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Making more use of existing information

I The problem: not enough data to estimate effects with
confidence

I The solution: make your studies broader and deeper
I Broader: extend to other countries, other years, other

outcomes, . . .
I Deeper: inferences for individual states, demographic

subgroups, components of outcomes, . . .

I The solution: multilevel modeling
I Regression with coefficients grouped into batches
I No such thing as “too many predictors”
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Fitting and understanding multilevel models

I Multilevel models in unexpected places

I Multilevel models as a way of life
I collaborators:

I Iain Pardoe, Dept of Decision Sciences, University of Oregon
I Shouhao Zhao, Dept of Statistics, Columbia University
I Samantha Cook, Dept of Statistics, Columbia University
I Zaiying Huang, Circulation, New York Times
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Outline of talk

I The effectiveness of multilevel models
I State-level opinions from national polls

(crossed multilevel modeling and poststratification)

I Multilevel models in unexpected places
I Estimating incumbency advantage and its variation
I Before-after studies

I Multilevel models as a way of life
I Building and fitting models
I Displaying and summarizing inferences
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General framework
Estimating incumbency advantage and its variation
Interactions in before-after studies

Multilevel models always

I Anything worth doing is worth doing repeatedly

I A “method” is any procedure applied more than once
I City planning

I Outward expansion: fitting a model to other countries, other
years, other outcomes, . . .

I Infilling: inferences for individual states, demographic
subgroups, components of data, . . .

I “Frequentist” statistical theory of repeated inferences
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General framework
Estimating incumbency advantage and its variation
Interactions in before-after studies

Incumbency advantage in U.S. House elections

I Over 90% of incumbents win reelection
I Is this evidence of a causal effect of incumbency?

I Regression approach (Gelman and King, 1990):
I For any year, compare districts with and without incs running
I Control for vote in previous election
I Control for incumbent party
I vit = β0 + β1vi,t−1 + β2Pit + ψIit + εit

I Other estimates (sophomore surge, etc.) have selection bias
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Estimating incumbency advantage and its variation
Interactions in before-after studies

Estimated incumbency advantage from lagged regressions

Year

E
st

 in
c 

ad
v 

fr
om

 la
gg

ed
 r

eg
re

ss
io

n

1900 1920 1940 1960 1980 2000

0.
0

0.
05

0.
10

0.
15

Andrew Gelman Fitting and understanding multilevel models



Ubiquity
Way of life

Extra material

General framework
Estimating incumbency advantage and its variation
Interactions in before-after studies

Can we do better?

I Regression estimate: vit = β0 + β1vi ,t−1 + β2Pit + ψIit + εit
I “Political science” problem: ψ is assumed to be same in all

districts

I “Statistics” problem: the model doesn’t fit the data

I We’ll show pictures of the model not fitting

I We’ll set up a model allowing inc advantage to vary
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Model misfit

Under the model, parallel lines are fitted to the circles (open seats)
and dots (incs running for reelection)

Democratic vote in 1986
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General framework
Estimating incumbency advantage and its variation
Interactions in before-after studies

Multilevel model

I for t = 1, 2: vit = 0.5 + δt + αi + φit Iit + εit
I δ2 − δ1 is the national vote swing
I αi is the “normal vote” for district i : mean 0, sd σα.
I φit is the inc advantage in district i at time t: mean ψ, sd σφ

I εit ’s are independent errors: mean 0 and sd σε.

I Candidate-level incumbency effects:
I If the same incumbent is running in years 1 and 2, then
φi2 ≡ φi1

I Otherwise, φi1 and φi2 are independent
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General framework
Estimating incumbency advantage and its variation
Interactions in before-after studies

Fitting the multilevel model

I Bayesian inference

I Linear parameters: national vote swings, district effects,
incumbency effects

I 3 variance parameters: district effects, incumbency effects,
residual errors

I Need to model a selection effect: information provided by the
incumbent party at time 1

I Solve analytically for Pr(inclusion), include factor in the
likelihood

I Gibbs-Metropolis sampling, program in Splus
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No-interaction model
I Before-after data with treatment and control groups
I Default model: constant treatment effects

I Fisher’s classical null hyp: effect is zero for all cases
I Regression model: yi = Tiθ + Xiβ + εi
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Actual data show interactions

I Treatment interacts with “before” measurement

I Before-after correlation is higher for controls than for treated
units

I Examples
I An observational study of legislative redistricting
I An experiment with pre-test, post-test data
I Congressional elections with incumbents and open seats
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Observational study of legislative redistricting
before-after data
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Experiment: correlation between pre-test and post-test
data for controls and for treated units
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Correlation between two successive Congressional elections
for incumbents running (controls) and open seats (treated)
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Interactions as variance components

Unit-level “error term” ηi

I For control units, ηi persists from time 1 to time 2
I For treatment units, ηi changes:

I Subtractive treatment error (ηi only at time 1)
I Additive treatment error (ηi only at time 2)
I Replacement treatment error

I Under all these models, the before-after correlation is higher
for controls than treated units
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Some new tools

I Building and fitting multilevel models

I Displaying and summarizing inferences
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Building and fitting multilevel models

I A reparameterization can change a model
(even if it leaves the likelihood unchanged)

I Redundant additive parameterization

I Redundant multiplicative parameterization

I Weakly-informative prior distribution for group-level variance
parameters
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Redundant parameterization

I Data model: Pr(yi = 1) = logit−1
(
β0 + βage

age(i) + βstate
state(i)

)
I Usual model for the coefficients:

βage
j ∼ N(0, σ2

age), for j = 1, . . . , 4

βstate
j ∼ N(0, σ2

state), for j = 1, . . . , 50

I Additively redundant model:

βage
j ∼ N(µage, σ

2
age), for j = 1, . . . , 4

βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Why add the redundant µage, µstate?
I Iterative algorithm moves more smoothly
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Redundant additive parameterization

I Model

Pr(yi = 1) = logit−1
(
β0 + βage

age(i) + βstate
state(i)

)
βage

j ∼ N(µage, σ
2
age), for j = 1, . . . , 4

βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Identify using centered parameters:

β̃age
j = βage

j − β̄age, for j = 1, . . . , 4

β̃state
j = βstate

j − β̄state, for j = 1, . . . , 50

I Redefine the constant term:

β̃0 = β0 + β̄age + β̄age
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Redundant multiplicative parameterization

I New model

Pr(yi = 1) = logit−1
(
β0 + ξageβage

age(i) + ξstateβstate
state(i)

)
βage

j ∼ N(µage, σ
2
age), for j = 1, . . . , 4

βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Identify using centered and scaled parameters:

β̃age
j = ξage(βage

j − β̄age), for j = 1, . . . , 4

β̃state
j = ξstate

(
βstate

j − β̄state
)
, for j = 1, . . . , 50

I Faster convergence

I More general model, connections to factor analysis
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2
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Weakly informative prior distribution for the multilevel
variance parameter

I Redundant multiplicative parameterization:
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age(i) + ξstateβstate
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)
βage

j ∼ N(µage, σ
2
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βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Separate prior distributions on the ξ and σ parameters:
I Normal on ξ
I Inverse-gamma on σ2

I Generalizes and fixes problems with the standard choices of
prior distributions
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Displaying and summarizing inferences

I Displaying parameters in groups rather than as a long list

I Average predictive effects

I R2 and partial pooling factors

I Analysis of variance
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Raw display of inference

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

B.0 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110

b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000

b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500

b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000

B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45

B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190

B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130

B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32

B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31

B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160

B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45

B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37

B.age.edu[1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000

B.age.edu[1,2] 0.059 0.123 -0.153 -0.011 0.032 0.118 0.353 1.016 580

B.age.edu[1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280

B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000

B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140

B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120

B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940

B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170

B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230

B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610

B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61

B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150

B.age.edu[4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270

B.age.edu[4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240

B.age.edu[4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0.332 1.010 210

B.age.edu[4,4] 0.042 0.142 -0.193 -0.022 0.016 0.095 0.377 1.015 160

B.state[1] 0.201 0.211 -0.131 0.047 0.172 0.326 0.646 1.003 960

B.state[2] 0.466 0.252 0.008 0.310 0.440 0.603 1.047 1.001 1000

B.state[3] 0.393 0.196 0.023 0.268 0.380 0.518 0.814 1.002 1000

B.state[4] -0.164 0.209 -0.607 -0.290 -0.149 -0.041 0.228 1.003 590

B.state[5] -0.054 0.141 -0.322 -0.143 -0.061 0.035 0.229 1.001 1000

B.state[6] 0.126 0.206 -0.313 0.010 0.126 0.256 0.512 1.011 1000

B.state[7] 0.095 0.183 -0.263 -0.023 0.087 0.207 0.466 1.004 490

B.state[8] -0.210 0.207 -0.666 -0.322 -0.194 -0.080 0.155 1.001 1000

B.state[9] -2.648 0.728 -4.291 -3.067 -2.602 -2.187 -1.385 1.007 290

B.state[10] 0.097 0.173 -0.296 -0.010 0.115 0.214 0.402 1.014 270

B.state[11] -0.138 0.173 -0.467 -0.253 -0.148 -0.034 0.240 1.005 1000
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Better graphical display 3: between states

Northeast

R vote in prev elections

re
gr

es
si

on
 in

te
rc

ep
t

0.5 0.6 0.7

−
0.

5
0.

0
0.

5

CT
DEME

MDMA

NHNJ

NY
PA

RI

VTWV

Midwest

R vote in prev elections

re
gr

es
si

on
 in

te
rc

ep
t

0.5 0.6 0.7

−
0.

5
0.

0
0.

5

IL

IN

IA

KS

MI

MN

MO
NEND

OH

SD
WI

South

R vote in prev elections

re
gr

es
si

on
 in

te
rc

ep
t

0.5 0.6 0.7

−
0.

5
0.

0
0.

5 AL

AR FLGAKY LA
MSNC

OKSC
TN

TX

VA

West

R vote in prev elections

re
gr

es
si

on
 in

te
rc

ep
t

0.5 0.6 0.7

−
0.

5
0.

0
0.

5

AK
AZ

CA COHI
ID

MT
NV

NM
OR

UT

WA
WY

Andrew Gelman Fitting and understanding multilevel models



Ubiquity
Way of life

Extra material

Building and fitting models
Displaying and summarizing inferences
Conclusions

Average predictive effects

I What is E (y | x1 = high) − E(y | x1 = low), with all other x ’s
held constant?

u

v

y
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Average predictive effects

I What is E (y | x1 = high) − E(y | x1 = low), with all other x ’s
held constant?

I In general, difference can depend on x
I Average over distribution of x in the data

I You can’t just use a central value of x

I Compute APE for each input variable x

I Multilevel factors are categorical input variables
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APE: why you can’t just use a central value of x
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Understanding sources of variation

I Generalization of R2 (explained variance), defined at each
level of the model

I Partial pooling factor, defined at each level
I Analysis of variance

I Summarize the scale of each batch of predictors
I Go beyond classical null-hypothesis-testing framework

I Open question: how to construct models with deep
interaction structures?
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Framework for average predictive effects

I Regresion model, E (y |x , θ)
I Predictors come from “input variables”

I Example: regression on age, sex, age × sex, and age2

I 5 linear predictors (including the constant term)
I But only 4 inputs

I Compute APE for each input variable, one at a time, with all
others held constant

I Scalar input u: the “input of interest”
I Vector v : all other inputs
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Defining predictive effects

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Average over:
I The transition, u(1) → u(2)

I The other inputs, v
I The regression coefficients, θ
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Average predictive effects for binary inputs

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Binary input u:
I predictive effect: δu(0 → 1, v , θ) = E (y |1, v , θ)− E (y |0, v , θ)
I Average over v1, . . . , vn in the data (or weighted average if

desired)
I Average over θ from inferential simulations
I Standard error of APE from uncertainty in θ
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Scenarios for average predictive effects

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Continuous inputs

I Unordered discrete inputs

I Variance components

I Interactions

I Inputs that are not always active
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R2 for multilevel models

I How much of the variance is “explained” by the model?

I Separate R2 for each level

I Classical R2 = 1− variance of the residuals
variance of the data

I Multilevel model:
at each level, k units: θk = (Xβ)k + εk

I At each level: R2 = 1− variance among the (Xβ)k ’s
variance among the εk ’s
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Bayesian R2

I At each level
I θk = (Xβ)k + εk

I R2 = 1− variance among the (Xβ)k ’s
variance among the εk ’s

I Numerator and denominator estimated by their posterior
means

I Posterior distribution automatically accounts for uncertainty

I Bayesian generalization of classical “adjusted R2”
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Example of partial pooling
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Partial pooling factors

I At each level of the model:
I θk = (Xβ)k + εk
I λ = 0 if no pooling of ε’s
I λ = 0 if complete pooling of ε’s to 0

I Multilevel generalization of Bayesian pooling factor
I Can’t simply compare to the “complete pooling” and “no

pooling” estimates
I “No pooling” estimate doesn’t always exist!

I At each level, our pooling factor is defined based on the mean
and variance of the εk ’s
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Anova and multilevel models

I Each row of the Anova table is a variance component
I Goal

I How important is each source of variation?
I Estimating and comparing variance components
I Not testing if a variance component equals 0

I Multilevel regression solves classical Anova problems
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Raw display of inference

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

B.0 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110

b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000

b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500

b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000

B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45

B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190

B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130

B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32

B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31

B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160

B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45

B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37

B.age.edu[1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000

B.age.edu[1,2] 0.059 0.123 -0.153 -0.011 0.032 0.118 0.353 1.016 580

B.age.edu[1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280

B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000

B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140

B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120

B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940

B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170

B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230

B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610

B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61

B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150

B.age.edu[4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270

B.age.edu[4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240

B.age.edu[4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0.332 1.010 210

B.age.edu[4,4] 0.042 0.142 -0.193 -0.022 0.016 0.095 0.377 1.015 160

B.state[1] 0.201 0.211 -0.131 0.047 0.172 0.326 0.646 1.003 960

B.state[2] 0.466 0.252 0.008 0.310 0.440 0.603 1.047 1.001 1000

B.state[3] 0.393 0.196 0.023 0.268 0.380 0.518 0.814 1.002 1000

B.state[4] -0.164 0.209 -0.607 -0.290 -0.149 -0.041 0.228 1.003 590

B.state[5] -0.054 0.141 -0.322 -0.143 -0.061 0.035 0.229 1.001 1000

B.state[6] 0.126 0.206 -0.313 0.010 0.126 0.256 0.512 1.011 1000

B.state[7] 0.095 0.183 -0.263 -0.023 0.087 0.207 0.466 1.004 490

B.state[8] -0.210 0.207 -0.666 -0.322 -0.194 -0.080 0.155 1.001 1000

B.state[9] -2.648 0.728 -4.291 -3.067 -2.602 -2.187 -1.385 1.007 290

B.state[10] 0.097 0.173 -0.296 -0.010 0.115 0.214 0.402 1.014 270

B.state[11] -0.138 0.173 -0.467 -0.253 -0.148 -0.034 0.240 1.005 1000
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Bayesian Anova

Source df Est. sd of effects
0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1

age 3
education 3

age * education 9

region 3
region * state 46

0 0.5 1 1.5
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Summary of extra material

I Tools for understanding multilevel inferences

I Plots of coefficient estimates and fitted model with groups

I “Variance components” = coefficients for categorical input
variables

I Average predictive effects

I R2 and partial pooling factors

I Anova
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Extra bonus: fixed and random effects

I What are “fixed” and “random” effects?

I Five incompatible definitions:

1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)

2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)

3. Fixed effects are the entire population, random are a
small sample from a larger population (Tukey, 1960)

4. Random effects are realized values of a random variable
(LaMotte, 1983)

5. Fixed effects are estimated using least squares, random
effects are esitmated using shrinkage (Snijders, 1999)
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Our advice

I Ideally, allow all coefficients to vary by group
I Main limitation: complicated models can be overwhelming

I Bayesian multilevel modeling
I Simultaneously estimate population parameters and individual

coefficients
I Suppose you are estimating a finite set of effects,

then told they are a sample from a larger population
I No need to change the model
I But estimand of interest might change!

I Separation of modeling, inference, and decision analysis
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