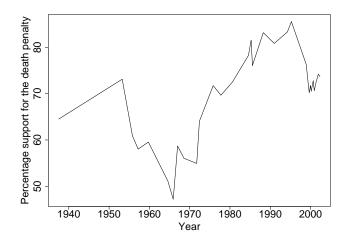
→□▶ →□▶ →□▶ →□ → ○○○

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

National opinion trends



- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- Poststratification cells: sex × ethnicity × age × education × state

- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- Poststratification cells: sex × ethnicity × age × education × state

- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- Poststratification cells: sex × ethnicity × age × education × state

- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- ▶ It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- Poststratification cells: sex × ethnicity × age × education × state

- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- ▶ Poststratification cells: sex × ethnicity × age × education × state

- ▶ Goal: estimating time series within each state
- One poll at a time: small-area estimation
- It works! Validated for pre-election polls
- Combining surveys: model for parallel time series
- Multilevel modeling + poststratification
- Poststratification cells: sex × ethnicity × age × education × state

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- ▶ X includes demographic and geographic predictors
- ▶ Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- **B** Bayesian inference, summarize by posterior simulations of β:

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- ▶ Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- ▶ Bayesian inference, summarize by posterior simulations of β : Simulation $\theta_1 \cdots \theta_{75}$

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- ▶ X includes demographic and geographic predictors
- Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- ▶ Bayesian inference, summarize by posterior simulations of β: Simulation $θ_1 \cdots θ_{75}$

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- ▶ X includes demographic and geographic predictors
- ightharpoonup Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- Bayesian inference, summarize by posterior simulations of β:

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- ▶ X includes demographic and geographic predictors
- ightharpoonup Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- **B**ayesian inference, summarize by posterior simulations of β

```
    Simulation
    \theta_1
    ...
    \theta_{75}

    1
    **
    ...
    **

    ...
    ...
    ...
    ...

    1000
    **
    ...
    **
```

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- ▶ X includes demographic and geographic predictors
- lacktriangle Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- **B** Bayesian inference, summarize by posterior simulations of β :

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- ▶ Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- ▶ Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- lacktriangle Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- $lue{}$ Group-level model for the 16 age imes education predictors
- ► Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- $lue{}$ Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- ▶ Group-level model for the 16 age × education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Logistic regression: $Pr(y_i = 1) = logit^{-1}((X\beta)_i)$
- X includes demographic and geographic predictors
- $lue{}$ Group-level model for the 16 age imes education predictors
- Group-level model for the 50 state predictors
- Crossed (nonnested) structure of age, education, state
- Several overlapping "hierarchies"

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification
- Within each state s, average over 64 cells:
 - Σies 1991 / Σies 19
 - N_i = population in cell j (from Census)
 - 1000 simulation draws propagate to uncertainty for each θ_1

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 900

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification
 - ▶ Within each state *s*, average over 64 cells:

$$\sum_{j \in s} N_j \theta_j / \sum_{j \in s} N_j$$

- $\triangleright N_i = \text{population in cell } j \text{ (from Census)}$
- ▶ 1000 simulation draws propagate to uncertainty for each θ_1

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification
 - ▶ Within each state s, average over 64 cells:

$$\sum_{j \in s} N_j \theta_j / \sum_{j \in s} N_j$$

- $ightharpoonup N_j = \text{population in cell } j \text{ (from Census)}$
- ▶ 1000 simulation draws propagate to uncertainty for each θ_j

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification
 - ▶ Within each state s, average over 64 cells:

$$\sum_{j \in s} N_j \theta_j / \sum_{j \in s} N_j$$

- $ightharpoonup N_j = \text{population in cell } j \text{ (from Census)}$
- ▶ 1000 simulation draws propagate to uncertainty for each θ_j

- ▶ Implied inference for $\theta_j = \operatorname{logit}^{-1}(X\beta)$ in each of 3264 cells j (e.g., black female, age 18–29, college graduate, Massachusetts)
- Poststratification
 - ► Within each state s, average over 64 cells:

$$\sum_{j \in s} N_j \theta_j / \sum_{j \in s} N_j$$

- $ightharpoonup N_j = \text{population in cell } j \text{ (from Census)}$
- lacktriangle 1000 simulation draws propagate to uncertainty for each $heta_j$

- Validation study: fit model on poll data and compare to election results
- Competing estimates:

```
    No pooling: separate estimate within each state.
```

- Complete pooling: no state predictors
- Hierarchical model and poststratily
- Mean absolute state errors:

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:

```
    No pooling: separate estimate within each state
    Complete pooling: no state predictors
```

- Hierarchical model and poststratify
- Mean absolute state errors:

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - ► Hierarchical model and poststratify
- Mean absolute state errors:

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - ▶ No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:
 - No pooling: 10.4%
 ► Complete pooling: 5.4%
 - Hierarchical model with poststrate

- ► Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - ▶ No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:
 - ▶ No pooling: 10.4%
 - ► Complete pooling: 5.4%
 - ▶ Hierarchical model with poststratification: 4.5%

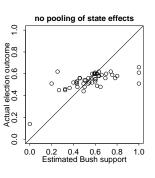
- Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:
 - ▶ No pooling: 10.4%
 - ► Complete pooling: 5.4%
 - Hierarchical model with poststratification: 4.5%

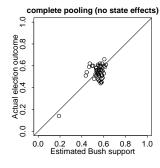
- Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:
 - ▶ No pooling: 10.4%
 - ► Complete pooling: 5.4%
 - ► Hierarchical model with poststratification: 4.5%

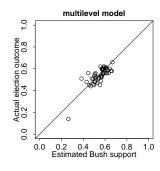
- Validation study: fit model on poll data and compare to election results
- Competing estimates:
 - No pooling: separate estimate within each state
 - Complete pooling: no state predictors
 - Hierarchical model and poststratify
- Mean absolute state errors:
 - ▶ No pooling: 10.4%
 - ► Complete pooling: 5.4%
 - ▶ Hierarchical model with poststratification: 4.5%

Validation study: comparison of state errors

1988 election outcome vs. poll estimate







- Anything worth doing is worth doing repeatedly
- ► A "method" is any procedure applied more than once
- City planning
 - Infilling: inferences for individual states, demographic subgroups, components of data,
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other vears, other outcomes. . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - ▶ Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - ▶ Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- ▶ Regression approach (Gelman and King, 1990):
 - ► For any year, compare districts with and without incs running
 - ► Control for vote in previous election
 - ► Control for incumbent *party*
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party

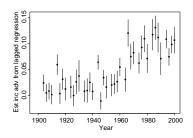
$$v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$$

▶ Other estimates (sophomore surge, etc.) have selection bias

- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- ▶ Other estimates (sophomore surge, etc.) have selection bias

- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- ▶ Other estimates (sophomore surge, etc.) have selection bias

Estimated incumbency advantage from lagged regressions



- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- We'll show pictures of the model not fitting
- We'll set up a model allowing inc advantage to vary

- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- \blacktriangleright "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

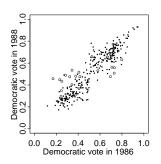
- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- \blacktriangleright "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

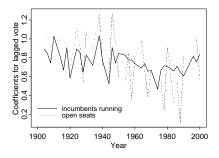
- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

Model misfit

Under the model, parallel lines are fitted to the circles (open seats) and dots (incs running for reelection)





- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α}
 - lacktriangledown ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - \blacktriangleright ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ}
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - lacktriangledown ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - \blacktriangleright ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ}
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - $ightharpoonup \epsilon_{it}$'s are independent errors: mean 0 and sd σ_{ϵ}
- Candidate-level incumbency effects

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - $ightharpoonup \epsilon_{it}$'s are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - $ightharpoonup \epsilon_{it}$'s are independent errors: mean 0 and sd σ_{ϵ} .
- ► Candidate-level incumbency effects:
- If the same incumbent is running in years 1 and 2, then
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- ► Candidate-level incumbency effects:
 - ▶ If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ightharpoonup ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:
 - If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ightharpoonup ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:
 - ▶ If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

Bayesian inference

- Linear parameters: national vote swings, district effects, incumbency effects
- ▶ 3 variance parameters: district effects, incumbency effects residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ▶ Gibbs-Metropolis sampling, program in Splus

- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- 3 variance parameters: district effects, incumbency effects, residual errors
- Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ▶ Gibbs-Metropolis sampling, program in Splus

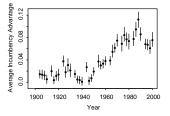
- Bayesian inference
- Linear parameters: national vote swings, district effects, incumbency effects
- ▶ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ► Gibbs-Metropolis sampling, program in Splus

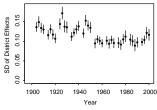
- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- Gibbs-Metropolis sampling, program in Splus

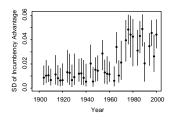
- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ► Gibbs-Metropolis sampling, program in Splus

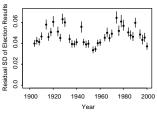
- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ► Gibbs-Metropolis sampling, program in Splus

Estimated incumbency advantage and its variation

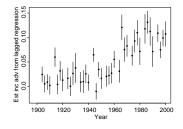


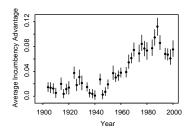






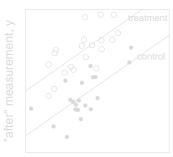
Compare old and new estimates





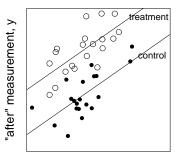
- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects

Fisher's classical null hyp: effect is zero for all cases
 Regression model v = T θ + X θ + c



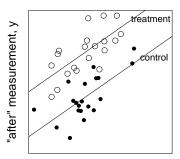
"before" measurement x

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - ► Fisher's classical null hyp: effect is zero for all cases
 - ▶ Regression model: $y_i = T_i\theta + X_i\beta + \epsilon_i$



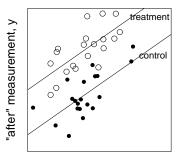
"before" measurement, x

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - ▶ Fisher's classical null hyp: effect is zero for all cases
 - ▶ Regression model: $y_i = T_i\theta + X_i\beta + \epsilon_i$



"before" measurement, x

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - Fisher's classical null hyp: effect is zero for all cases
 - Regression model: $y_i = T_i \theta + X_i \beta + \epsilon_i$



"before" measurement, x

- ▶ Treatment interacts with "before" measurement
- ▶ Before-after correlation is higher for controls than for treated units
- Examples

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting

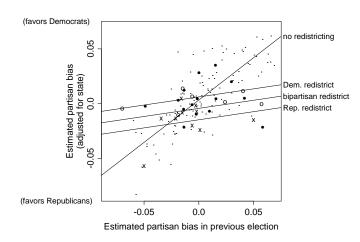
- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - ► An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

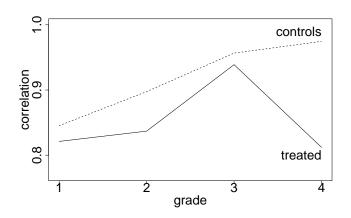
- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

- Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

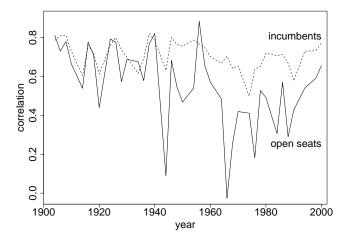
Observational study of legislative redistricting before-after data



Experiment: correlation between pre-test and post-test data for controls and for treated units



Correlation between two successive Congressional elections for incumbents running (controls) and open seats (treated)



Unit-level "error term" η_i

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes

Under all these models, the before-after correlation is higher for controls than treated units

Unit-level "error term" η_i

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:

```
    Subtractive treatment error (η; only at time 1)
    Additive treatment error (η; only at time 2)
```

Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error (η_i only at time 2)
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - ▶ Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error (η_i only at time 2)
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level varianceers

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- ▶ Data model: $\Pr(y_i = 1) = \operatorname{logit}^{-1} \left(\beta^0 + \beta_{\operatorname{age(i)}}^{\operatorname{age}} + \beta_{\operatorname{state(i)}}^{\operatorname{state}} \right)$
- Usual model for the coefficients

$$eta_j^{
m age} \sim {\sf N}(0,\sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4$$
 $eta_j^{
m state} \sim {\sf N}(0,\sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50$

Additively redundant model:

$$\begin{array}{ll} \beta_{j}^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^{2}), \ \ \mathsf{for} \ j = 1, \ldots, 4 \\ \beta_{j}^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^{2}), \ \ \mathsf{for} \ j = 1, \ldots, 50 \end{array}$$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $\Pr(y_i = 1) = \operatorname{logit}^{-1} \left(\beta^0 + \beta_{\operatorname{age}(i)}^{\operatorname{age}} + \beta_{\operatorname{state}(i)}^{\operatorname{state}} \right)$
- Usual model for the coefficients

$$eta_j^{
m age} \sim {\sf N}(0,\sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4$$
 $eta_j^{
m state} \sim {\sf N}(0,\sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50$

Additively redundant models

$$egin{array}{ll} eta_j^{
m age} & \sim & {\sf N}(\mu_{
m age},\sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_j^{
m state} & \sim & {\sf N}(\mu_{
m state},\sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \end{array}$$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state}\right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_j^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4 \ eta_j^{
m state} \; \sim \; {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50 \ .$$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state} \right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

▶ Why add the redundant μ_{age} , μ_{state} ?

Iterative algorithm moves more smoothly

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state}\right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

- ▶ Why add the redundant μ_{age} , μ_{state} ?
 - Iterative algorithm moves more smoothly

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state}\right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim {\sf N}(0,\sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim {\sf N}(0,\sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

- ▶ Why add the redundant μ_{age} , μ_{state} ?
 - Iterative algorithm moves more smoothly

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 50 \end{array}$$

▶ Identify using centered parameters:

$$egin{array}{lll} ilde{eta}_{j}^{
m age} &=& eta_{j}^{
m age} - ar{eta}^{
m age}, & ext{for } j=1,\ldots,4 \ ilde{eta}_{j}^{
m state} &=& eta_{j}^{
m state} - ar{eta}^{
m state}, & ext{for } j=1,\ldots,50 \end{array}$$

▶ Redefine the constant term

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 50 \end{array}$$

▶ Identify using centered parameters:

$$\begin{split} \tilde{\beta}_{j}^{\text{age}} &= \beta_{j}^{\text{age}} - \bar{\beta}^{\text{age}}, \;\; \text{for} \; j = 1, \dots, 4 \\ \tilde{\beta}_{j}^{\text{state}} &= \beta_{j}^{\text{state}} - \bar{\beta}^{\text{state}}, \;\; \text{for} \; j = 1, \dots, 50 \end{split}$$

▶ Redefine the constant term:

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \; \; \mathrm{for} \; j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \; \; \mathrm{for} \; j = 1, \ldots, 50 \end{array}$$

Identify using centered parameters:

$$\begin{split} \tilde{\beta}_{j}^{\text{age}} &= \beta_{j}^{\text{age}} - \bar{\beta}^{\text{age}}, \;\; \text{for} \; j = 1, \dots, 4 \\ \tilde{\beta}_{j}^{\text{state}} &= \beta_{j}^{\text{state}} - \bar{\beta}^{\text{state}}, \;\; \text{for} \; j = 1, \dots, 50 \end{split}$$

Redefine the constant term:

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

New model

$$\begin{array}{lcl} \Pr(y_i=1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age}(\mathrm{i})}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state}(\mathrm{i})}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j=1,\ldots,4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j=1,\ldots,50 \end{array}$$

$$egin{array}{lll} ilde{eta}_{j}^{
m age} &=& oldsymbol{\xi}^{
m age}(eta_{j}^{
m age}-ar{eta}^{
m age}), & {
m for} \ j=1,\ldots,4 \ ilde{eta}_{j}^{
m state} &=& oldsymbol{\xi}^{
m state}\left(eta_{j}^{
m state}-ar{eta}^{
m state}
ight), & {
m for} \ j=1,\ldots,50 \end{array}$$

- ► Faster convergence
- ▶ More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \mathbf{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \mathbf{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- ► Faster convergence
- ▶ More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \mathbf{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \mathbf{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- ► Faster convergence
- ▶ More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \boldsymbol{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \boldsymbol{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- Faster convergence
- ▶ More general model, connections to factor analysis

Redundant multiplicative parameterization:

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

▶ Separate prior distributions on the ξ and σ parameters:

- \triangleright Normal on ξ
- \triangleright Inverse-gamma on σ
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

Displaying and summarizing inferences

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Analysis of variance

Displaying and summarizing inferences

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- R² and partial pooling factors
- Analysis of variance

Displaying and summarizing inferences

- ▶ Displaying parameters in groups rather than as a long list
- Average predictive effects
- \triangleright R^2 and partial pooling factors
- Analysis of variance

Displaying and summarizing inferences

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Analysis of variance

Displaying and summarizing inferences

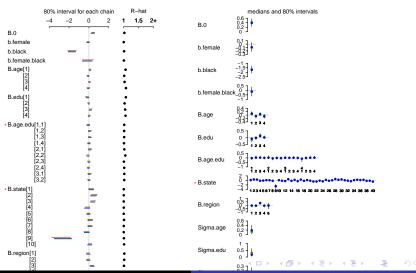
- ▶ Displaying parameters in groups rather than as a long list
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Analysis of variance

Raw display of inference

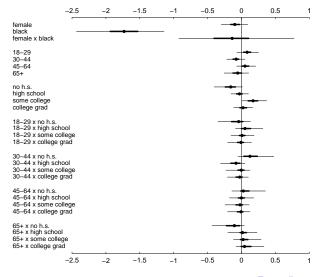
	mean	sd	2.5%	25%	50%	75%	97.5% Rhat	n.eff
B.0	0.402	0.147	0.044	0.326	0.413	0.499	0.652 1.024	110
b.female	-0.094	0.102	-0.283	-0.162	-0.095	-0.034	0.107 1.001	1000
b.black	-1.701	0.305	-2.323	-1.910	-1.691	-1.486	-1.152 1.014	500
b.female.black	-0.143	0.393	-0.834	-0.383	-0.155	0.104	0.620 1.007	1000
B.age[1]	0.084	0.088	-0.053	0.012	0.075	0.140	0.277 1.062	45
B.age[2]	-0.072	0.087	-0.260	-0.121	-0.054	-0.006	0.052 1.017	190
B.age[3]	0.044	0.077	-0.105	-0.007	0.038	0.095	0.203 1.029	130
B.age[4]	-0.057	0.096	-0.265	-0.115	-0.052	0.001	0.133 1.076	32
B.edu[1]	-0.148	0.131	-0.436	-0.241	-0.137	-0.044	0.053 1.074	31
B.edu[2]	-0.022	0.082	-0.182	-0.069	-0.021	0.025	0.152 1.028	160
B.edu[3]	0.148	0.112	-0.032	0.065	0.142	0.228	0.370 1.049	45
B.edu[4]	0.023	0.090	-0.170	-0.030	0.015	0.074	0.224 1.061	37
B.age.edu[1,1]	-0.044	0.133	-0.363	-0.104	-0.019	0.025	0.170 1.018	1000
B.age.edu[1,2]	0.059	0.123	-0.153	-0.011	0.032	0.118	0.353 1.016	580
B.age.edu[1,3]	0.049	0.124	-0.146	-0.023	0.022	0.104	0.349 1.015	280
B.age.edu[1,4]	0.001	0.116	-0.237	-0.061	0.000	0.052	0.280 1.010	1000
B.age.edu[2,1]	0.066	0.152	-0.208	-0.008	0.032	0.124	0.449 1.022	140
B.age.edu[2,2]	-0.081	0.127	-0.407	-0.137	-0.055	0.001	0.094 1.057	120
B.age.edu[2,3]	-0.004	0.102	-0.226	-0.048	0.000	0.041	0.215 1.008	940
B.age.edu[2,4]	-0.042	0.108	-0.282	-0.100	-0.026	0.014	0.157 1.017	170
B.age.edu[3,1]	0.034	0.135	-0.215	-0.030	0.009	0.091	0.361 1.021	230
B.age.edu[3,2]	0.007	0.102	-0.213	-0.039	0.003	0.052	0.220 1.019	610
B.age.edu[3,3]	0.033	0.130	-0.215	-0.029	0.009	0.076	0.410 1.080	61
B.age.edu[3,4]	-0.009	0.109	-0.236	-0.064	-0.005	0.043	0.214 1.024	150
B.age.edu[4,1]	-0.141	0.190	-0.672	-0.224	-0.086	-0.003	0.100 1.036	270
B.age.edu[4,2]	-0.014	0.119	-0.280	-0.059	-0.008	0.033	0.239 1.017	240
B.age.edu[4,3]	0.046	0.132	-0.192	-0.024	0.019	0.108	0.332 1.010	210
B.age.edu[4,4]	0.042	0.142	-0.193	-0.022	0.016	0.095	0.377 1.015	160
P a+a+a[1]	0.201	0.011	_0 121	0.047	0 170	0 226	0 646 1 002	060

Raw graphical display

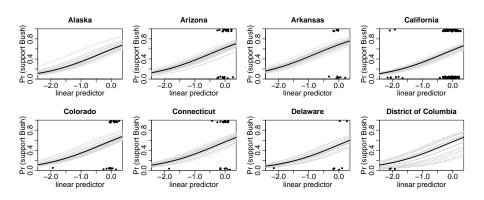
Bugs model at "C:/books/multilevel/election88/model4.bug", 3 chains, each with 2001 iterations



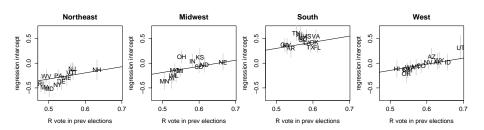
Better graphical display 1: demographics



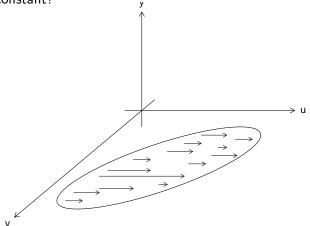
Better graphical display 2: within states



Better graphical display 3: between states



▶ What is $E(y | x_1 = high) - E(y | x_1 = low)$, with all other x's held constant?



- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
- Compute APE for each input variable x
- ▶ Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- In general, difference can depend on x
- Average over distribution of x in the data
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

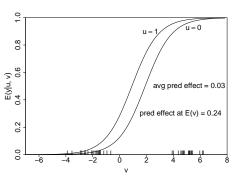
- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

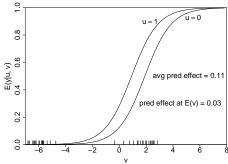
- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on x
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- In general, difference can depend on x
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- In general, difference can depend on x
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

APE: why you can't just use a central value of x





- ► Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance

Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- ▶ Partial pooling factor, defined at each level
- Analysis of variance

Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 Go beyond classical null-hypothesis-testing frames
- Open question: how to construct models with deep interaction structures?

- ► Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- Multilevel modeling is not just for grouped data
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- New ideas needed to fit, understand, display, and summarize each level of the model
- General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- New ideas needed to fit, understand, display, and summarize each level of the model
- General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- New ideas needed to fit, understand, display, and summarize each level of the model
- General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

► Why?

- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects
- Don't freak out because you have "too many predictors"
- ► How?

► Why?

- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects
- Don't freak out because you have "too many predictors"
- ► How?

- ► Why?
 - Make use of lots of information out there that's already collected
 - Use MLM to adjust for time effects, state effects, survey-organization effects
 - Don't freak out because you have "too many predictors"
- ► How?

- ► Why?
 - Make use of lots of information out there that's already collected
 - Use MLM to adjust for time effects, state effects, survey-organization effects
 - Don't freak out because you have "too many predictors"
- ► How?

- ► Why?
 - Make use of lots of information out there that's already collected
 - Use MLM to adjust for time effects, state effects, survey-organization effects
 - Don't freak out because you have "too many predictors"
- ► How?
- Make your studies broader and deener
 - Make plots and compute summaries to understand the estimated model

► Why?

- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects
- Don't freak out because you have "too many predictors"

► How?

- ► Make your studies broader and deeper
- Make plots and compute summaries to understand the estimated model

► Why?

- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects
- Don't freak out because you have "too many predictors"

► How?

- Make your studies broader and deeper
- Make plots and compute summaries to understand the estimated model

► Why?

- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects
- Don't freak out because you have "too many predictors"

► How?

- ► Make your studies broader and deeper
- Make plots and compute summaries to understand the estimated model