Some Recent Progress in Simple Statistical Methods

Andrew Gelman Department of Statistics and Department of Political Science Columbia University

24 Jan 2008

Simple statistical methods

- Much of statistics is simple methods (more precisely, methods that seem simple to us):
 - 0.5/\sqrt{n}, linear regression, logistic regression, ordered logit, mean and variance for stratified sampling, ...
- There are some simple methods out there that I don't like so much

イロン 不同と 不同と 不同と

Simple statistical methods

Much of statistics is simple methods (more precisely, methods that seem simple to us):

- ▶ $0.5/\sqrt{n}$, linear regression, logistic regression, ordered logit, mean and variance for stratified sampling, ...
- There are some simple methods out there that I don't like so much
 - Multiple comparisons corrections, stepwise regression, rules for detecting outliers, . . .

イロト イヨト イヨト イヨト

Simple statistical methods

- Much of statistics is simple methods (more precisely, methods that seem simple to us):
 - ▶ $0.5/\sqrt{n}$, linear regression, logistic regression, ordered logit, mean and variance for stratified sampling, ...
- There are some simple methods out there that I don't like so much
 - Multiple comparisons corrections, stepwise regression, rules for detecting outliers, ...

イロト イヨト イヨト イヨト

Simple statistical methods

- Much of statistics is simple methods (more precisely, methods that seem simple to us):
 - ▶ $0.5/\sqrt{n}$, linear regression, logistic regression, ordered logit, mean and variance for stratified sampling, ...
- There are some simple methods out there that I don't like so much
 - Multiple comparisons corrections, stepwise regression, rules for detecting outliers, ...

・ロン ・回 と ・ ヨ と ・ ヨ と

Simple statistical methods

- Much of statistics is simple methods (more precisely, methods that seem simple to us):
 - ▶ $0.5/\sqrt{n}$, linear regression, logistic regression, ordered logit, mean and variance for stratified sampling, ...
- There are some simple methods out there that I don't like so much
 - Multiple comparisons corrections, stepwise regression, rules for detecting outliers, ...

イロン 不同と 不同と 不同と

New simple statistical methods

Why new simple methods?

- Want to be able to interpret results more easily
- Want more robust inferences
- Want to explain results more easily to others
- Properties of "simple methods"

New simple statistical methods

Why new simple methods?

- Want to be able to interpret results more easily
- Want more robust inferences
- Want to explain results more easily to others
- Properties of "simple methods"

New simple statistical methods

Why new simple methods?

- Want to be able to interpret results more easily
- Want more robust inferences
- Want to explain results more easily to others

Properties of "simple methods"

New simple statistical methods

Why new simple methods?

- Want to be able to interpret results more easily
- Want more robust inferences
- Want to explain results more easily to others

Properties of "simple methods"

Automatic
 Bo not use all available information

New simple statistical methods

Why new simple methods?

- Want to be able to interpret results more easily
- Want more robust inferences
- Want to explain results more easily to others

Properties of "simple methods"

- Automatic
- Do not use all available information

・ロン ・回と ・ヨン ・ヨン

New simple statistical methods

- Why new simple methods?
 - Want to be able to interpret results more easily
 - Want more robust inferences
 - Want to explain results more easily to others
- Properties of "simple methods"
 - Automatic
 - Do not use all available information

イロト イヨト イヨト イヨト

New simple statistical methods

- Why new simple methods?
 - Want to be able to interpret results more easily
 - Want more robust inferences
 - Want to explain results more easily to others
- Properties of "simple methods"
 - Automatic
 - Do not use all available information

イロト イポト イヨト イヨト

New simple statistical methods

- Why new simple methods?
 - Want to be able to interpret results more easily
 - Want more robust inferences
 - Want to explain results more easily to others
- Properties of "simple methods"
 - Automatic
 - Do not use all available information

- 4 同 6 4 日 6 4 日 6

Typical regression output

```
> M1 <- lm (formula = partyid ~ female + black + age + I(age^2) +
    parents.party + education + income + ideology + income:ideology)
> display (M1)
```

	coef.es	t coef.se	
black	-0.98	0.17	
parents.party	0.49	0.03	
income	-0.43	0.15	
education	0.18	0.06	
ideology	0.20	0.11	
$\verb"income:ideology"$	0.15	0.03	
n = 989, k = 2	10		
residual sd =	1.58, R [.]	-Squared =	0.49

イロト イヨト イヨト イヨト

3

Standardized regression output

> display (standardi	ize (M1))	
	coef.est	coef.se
c.black	-0.98	0.17
z.parents.party	1.66	0.11
z.income	0.41	0.12
z.education	0.34	0.12
z.ideology	1.84	0.10
z.income:z.ideology	0.94	0.22
n = 989, k = 10		
residual sd = 1.58	3, R-Squar	red = 0.49

・ロン ・回と ・ヨン・

æ

Separation in logistic regression

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960

coef.est	coef.se
-0.14	0.23
0.24	0.14
-1.03	0.36
0.03	0.06
	coef.est -0.14 0.24 -1.03 0.03

1964

	coef.est	coef.se
(Intercept)	-1.15	0.22
female	-0.09	0.14
black	-16.83	420.40
income	0.19	0.06

1968

	coef.est	coef.se
(Intercept)	0.47	0.24
female	-0.01	0.15
black	-3.64	0.59
income	-0.03	0.07
1972		
	coef.est	coef.se
(Intercept)	0.67	0.18
female	-0.25	0.12
black	-2.63	0.27
income	0.09	0.05

- 4 回 2 - 4 □ 2 - 4 □

3

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 Simplifying and long concert
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd ¹/₂
- ▶ Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロト ・回ト ・ヨト ・ヨト

Weakly informative priors for logistic regression coefficients

Separation in logistic regression

- ▶ Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd ¹/₂
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロト ・回ト ・ヨト ・ヨト

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd ¹/₂
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロン ・回と ・ヨン・

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロン ・回と ・ヨン ・ヨン

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- ▶ Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロン ・回と ・ヨン ・ヨン

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

・ロン ・回 とくほど ・ ほとう

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
- Performs well in cross-validation on a corpus of datasets

소리가 소문가 소문가 소문가

Regularization in action!

Andrew Gelman Some Recent Progress in Simple Statistical Methods

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

- ▶ Slope of a logistic regression of Pr(death) on dose:
 - Maximum likelihood est is 7.8 ± 4.9
 - With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

・ロン ・回と ・ヨン ・ヨン

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

Slope of a logistic regression of Pr(death) on dose:

- Maximum likelihood est is 7.8 ± 4.9
- With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

・ロン ・回と ・ヨン・

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

- Slope of a logistic regression of Pr(death) on dose:
 - Maximum likelihood est is 7.8 ± 4.9
 - With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

イロト イヨト イヨト イヨト

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

- Slope of a logistic regression of Pr(death) on dose:
 - Maximum likelihood est is 7.8 ± 4.9
 - With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

イロト イヨト イヨト イヨト

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

- Slope of a logistic regression of Pr(death) on dose:
 - Maximum likelihood est is 7.8 ± 4.9
 - With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

イロト イポト イヨト イヨト

Another example of conservatism

Dose	#deaths / $#$ animals
-0.86	0/5
-0.30	1/5
-0.05	3/5
0.73	5/5

- Slope of a logistic regression of Pr(death) on dose:
 - Maximum likelihood est is 7.8 ± 4.9
 - With weakly-informative prior: Bayes est is 4.4 ± 1.9
- Which is truly conservative?
- The sociology of shrinkage

イロト イポト イヨト イヨト

Income and voting, for states and for individuals

- 17

Regression coefficients or direct comparisons?

Andrew Gelman Some Recent Progress in Simple Statistical Methods

Regression coefficients or direct comparisons?

Andrew Gelman Some Recent Progress in Simple Statistical Methods

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience.
- ▶ The role of theory

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience
- The role of theory

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience

The role of theory

イロト イヨト イヨト イヨト

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience

The role of theory

sd of a binary variab Bayesian inference Statistical efficiency

<ロ> (日) (日) (日) (日) (日)

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience

► The role of theory

- sd of a binary variable.
- Bayesian inference
- Statistical efficiency

・ロン ・回と ・ヨン ・ヨン

Research on simple statistical methods

It starts with an annoyance, for example:

- Interpreting a table of regression coefficients
- Unstable logistic regression estimates
- Explaining results to a general audience

The role of theory

- sd of a binary variable
- Bayesian inference
- Statistical efficiency

Research on simple statistical methods

- It starts with an annoyance, for example:
 - Interpreting a table of regression coefficients
 - Unstable logistic regression estimates
 - Explaining results to a general audience
- ► The role of theory
 - sd of a binary variable
 - Bayesian inference
 - Statistical efficiency

- 4 同 6 4 日 6 4 日 6

Research on simple statistical methods

- It starts with an annoyance, for example:
 - Interpreting a table of regression coefficients
 - Unstable logistic regression estimates
 - Explaining results to a general audience
- ► The role of theory
 - sd of a binary variable
 - Bayesian inference
 - Statistical efficiency

(4月) イヨト イヨト

Research on simple statistical methods

- It starts with an annoyance, for example:
 - Interpreting a table of regression coefficients
 - Unstable logistic regression estimates
 - Explaining results to a general audience
- ► The role of theory
 - sd of a binary variable
 - Bayesian inference
 - Statistical efficiency

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalizable principles

- Scaling of variables
- Weakly informative prior distributions
- Expressing estimates as comparisons
- All statistics is "consulting"

Generalizable principles

Scaling of variables

- Weakly informative prior distributions
- Expressing estimates as comparisons
- All statistics is "consulting"

イロト イヨト イヨト イヨト

Generalizable principles

Scaling of variables

- Weakly informative prior distributions
- Expressing estimates as comparisons
- All statistics is "consulting"

イロト イヨト イヨト イヨト

Generalizable principles

- Scaling of variables
- Weakly informative prior distributions
- Expressing estimates as comparisons
- All statistics is "consulting"

- 4 同 6 4 日 6 4 日 6

Generalizable principles

- Scaling of variables
- Weakly informative prior distributions
- Expressing estimates as comparisons
- All statistics is "consulting"

(4月) イヨト イヨト