Ubiquity of multilevel models and how to understand them better

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

21 December 2004

- The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - outcomes, ...
 - Deeper inferences for individual states, demographic substitutions of outcomes
- The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ▶ The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ▶ The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies broader and deeper
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- The solution: multilevel modeling

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- The solution: multilevel modeling
 Regression with coefficients grouped into batches

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling
 - Regression with coefficients grouped into batches
 - No such thing as "too many predictors"

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- The solution: multilevel modeling
 - Regression with coefficients grouped into batches
 - No such thing as "too many predictors"

- ► The problem: not enough data to estimate effects with confidence
- ► The solution: make your studies *broader* and *deeper*
 - Broader: extend to other countries, other years, other outcomes, . . .
 - Deeper: inferences for individual states, demographic subgroups, components of outcomes, . . .
- ► The solution: multilevel modeling
 - ▶ Regression with coefficients grouped into batches
 - ▶ No such thing as "too many predictors"

- Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Samantha Cook, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - ► Samantha Cook, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Samantha Cook, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- Multilevel models in unexpected places
- Multilevel models as a way of life
- collaborators:
 - ▶ Iain Pardoe, Dept of Decision Sciences, University of Oregon
 - Shouhao Zhao, Dept of Statistics, Columbia University
 - Samantha Cook, Dept of Statistics, Columbia University
 - Zaiying Huang, Circulation, New York Times

- ▶ The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places

Multilevel models as a way of life

- ▶ The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places

Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 Before after studies
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - ▶ Estimating incumbency advantage and its variation
 - Before-after studies
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- Multilevel models as a way of life

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- The effectiveness of multilevel models
 - State-level opinions from national polls (crossed multilevel modeling and poststratification)
- Multilevel models in unexpected places
 - Estimating incumbency advantage and its variation
 - Before-after studies
- ▶ Multilevel models as a way of life
 - Building and fitting models
 - Displaying and summarizing inferences

- Anything worth doing is worth doing repeatedly
- ► A "method" is any procedure applied more than once
- City planning

- Infilling: inferences for individual states, demographs subgroups, components of data
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other vears, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - ▶ Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- Anything worth doing is worth doing repeatedly
- ▶ A "method" is any procedure applied more than once
- City planning
 - Outward expansion: fitting a model to other countries, other years, other outcomes, . . .
 - Infilling: inferences for individual states, demographic subgroups, components of data, . . .
- "Frequentist" statistical theory of repeated inferences

- ▶ Over 90% of incumbents win reelection
 - ▶ Is this evidence of a causal effect of incumbency?
- Regression approach (Gelman and King, 1990):

- $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi h_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Over 90% of incumbents win reelection
 - Is this evidence of a causal effect of incumbency?
- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 Control for vote in previous election
 - $= v_n \beta_0 + \beta_1 v_{n-1} + \beta_2 P_n 1 + \beta_2 P_n$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Over 90% of incumbents win reelection
 - ▶ Is this evidence of a causal effect of incumbency?
- Regression approach (Gelman and King, 1990):
 - ▶ For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi l_{it} + \epsilon_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

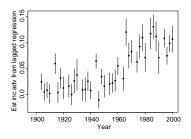
- ▶ Over 90% of incumbents win reelection
 - ▶ Is this evidence of a causal effect of incumbency?
- Regression approach (Gelman and King, 1990):
 - ▶ For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Over 90% of incumbents win reelection
 - Is this evidence of a causal effect of incumbency?
- Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
 - $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- Other estimates (sophomore surge, etc.) have selection bias

- ▶ Over 90% of incumbents win reelection
 - ▶ Is this evidence of a causal effect of incumbency?
- ▶ Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - Control for incumbent party
- ▶ Other estimates (sophomore surge, etc.) have selection bias

- ▶ Over 90% of incumbents win reelection
 - ▶ Is this evidence of a causal effect of incumbency?
- Regression approach (Gelman and King, 1990):
 - For any year, compare districts with and without incs running
 - Control for vote in previous election
 - ► Control for incumbent *party*
- ▶ Other estimates (sophomore surge, etc.) have selection bias

Estimated incumbency advantage from lagged regressions



- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- We'll show pictures of the model not fitting
- We'll set up a model allowing inc advantage to vary

- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

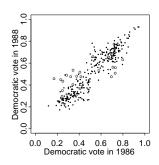
- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

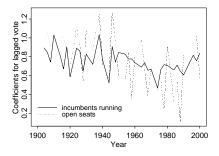
- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

- ▶ Regression estimate: $v_{it} = \beta_0 + \beta_1 v_{i,t-1} + \beta_2 P_{it} + \psi I_{it} + \epsilon_{it}$
- lacktriangle "Political science" problem: ψ is assumed to be same in all districts
- "Statistics" problem: the model doesn't fit the data
- ▶ We'll show pictures of the model not fitting
- ▶ We'll set up a model allowing inc advantage to vary

Model misfit

Under the model, parallel lines are fitted to the circles (open seats) and dots (incs running for reelection)





- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α}
 - $ightharpoonup \phi_{it}$ is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - lacktriangleright ϵ_{it} 's are independent errors: mean 0 and sd σ_ϵ
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - lacktriangledown ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - lacktriangleright ϵ_{it} 's are independent errors: mean 0 and sd σ_ϵ
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - lacktriangleright ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ}
- Candidate-level incumbency effects

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - $ightharpoonup \epsilon_{it}$'s are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district i: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- ► Candidate-level incumbency effects:
- If the same incumbent is running in years 1 and 2, then
 - Otherwise. φ_m and φ_m are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:
 - If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:
 - If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

- for t = 1, 2: $v_{it} = 0.5 + \delta_t + \alpha_i + \phi_{it}I_{it} + \epsilon_{it}$
 - $\delta_2 \delta_1$ is the national vote swing
 - $ightharpoonup \alpha_i$ is the "normal vote" for district *i*: mean 0, sd σ_{α} .
 - ϕ_{it} is the inc advantage in district i at time t: mean ψ , sd σ_{ϕ}
 - ϵ_{it} 's are independent errors: mean 0 and sd σ_{ϵ} .
- Candidate-level incumbency effects:
 - ▶ If the same incumbent is running in years 1 and 2, then $\phi_{i2} \equiv \phi_{i1}$
 - ▶ Otherwise, ϕ_{i1} and ϕ_{i2} are independent

Bayesian inference

- Linear parameters: national vote swings, district effects incumbency effects
- ▶ 3 variance parameters: district effects, incumbency effects residual errors
- Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- Gibbs-Metropolis sampling, program in Splus

- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ▶ 3 variance parameters: district effects, incumbency effects residual errors
- Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ▶ Gibbs-Metropolis sampling, program in Splus

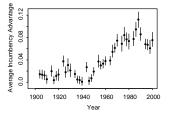
- Bayesian inference
- Linear parameters: national vote swings, district effects, incumbency effects
- ▶ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- Gibbs-Metropolis sampling, program in Splus

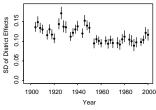
- Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- Gibbs-Metropolis sampling, program in Splus

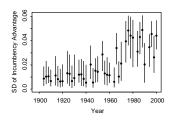
- ► Bayesian inference
- ► Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ► Gibbs-Metropolis sampling, program in Splus

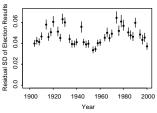
- Bayesian inference
- Linear parameters: national vote swings, district effects, incumbency effects
- ➤ 3 variance parameters: district effects, incumbency effects, residual errors
- ▶ Need to model a selection effect: information provided by the incumbent party at time 1
- Solve analytically for Pr(inclusion), include factor in the likelihood
- ► Gibbs-Metropolis sampling, program in Splus

Estimated incumbency advantage and its variation

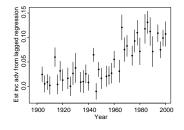


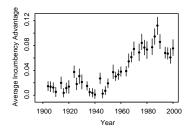






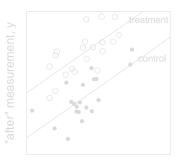
Compare old and new estimates





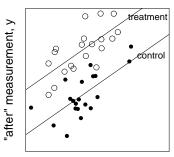
- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects

Fisher's classical null hyp: effect is zero for all cases
 Regression model: v = T.0 + X.0 + c.



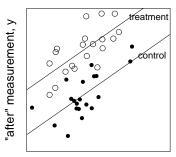
"before" measurement. >

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - ► Fisher's classical null hyp: effect is zero for all cases
 - ▶ Regression model: $y_i = T_i\theta + X_i\beta + \epsilon_i$



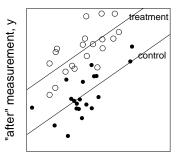
"before" measurement, x

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - Fisher's classical null hyp: effect is zero for all cases
 - ▶ Regression model: $y_i = T_i\theta + X_i\beta + \epsilon_i$



"before" measurement, x

- Before-after data with treatment and control groups
- ▶ Default model: constant treatment effects
 - Fisher's classical null hyp: effect is zero for all cases
 - Regression model: $y_i = T_i \theta + X_i \beta + \epsilon_i$



"before" measurement, x

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting

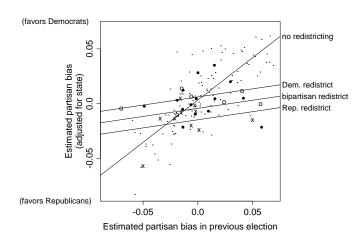
- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - ► An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

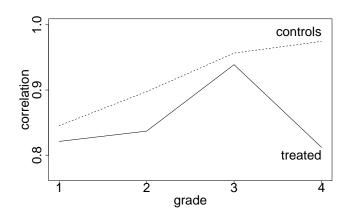
- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

- ▶ Treatment interacts with "before" measurement
- Before-after correlation is higher for controls than for treated units
- Examples
 - An observational study of legislative redistricting
 - An experiment with pre-test, post-test data
 - Congressional elections with incumbents and open seats

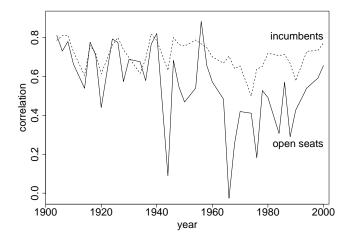
Observational study of legislative redistricting before-after data



Experiment: correlation between pre-test and post-test data for controls and for treated units



Correlation between two successive Congressional elections for incumbents running (controls) and open seats (treated)



Interactions as variance components

Unit-level "error term" η_i

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:

- Under all these models, the before-after correlation is higher for controls than treated units
- for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error (η_i only at time 1)
 Additive treatment error (η_i only at time 2)
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error (η_i only at time 2)
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - ▶ Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

- ▶ For control units, η_i persists from time 1 to time 2
- ▶ For treatment units, η_i changes:
 - Subtractive treatment error $(\eta_i \text{ only at time } 1)$
 - Additive treatment error $(\eta_i \text{ only at time 2})$
 - Replacement treatment error
- Under all these models, the before-after correlation is higher for controls than treated units

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

Some new tools

- Building and fitting multilevel models
- Displaying and summarizing inferences

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level varianceers

- ▶ A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- A reparameterization can change a model (even if it leaves the likelihood unchanged)
- Redundant additive parameterization
- Redundant multiplicative parameterization
- Weakly-informative prior distribution for group-level variance parameters

- ▶ Data model: $\Pr(y_i = 1) = \operatorname{logit}^{-1} \left(\beta^0 + \beta_{\operatorname{age(i)}}^{\operatorname{age}} + \beta_{\operatorname{state(i)}}^{\operatorname{state}} \right)$
- Usual model for the coefficients

Additively redundant model:

$$eta_j^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4$$
 $eta_j^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state}\right)$
- Usual model for the coefficients

$$eta_j^{
m age} \sim {\sf N}(0,\sigma_{
m age}^2), \; ext{ for } j=1,\ldots,4$$
 $eta_j^{
m state} \sim {\sf N}(0,\sigma_{
m state}^2), \; ext{ for } j=1,\ldots,50$

Additively redundant model:

$$eta_j^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4 \ eta_j^{
m state} \; \sim \; {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50 \ .$$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state}\right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_j^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \; \; {\sf for} \; j=1,\ldots,4$$
 $eta_j^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \; \; {\sf for} \; j=1,\ldots,50$

▶ Why add the redundant μ_{age} , μ_{state} ?

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state} \right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

▶ Why add the redundant μ_{age} , μ_{state} ?

Iterative algorithm moves more smoothly

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state} \right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

- ▶ Why add the redundant μ_{age} , μ_{state} ?
 - Iterative algorithm moves more smoothly

- ▶ Data model: $Pr(y_i = 1) = logit^{-1} \left(\beta^0 + \beta_{age(i)}^{age} + \beta_{state(i)}^{state} \right)$
- Usual model for the coefficients:

$$eta_j^{
m age} \sim \mathsf{N}(0,\sigma_{
m age}^2), \; \; \mathsf{for} \; j=1,\ldots,4 \ eta_j^{
m state} \sim \mathsf{N}(0,\sigma_{
m state}^2), \; \; \mathsf{for} \; j=1,\ldots,50$$

Additively redundant model:

$$eta_{j}^{
m age} \sim {\sf N}(\mu_{
m age}, \sigma_{
m age}^2), \;\; {\sf for} \; j=1,\ldots,4 \ eta_{j}^{
m state} \sim {\sf N}(\mu_{
m state}, \sigma_{
m state}^2), \;\; {\sf for} \; j=1,\ldots,50 \ \label{eq:betastate}$$

- ▶ Why add the redundant μ_{age} , μ_{state} ?
 - Iterative algorithm moves more smoothly

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 50 \end{array}$$

Identify using centered parameters:

$$egin{array}{lll} ilde{eta}_{j}^{
m age} &=& eta_{j}^{
m age} - ar{eta}^{
m age}, & ext{for } j=1,\ldots,4 \ ilde{eta}_{j}^{
m state} &=& eta_{j}^{
m state} - ar{eta}^{
m state}, & ext{for } j=1,\ldots,50 \end{array}$$

Redefine the constant term

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 50 \end{array}$$

▶ Identify using centered parameters:

$$\begin{split} \tilde{\beta}_{j}^{\text{age}} &= \beta_{j}^{\text{age}} - \bar{\beta}^{\text{age}}, \;\; \text{for} \; j = 1, \dots, 4 \\ \tilde{\beta}_{j}^{\text{state}} &= \beta_{j}^{\text{state}} - \bar{\beta}^{\text{state}}, \;\; \text{for} \; j = 1, \dots, 50 \end{split}$$

▶ Redefine the constant term:

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

Redundant additive parameterization

Model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ & \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 4 \\ & \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \ldots, 50 \end{array}$$

Identify using centered parameters:

$$\begin{split} \tilde{\beta}_{j}^{\text{age}} &= \beta_{j}^{\text{age}} - \bar{\beta}^{\text{age}}, \;\; \text{for} \; j = 1, \dots, 4 \\ \tilde{\beta}_{j}^{\text{state}} &= \beta_{j}^{\text{state}} - \bar{\beta}^{\text{state}}, \;\; \text{for} \; j = 1, \dots, 50 \end{split}$$

Redefine the constant term:

$$\tilde{\beta}^0 = \beta^0 + \bar{\beta}^{age} + \bar{\beta}^{age}$$

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta^{\mathrm{age}}_{\mathrm{age(i)}} + \underline{\xi}^{\mathrm{state}} \beta^{\mathrm{state}}_{\mathrm{state(i)}}\right) \\ \beta^{\mathrm{age}}_j & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma^2_{\mathrm{age}}), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta^{\mathrm{state}}_j & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma^2_{\mathrm{state}}), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$egin{array}{lll} ilde{eta}_{j}^{
m age} &=& oldsymbol{\xi}^{
m age}(eta_{j}^{
m age}-ar{eta}^{
m age}), & {
m for} \ j=1,\ldots,4 \ ilde{eta}_{j}^{
m state} &=& oldsymbol{\xi}^{
m state}\left(eta_{j}^{
m state}-ar{eta}^{
m state}
ight), & {
m for} \ j=1,\ldots,50 \end{array}$$

- ▶ Faster convergence
- ▶ More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \mathbf{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \mathbf{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- ► Faster convergence
- More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \mathbf{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \mathbf{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- Faster convergence
- More general model, connections to factor analysis

New model

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

$$\begin{array}{lcl} \tilde{\beta}_{j}^{\mathrm{age}} & = & \boldsymbol{\xi}^{\mathrm{age}}(\beta_{j}^{\mathrm{age}} - \bar{\beta}^{\mathrm{age}}), & \mathrm{for} \ j = 1, \ldots, 4 \\ \\ \tilde{\beta}_{j}^{\mathrm{state}} & = & \boldsymbol{\xi}^{\mathrm{state}}\left(\beta_{j}^{\mathrm{state}} - \bar{\beta}^{\mathrm{state}}\right), & \mathrm{for} \ j = 1, \ldots, 50 \\ \end{array}$$

- Faster convergence
- ▶ More general model, connections to factor analysis

Redundant multiplicative parameterization:

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

▶ Separate prior distributions on the ξ and σ parameters:

- \blacktriangleright Normal on ξ
- Inverse-gamma on σ²
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

$$\begin{array}{lcl} \Pr(y_i = 1) & = & \log \mathrm{it}^{-1} \left(\beta^0 + \underline{\xi}^{\mathrm{age}} \beta_{\mathrm{age(i)}}^{\mathrm{age}} + \underline{\xi}^{\mathrm{state}} \beta_{\mathrm{state(i)}}^{\mathrm{state}} \right) \\ \beta_j^{\mathrm{age}} & \sim & \mathsf{N}(\mu_{\mathrm{age}}, \sigma_{\mathrm{age}}^2), \ \ \mathrm{for} \ j = 1, \dots, 4 \\ \beta_j^{\mathrm{state}} & \sim & \mathsf{N}(\mu_{\mathrm{state}}, \sigma_{\mathrm{state}}^2), \ \ \mathrm{for} \ j = 1, \dots, 50 \end{array}$$

- ▶ Separate prior distributions on the ξ and σ parameters:
 - ▶ Normal on ξ
 - ▶ Inverse-gamma on σ^2
- Generalizes and fixes problems with the standard choices of prior distributions

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- R² and partial pooling factors
- Analysis of variance

- ▶ Displaying parameters in groups rather than as a long list
- Average predictive effects
- R² and partial pooling factors
- Analysis of variance

- ▶ Displaying parameters in groups rather than as a long list
- Average predictive effects
- \triangleright R^2 and partial pooling factors
- Analysis of variance

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Analysis of variance

Displaying and summarizing inferences

- Displaying parameters in groups rather than as a long list
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Analysis of variance

Raw display of inference

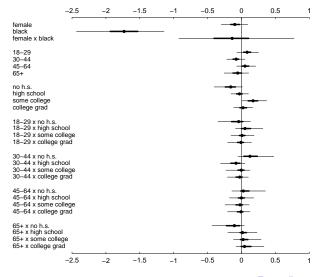
	mean	sd	2.5%	25%	50%	75%	97.5% Rhat	n.eff
B.0	0.402	0.147	0.044	0.326	0.413	0.499	0.652 1.024	110
b.female	-0.094	0.102	-0.283	-0.162	-0.095	-0.034	0.107 1.001	1000
b.black	-1.701	0.305	-2.323	-1.910	-1.691	-1.486	-1.152 1.014	500
b.female.black	-0.143	0.393	-0.834	-0.383	-0.155	0.104	0.620 1.007	1000
B.age[1]	0.084	0.088	-0.053	0.012	0.075	0.140	0.277 1.062	45
B.age[2]	-0.072	0.087	-0.260	-0.121	-0.054	-0.006	0.052 1.017	190
B.age[3]	0.044	0.077	-0.105	-0.007	0.038	0.095	0.203 1.029	130
B.age[4]	-0.057	0.096	-0.265	-0.115	-0.052	0.001	0.133 1.076	32
B.edu[1]	-0.148	0.131	-0.436	-0.241	-0.137	-0.044	0.053 1.074	31
B.edu[2]	-0.022	0.082	-0.182	-0.069	-0.021	0.025	0.152 1.028	160
B.edu[3]	0.148	0.112	-0.032	0.065	0.142	0.228	0.370 1.049	45
B.edu[4]	0.023	0.090	-0.170	-0.030	0.015	0.074	0.224 1.061	37
B.age.edu[1,1]	-0.044	0.133	-0.363	-0.104	-0.019	0.025	0.170 1.018	1000
B.age.edu[1,2]	0.059	0.123	-0.153	-0.011	0.032	0.118	0.353 1.016	580
B.age.edu[1,3]	0.049	0.124	-0.146	-0.023	0.022	0.104	0.349 1.015	280
B.age.edu[1,4]	0.001	0.116	-0.237	-0.061	0.000	0.052	0.280 1.010	1000
B.age.edu[2,1]	0.066	0.152	-0.208	-0.008	0.032	0.124	0.449 1.022	140
B.age.edu[2,2]	-0.081	0.127	-0.407	-0.137	-0.055	0.001	0.094 1.057	120
B.age.edu[2,3]	-0.004	0.102	-0.226	-0.048	0.000	0.041	0.215 1.008	940
B.age.edu[2,4]	-0.042	0.108	-0.282	-0.100	-0.026	0.014	0.157 1.017	170
B.age.edu[3,1]	0.034	0.135	-0.215	-0.030	0.009	0.091	0.361 1.021	230
B.age.edu[3,2]	0.007	0.102	-0.213	-0.039	0.003	0.052	0.220 1.019	610
B.age.edu[3,3]	0.033	0.130	-0.215	-0.029	0.009	0.076	0.410 1.080	61
B.age.edu[3,4]	-0.009	0.109	-0.236	-0.064	-0.005	0.043	0.214 1.024	150
B.age.edu[4,1]	-0.141	0.190	-0.672	-0.224	-0.086	-0.003	0.100 1.036	270
B.age.edu[4,2]	-0.014	0.119	-0.280	-0.059	-0.008	0.033	0.239 1.017	240
B.age.edu[4,3]	0.046	0.132	-0.192	-0.024	0.019	0.108	0.332 1.010	210
B.age.edu[4,4]	0.042	0.142	-0.193	-0.022	0.016	0.095	0.377 1.015	160
P a+a+a[1]	0.201	0.011	_0 121	0.047	0 170	0 226	0 646 1 002	060

Raw graphical display

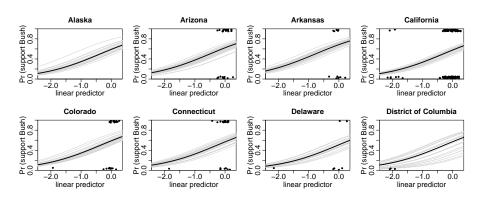
Bugs model at "C:/books/multilevel/election88/model4.bug", 3 chains, each with 2001 iterations



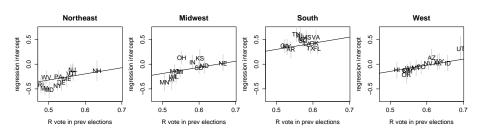
Better graphical display 1: demographics



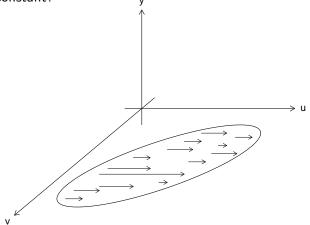
Better graphical display 2: within states



Better graphical display 3: between states



▶ What is $E(y | x_1 = high) - E(y | x_1 = low)$, with all other x's held constant?



- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
- ► Compute APE for each input variable x
- Multilevel factors are categorical input variables

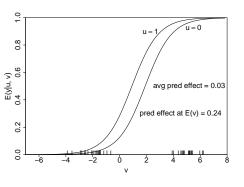
- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

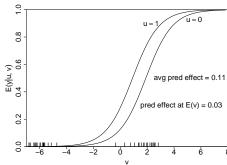
- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- ▶ In general, difference can depend on *x*
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- In general, difference can depend on x
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

- ▶ What is $E(y | x_1 = high) E(y | x_1 = low)$, with all other x's held constant?
- In general, difference can depend on x
- Average over distribution of x in the data
 - You can't just use a central value of x
- Compute APE for each input variable x
- Multilevel factors are categorical input variables

APE: why you can't just use a central value of x





- ► Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance

Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance

Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 Go beyond classical null-hypothesis-testing frames
- Open question: how to construct models with deep interaction structures?

- ► Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- ▶ Generalization of R² (explained variance), defined at each level of the model
- Partial pooling factor, defined at each level
- Analysis of variance
 - Summarize the scale of each batch of predictors
 - Go beyond classical null-hypothesis-testing framework
- Open question: how to construct models with deep interaction structures?

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ▶ General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ▶ General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Multilevel modeling is not just for grouped data
- Make use of lots of information out there that's already collected
- Use MLM to adjust for time effects, state effects, survey-organization effects, . . .
- New ideas needed to fit, understand, display, and summarize each level of the model
- ► General framework for modeling treatment effects that vary
- It's not just about "data fitting" or "getting the right standard errors"

- Average predictive effects
- $ightharpoonup R^2$ and pooling factors
- Analysis of variance

- Average predictive effects
- $ightharpoonup R^2$ and pooling factors
- Analysis of variance

- Average predictive effects
- $ightharpoonup R^2$ and pooling factors
- Analysis of variance

- Average predictive effects
- $ightharpoonup R^2$ and pooling factors
- Analysis of variance

- ▶ Regresion model, $E(y|x, \theta)$
- ▶ Predictors come from "input variables"
 - Example: regression on age, sex, age × sex, and age²
 5 linear predictors (including the constant term)
 But only & include
- Compute APE for each input variable, one at a time, with all others held constant

- ▶ Regresion model, $E(y|x,\theta)$
- Predictors come from "input variables"
 - ► Example: regression on age, sex, age × sex, and age²
 - ▶ 5 linear *predictors* (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant

- ▶ Regresion model, $E(y|x,\theta)$
- ▶ Predictors come from "input variables"
 - \blacktriangleright Example: regression on age, sex, age \times sex, and age²
 - 5 linear predictors (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant

- ▶ Regresion model, $E(y|x,\theta)$
- Predictors come from "input variables"
 - \blacktriangleright Example: regression on age, sex, age \times sex, and age²
 - ▶ 5 linear *predictors* (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant

- ▶ Regresion model, $E(y|x, \theta)$
- Predictors come from "input variables"
 - \blacktriangleright Example: regression on age, sex, age \times sex, and age²
 - ▶ 5 linear *predictors* (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant
 - Scalar input u: the "input of interest"

- ▶ Regresion model, $E(y|x,\theta)$
- Predictors come from "input variables"
 - \blacktriangleright Example: regression on age, sex, age \times sex, and age²
 - 5 linear predictors (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant
 - Scalar input u: the "input of interest"
 - ▶ Vector *v*: all other inputs

- ▶ Regresion model, $E(y|x,\theta)$
- Predictors come from "input variables"
 - \blacktriangleright Example: regression on age, sex, age \times sex, and age²
 - 5 linear predictors (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant
 - Scalar input u: the "input of interest"
 - ▶ Vector *v*: all other inputs

- ▶ Regresion model, $E(y|x,\theta)$
- Predictors come from "input variables"
 - ► Example: regression on age, sex, age × sex, and age²
 - 5 linear predictors (including the constant term)
 - But only 4 inputs
- Compute APE for each input variable, one at a time, with all others held constant
 - Scalar input u: the "input of interest"
 - ▶ Vector *v*: all other inputs

predictive effect:

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

Average over:

The transition, $u^{(1)} \rightarrow u^{(2)}$

The regression coefficients

predictive effect:

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

Average over:

ightharpoonup The transition, $u^{(1)}
ightarrow u^{(2)}$

The other inputs, v

The regression coefficients.

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Average over:
 - ▶ The transition, $u^{(1)} \rightarrow u^{(2)}$
 - ► The other inputs,
 - ▶ The regression coefficients, θ

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Average over:
 - ▶ The transition, $u^{(1)} \rightarrow u^{(2)}$
 - ► The other inputs, *v*
 - ▶ The regression coefficients, θ

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Average over:
 - ▶ The transition, $u^{(1)} \rightarrow u^{(2)}$
 - ► The other inputs, *v*
 - ▶ The regression coefficients, θ

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Average over:
 - ▶ The transition, $u^{(1)} \rightarrow u^{(2)}$
 - ► The other inputs, *v*
 - ▶ The regression coefficients, θ

predictive effect:

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

▶ Binary input *u*:

⇒ predictive effect: $\delta_v(0 \to 1, v, \theta) = E(y|1, v, \theta) - E(y|0, v, \theta)$ ⇒ Average over v_1, \dots, v_n in the data (or weighted average if

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Binary input u:
 - ▶ predictive effect: $\delta_u(0 \to 1, v, \theta) = E(y|1, v, \theta) E(y|0, v, \theta)$
 - Average over v_1, \ldots, v_n in the data (or weighted average if desired)
 - \blacktriangleright Average over θ from inferential simulations
 - ightharpoonup Standard error of APE from uncertainty in heta

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Binary input u:
 - ▶ predictive effect: $\delta_u(0 \to 1, v, \theta) = E(y|1, v, \theta) E(y|0, v, \theta)$
 - Average over v_1, \ldots, v_n in the data (or weighted average if desired)
 - ightharpoonup Average over θ from inferential simulations
 - ▶ Standard error of APE from uncertainty in 6

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- ▶ Binary input u:
 - ▶ predictive effect: $\delta_u(0 \to 1, v, \theta) = E(y|1, v, \theta) E(y|0, v, \theta)$
 - Average over v_1, \ldots, v_n in the data (or weighted average if desired)
 - ightharpoonup Average over θ from inferential simulations
 - ▶ Standard error of APE from uncertainty in 6

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Binary input u:
 - predictive effect: $\delta_u(0 \to 1, v, \theta) = E(y|1, v, \theta) E(y|0, v, \theta)$
 - Average over v_1, \ldots, v_n in the data (or weighted average if desired)
 - \blacktriangleright Average over θ from inferential simulations
 - Standard error of APE from uncertainty in 6

$$\delta_u(u^{(1)} \rightarrow u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Binary input u:
 - ▶ predictive effect: $\delta_u(0 \to 1, v, \theta) = E(y|1, v, \theta) E(y|0, v, \theta)$
 - Average over v_1, \ldots, v_n in the data (or weighted average if desired)
 - Average over θ from inferential simulations
 - Standard error of APE from uncertainty in θ

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- Inputs that are not always active

$$\delta_u(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- Inputs that are not always active

$$\overset{\cdot}{\delta_{u}}(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- ► Inputs that are not always active

$$\delta_{u}(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- Inputs that are not always active

$$\delta_{u}(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- Inputs that are not always active

$$\delta_{u}(u^{(1)} \to u^{(2)}, v, \theta) = \frac{E(y|u^{(2)}, v, \theta) - E(y|u^{(1)}, v, \theta)}{u^{(2)} - u^{(1)}}$$

- Continuous inputs
- Unordered discrete inputs
- Variance components
- Interactions
- ▶ Inputs that are not always active

- ▶ How much of the variance is "explained" by the model?
- ► Separate R² for each level
- ► Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon$
- lacktriangle At each level: $R^2=1-rac{ ext{variance among the }(Xeta)_k$'s variance among the ϵ_k 's

- ▶ How much of the variance is "explained" by the model?
- ightharpoonup Separate R^2 for each level
- Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon_k$
- At each level: $R^2 = 1 \frac{\text{variance among the } (XB)_k \text{ s}}{\text{variance among the } \epsilon_k \text{ s}}$

- ▶ How much of the variance is "explained" by the model?
- Separate R² for each level
- Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon_k$
- At each level: $R^2 = 1 \frac{\text{variance among the } (X\beta)_k$'s variance among the ϵ_k 's

- ▶ How much of the variance is "explained" by the model?
- ► Separate R² for each level
- ► Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon_k$
- At each level: $R^2 = 1 \frac{\text{variance among the } (X\beta)_k$'s variance among the ϵ_k 's

- ▶ How much of the variance is "explained" by the model?
- ► Separate R² for each level
- ► Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon_k$
- At each level: $R^2 = 1 \frac{\text{variance among the } (X\beta)_k\text{'s}}{\text{variance among the } \epsilon_k\text{'s}}$

- How much of the variance is "explained" by the model?
- Separate R² for each level
- ► Classical $R^2 = 1 \frac{\text{variance of the residuals}}{\text{variance of the data}}$
- Multilevel model: at each level, k units: $\theta_k = (X\beta)_k + \epsilon_k$
- ▶ At each level: $R^2 = 1 \frac{\text{variance among the } (X\beta)_k\text{'s}}{\text{variance among the } \epsilon_k\text{'s}}$

► At each level

▶
$$\theta_k = (X\beta)_k + \epsilon_k$$

▶ $R^2 = 1 - \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$

- Numerator and denominator estimated by their posterior means
- ▶ Posterior distribution automatically accounts for uncertainty
- ▶ Bayesian generalization of classical "adjusted R²"

- ► At each level
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - ► $R^2 = 1 \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$
- Numerator and denominator estimated by their posterior means
- ▶ Posterior distribution automatically accounts for uncertainty
- Bayesian generalization of classical "adjusted R2"

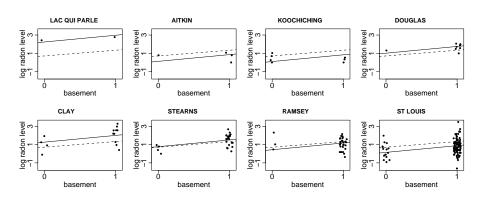
- ► At each level
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - ► $R^2 = 1 \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$
- Numerator and denominator estimated by their posterior means
- ▶ Posterior distribution automatically accounts for uncertainty
- ▶ Bayesian generalization of classical "adjusted R²"

- ► At each level
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - ▶ $R^2 = 1 \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$
- Numerator and denominator estimated by their posterior means
- Posterior distribution automatically accounts for uncertainty
- Bayesian generalization of classical "adjusted R²"

- At each level
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - ► $R^2 = 1 \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$
- Numerator and denominator estimated by their posterior means
- ▶ Posterior distribution automatically accounts for uncertainty
- ▶ Bayesian generalization of classical "adjusted R²"

- ► At each level
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - ► $R^2 = 1 \frac{\text{variance among the } (X\beta)_k \text{'s}}{\text{variance among the } \epsilon_k \text{'s}}$
- Numerator and denominator estimated by their posterior means
- Posterior distribution automatically accounts for uncertainty
- ▶ Bayesian generalization of classical "adjusted R²"

Example of partial pooling



Partial pooling factors

- ► At each level of the model:
 - $\theta_k = (X\beta)_k + \epsilon_k$
 - - $\sim \lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor

At each level, our pooling factor is defined based on the mean and variance of the ε_ν's

▶ At each level of the model:

- $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
- $ightharpoonup \lambda = 0$ if no pooling of ϵ 's
- $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factoring

At each level, our pooling factor is defined based on the meann and variance of the ϵ_{ν} 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor

At each level, our pooling factor is defined based on the mean and variance of the ε_ν's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - "No pooling" estimate doesn't always exist!
- At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - Can't simply compare to the "complete pooling" and "no pooling" estimates
 - "No pooling" estimate doesn't always exist!
- At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - Can't simply compare to the "complete pooling" and "no pooling" estimates
 - "No pooling" estimate doesn't always exist!
- ▶ At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - Can't simply compare to the "complete pooling" and "no pooling" estimates
 - "No pooling" estimate doesn't always exist!
- At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - Can't simply compare to the "complete pooling" and "no pooling" estimates
 - "No pooling" estimate doesn't always exist!
- ▶ At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- At each level of the model:
 - $\bullet \ \theta_k = (X\beta)_k + \epsilon_k$
 - $\lambda = 0$ if no pooling of ϵ 's
 - $\lambda = 0$ if complete pooling of ϵ 's to 0
- Multilevel generalization of Bayesian pooling factor
 - Can't simply compare to the "complete pooling" and "no pooling" estimates
 - "No pooling" estimate doesn't always exist!
- ▶ At each level, our pooling factor is defined based on the mean and variance of the ϵ_k 's

- ► Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation? Estimating and comparing variance components. Not testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

- Each row of the Anova table is a variance component
- ► Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - Not testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

- Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - Not testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

- Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - ► *Not* testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

- Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - Not testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

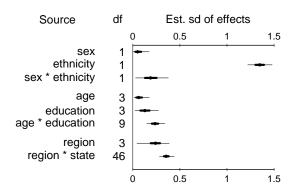
- Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - Not testing if a variance component equals 0
- ► Multilevel regression solves classical Anova problems

- Each row of the Anova table is a variance component
- Goal
 - How important is each source of variation?
 - Estimating and comparing variance components
 - Not testing if a variance component equals 0
- Multilevel regression solves classical Anova problems

Raw display of inference

	mean	sd	2.5%	25%	50%	75%	97.5% Rhat	n.eff
B.0	0.402	0.147	0.044	0.326	0.413	0.499	0.652 1.024	110
b.female	-0.094	0.102	-0.283	-0.162	-0.095	-0.034	0.107 1.001	1000
b.black	-1.701	0.305	-2.323	-1.910	-1.691	-1.486	-1.152 1.014	500
b.female.black	-0.143	0.393	-0.834	-0.383	-0.155	0.104	0.620 1.007	1000
B.age[1]	0.084	0.088	-0.053	0.012	0.075	0.140	0.277 1.062	45
B.age[2]	-0.072	0.087	-0.260	-0.121	-0.054	-0.006	0.052 1.017	190
B.age[3]	0.044	0.077	-0.105	-0.007	0.038	0.095	0.203 1.029	130
B.age[4]	-0.057	0.096	-0.265	-0.115	-0.052	0.001	0.133 1.076	32
B.edu[1]	-0.148	0.131	-0.436	-0.241	-0.137	-0.044	0.053 1.074	31
B.edu[2]	-0.022	0.082	-0.182	-0.069	-0.021	0.025	0.152 1.028	160
B.edu[3]	0.148	0.112	-0.032	0.065	0.142	0.228	0.370 1.049	45
B.edu[4]	0.023	0.090	-0.170	-0.030	0.015	0.074	0.224 1.061	37
B.age.edu[1,1]	-0.044	0.133	-0.363	-0.104	-0.019	0.025	0.170 1.018	1000
B.age.edu[1,2]	0.059	0.123	-0.153	-0.011	0.032	0.118	0.353 1.016	580
B.age.edu[1,3]	0.049	0.124	-0.146	-0.023	0.022	0.104	0.349 1.015	280
B.age.edu[1,4]	0.001	0.116	-0.237	-0.061	0.000	0.052	0.280 1.010	1000
B.age.edu[2,1]	0.066	0.152	-0.208	-0.008	0.032	0.124	0.449 1.022	140
B.age.edu[2,2]	-0.081	0.127	-0.407	-0.137	-0.055	0.001	0.094 1.057	120
B.age.edu[2,3]	-0.004	0.102	-0.226	-0.048	0.000	0.041	0.215 1.008	940
B.age.edu[2,4]	-0.042	0.108	-0.282	-0.100	-0.026	0.014	0.157 1.017	170
B.age.edu[3,1]	0.034	0.135	-0.215	-0.030	0.009	0.091	0.361 1.021	230
B.age.edu[3,2]	0.007	0.102	-0.213	-0.039	0.003	0.052	0.220 1.019	610
B.age.edu[3,3]	0.033	0.130	-0.215	-0.029	0.009	0.076	0.410 1.080	61
B.age.edu[3,4]	-0.009	0.109	-0.236	-0.064	-0.005	0.043	0.214 1.024	150
B.age.edu[4,1]	-0.141	0.190	-0.672	-0.224	-0.086	-0.003	0.100 1.036	270
B.age.edu[4,2]	-0.014	0.119	-0.280	-0.059	-0.008	0.033	0.239 1.017	240
B.age.edu[4,3]	0.046	0.132	-0.192	-0.024	0.019	0.108	0.332 1.010	210
B.age.edu[4,4]	0.042	0.142	-0.193	-0.022	0.016	0.095	0.377 1.015	160
P a+a+a[1]	0.201	0.011	_0 121	0.047	0 170	0 226	0 646 1 002	060

Bayesian Anova



- ▶ Tools for understanding multilevel inferences
- Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Anova

- ► Tools for understanding multilevel inferences
- ▶ Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Anova

- ► Tools for understanding multilevel inferences
- ▶ Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Anova

- ► Tools for understanding multilevel inferences
- ▶ Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- \triangleright R^2 and partial pooling factors
- Anova

- ▶ Tools for understanding multilevel inferences
- ▶ Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Anova

- ► Tools for understanding multilevel inferences
- ▶ Plots of coefficient estimates and fitted model with groups
- "Variance components" = coefficients for categorical input variables
- Average predictive effects
- $ightharpoonup R^2$ and partial pooling factors
- Anova

- ▶ What are "fixed" and "random" effects?
- Five incompatible definitions:
 - Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - Effects are fixed if they are interesting in themselves, random if you care about the population (Seatle 199)
 - Fixed effects are the entire population, random are a
 - small sample from a larger population (Tukey, 1960).

 Europa effects are realized values of a random variable.
 - (LaMotte, 1983)
 - Fixed effects are estimated using least squares, random effects are estimated using shapkage (Smirters, 1979).

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Sniiders, 1999)

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - 1. Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - 3. Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Snijders, 1999)

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - 1. Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - 2. Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - 3. Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Snijders, 1999)

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - 1. Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - 2. Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - 3. Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Snijders, 1999)

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - 1. Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - 2. Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - 3. Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - 4. Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Snijders, 1999)

- ▶ What are "fixed" and "random" effects?
- ► Five incompatible definitions:
 - 1. Fixed effects are constant across individuals; random effects vary (Leeuw, 1998)
 - 2. Effects are fixed if they are interesting in themselves, random if you care about the population (Searle, 1992)
 - 3. Fixed effects are the entire population, random are a small sample from a larger population (Tukey, 1960)
 - 4. Random effects are realized values of a random variable (LaMotte, 1983)
 - 5. Fixed effects are estimated using least squares, random effects are esitmated using shrinkage (Snijders, 1999)

- ▶ Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling

Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling

```
Suppose you are estimating a finite set of effects, then told they are a sample from a larger population. No need to change the model.
```

Separation of modeling, inference, and decision analysis

- Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects,
 - then told they are a sample from a larger population
 - But estimand of interest might change
- Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - ▶ Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects,
 then told they are a sample from a larger population
 - No need to change the mode
 - But estimand of interest might change!
- Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - ▶ Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects,
 then told they are a sample from a larger population
 - No need to change the model
 - But estimand of interest might change
- Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects, then told they are a sample from a larger population
 - No need to change the model
 - But estimand of interest might change!
- Separation of modeling, inference, and decision analysis

- Ideally, allow all coefficients to vary by group
 - ▶ Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects, then told they are a sample from a larger population
 - No need to change the model
 - But estimand of interest might change!
- ► Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects, then told they are a sample from a larger population
 - No need to change the model
 - But estimand of interest might change!
- ► Separation of modeling, inference, and decision analysis

- ▶ Ideally, allow all coefficients to vary by group
 - Main limitation: complicated models can be overwhelming
- Bayesian multilevel modeling
 - Simultaneously estimate population parameters and individual coefficients
 - Suppose you are estimating a finite set of effects, then told they are a sample from a larger population
 - No need to change the model
 - But estimand of interest might change!
- Separation of modeling, inference, and decision analysis