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An example of Bayesian data analysis

I A problem in the study of social networks

I 3 models and Bayesian inference

I BUGS was too slow, so we used a program in R for
Gibbs/Metropolis

I collaborators:
I Tian Zheng, Dept of Statistics, Columbia University
I Matt Salganik, Dept of Sociology, Columbia University
I Jouni Kerman, Dept of Statistics, Columbia University
I Peter Killworth and Chris McCarty shared their survey data
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How many people do you know?
Scale-up method
2-way data structure

How many people do you know? Demonstration

I How many people do you know named Nicole?

I How many people do you know named Anthony?

I How many lawyers do you know?

I How many people do you know who were robbed in the past
year?
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How many people do you know?
Scale-up method
2-way data structure

Scale-up method: demonstration

I On average, you knew 0.6 Nicoles

I 0.13% of Americans are named Nicole

I Assume 0.13% of your acquaintances are Nicoles

I Estimate: on average, you know 0.6/0.0013 = 450 people

I On average, you know 0.8 Anthonys

I 0.31% of Americans are named Anthony

I Estimate: on average, you know 1.6/0.0031 = 260 people

I Why do these differ?
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Estimating group sizes: demonstration

I On average, you know 2.6 lawyers

I Assume average network size is 450 people

I Estimate: lawyers represent 2.6/450 = 0.58% of the network

I Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

I On average, you know 0.25 people who were robbed last year

I Estimate: 0.25
450 · 290 million = 160,000 people robbed
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How many people do you know?

I Killworth, McCarty et al. surveys

I Scale-up method: how large is the average personal network?

I Estimating group sizes (e.g., American Indians)

I Can something be done with the 2-way data structure?
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Killworth, McCarty et al. surveys

I How many X’s do you know?

I Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer

I Christopher, David, Anthony, Robert, James, Michael

I Twin, woman adopted kid in past year, gave birth in past
year, widow(er) under 65

I Commercial pilot, gun dealer, postal worker, member of
Jaycees, opened business in past year, American Indian

I Suicide in past year, died in auto accident, diabetic, kidney
dialysis, AIDS, HIV-positive, rape victim, homicide victim,
male in prison, homeless
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3 models
Data and simulations from 3 models

Models of social network data

I Erdos-Renyi model: random links

I Our null model: some people are more popular than others

I Our overdispersed model

I More general models . . .

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

3 models
Data and simulations from 3 models

Models of social network data

I Erdos-Renyi model: random links

I Our null model: some people are more popular than others

I Our overdispersed model

I More general models . . .

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

3 models
Data and simulations from 3 models

Models of social network data

I Erdos-Renyi model: random links

I Our null model: some people are more popular than others

I Our overdispersed model

I More general models . . .

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

3 models
Data and simulations from 3 models

Models of social network data

I Erdos-Renyi model: random links

I Our null model: some people are more popular than others

I Our overdispersed model

I More general models . . .

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

3 models
Data and simulations from 3 models

Erdos-Renyi model

I yik = number of persons in group k known by person i

I Erdos-Renyi model: random links

I yik ∼ Poisson(bk), where bk = size of group k

I Unrealistic: some people have many more friends than others
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I yik = number of persons in group k known by person i

I Our null model: some people are more popular than others

I yik ∼ Poisson(aibk)

I ai = eαi , “gregariousness” of person i

I bk = eβk , size of group k in the social network

I Unrealistic: data are actually overdispersed
(for example, do χ2 test)
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The overdispersed model

I data model: yik ∼ Negative-binomial(eαi+βk , ωk), for
i = 1, . . . , 1370, k = 1, . . . , 32

I prior dists
I αi ∼ N(µα, σ2

α), for i = 1, . . . , 1370
I βk ∼ N(µβ , σ2

β), for k = 1, . . . , 32
I ωk ∼ U(1, 20), for k = 1, . . . , 32

I hyperprior dist: p(µα, µβ, σα, σβ) ∝ 1

I 1370 + 32 + 32 + 4 parameters to estimate

I Nonidentifiability in α + β (to be discussed soon)
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Latent-data parameterization

I our model: yik ∼ Negative-binomial(eαi+βk , ωk)
I alternative using latent data γik :

I yik ∼ Poisson(eαi+βk+γik )
I γik ∼ log-gamma(shape parameter of 1/(ωk − 1))

I Not so helpful here, but this “data augmentation” idea is
useful in other settings
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Gibbs-Metropolis algorithm: updating α, β, ω

I For each i , update αi using Metropolis with jumping dist.

α∗i ∼ N(α
(t−1)
i , (jumping scale of αi )

2).
I For each k, update βk using Metropolis with jumping dist.

β∗k ∼ N(β
(t−1)
k , (jumping scale of βk)2).

I For each k, update ωk using Metropolis with jumping dist.

ω∗k ∼ N(ω
(t−1)
k , (jumping scale of ωk)2).

Reflect jumps off the edges:

1 5 10 15 20
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Gibbs-Metropolis algorithm: updating hyperparameters

I Update µα ∼ N
(

1
n

∑n
i=1 αi ,

1
nσ2

)
I Update σ2

α ∼ Inv-χ2
(
n−1, 1

n

∑n
i=1 (αi − µα)2

)
I Similarly with µβ, σβ

I Renormalize to identify the α’s and β’s . . .
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Renormalizing

I Problem: αi ’s and βk ’s are not separately identified in the
model, yik ∼ Negative-binomial(eαi+βk , ωk)

I Possible solutions:
I Choose a “baseline” value: set α1 = 0 (for example)
I Renormalize a group of parameters: set

∑n
i=1 αi = 0

I Anchor the prior distribution: set µα = 0

I Our solution: rescale so that the bk ’s for the names (Nicole,
Anthony, etc.) equal their proportion in the population:

I Compute C = log
(∑12

k=1 eβk /0.069
)

I Add C to all the αi ’s and µα

I Subtract C from all the βk ’s and µβ
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I Compute C = log
(∑12

k=1 eβk /0.069
)

I Add C to all the αi ’s and µα

I Subtract C from all the βk ’s and µβ
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Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Mixing (convergence) of simulations

I Simulate 3 parallel sequences, starting with draws from the
prior distribution

I Run 200 iterations, discard first half: not yet mixed (R̂ ≈ 2
for some parameters) . . .

I Run 2000 iterations, discard first half: mixed (R̂ ≤ 1.1 for all
parameters)

I Earlier versions took longer to converge, motivating adaptive
updating
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Computation in R

I BUGS was too slow (over 1400 parameters)

I Programming from scratch in R is awkward, buggy

I Instead, we use our general Gibbs/Metropolis programming
environment

I Set up MCMC object

I Specify Gibbs updates

I Log-posterior density for Metropolis steps

I Bounds on overdispersion parameters ω ∈ [1, 20]

I Renormalization step

I Result is a set of posterior simulations
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Setting up the MCMC object

network.1 <- mcmcEngine (network.data, network.init,
update=network.update, n.iter=1000, n.chains=3)

network.update <- list(
alpha = Metropolis (f.logpost.alpha),
beta = Metropolis (f.logpost.beta),
omega = Metropolis (f.logpost.omega,
jump=Jump("omega.jump", lower=1.01, upper=20)),

mu.alpha = Gibbs (mu.alpha.update),
mu.beta = Gibbs (mu.beta.update),
sigma.alpha = Gibbs (sigma.alpha.update),
sigma.beta = Gibbs (sigma.beta.update),
renorm.network)
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Data and initial values

y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),

data.j=ncol(y))
network.init <- function(){

alpha <- rnorm(data.n)
beta <- rnorm(data.j)
omega <- runif(data.j,1.01,20)
mu.alpha <- rnorm(1)
mu.beta <- rnorm(1)
sigma.alpha <- runif(1)
sigma.beta <- runif(1)}
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Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))

mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))

sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))

sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))

mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))

sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))

sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))

mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))

sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))

sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))

mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))

sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))

sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Andrew Gelman Computation for Bayesian Data Analysis



Overview
Background: how many people do you know?
A model of overdispersion in social networks

Fitting the model using the Gibbs/Metropolis sampler
Results from fitting the model

Confidence building
Summary

The posterior density
Gibbs-Metropolis algorithm
Renormalization step
Adaptation during burn-in period
Mixing (convergence)
Code using Jouni’s program

Log-likelihood for each data point

f.loglik <- function (y, alpha, beta, omega, data.n){
theta.mat <- exp(outer(alpha, beta, "+"))
omega.mat <- outer(rep(0, data.n), omega, "+")
dnbinom (y, theta.mat/(omega.mat-1), 1/omega.mat,

log=T)}
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Log-posterior density for each vector parameter

f.logpost.alpha <- function() {
loglik <- f.loglik (y, alpha, beta, omega, data.n)
rowSums (loglik, na.rm=TRUE) +

dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {

loglik <- f.loglik (y, alpha, beta, omega, data.n)
colSums (loglik, na.rm=TRUE) +

dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {

loglik <- f.loglik (y, alpha, beta, omega, data.n)
colSums (loglik, na.rm=T)}
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Bounded jumping for the ωk ’s

Customized Metropolis jumping rule for the components of ω:

omega.jump <- function (omega, sigma) {
reflect (rnorm (length(omega), omega, sigma),

.lower, .upper)}
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Renormalization of the αi ’s and βk ’s

renorm.network <- function() {
const <- log (sum(exp(beta[1:12]))/0.069)
alpha <- alpha + const
mu.alpha <- mu.alpha + const
beta <- beta - const
mu.beta <- mu.beta - const}
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Running MCMC and looking at the output

net <- run(network.1)
attach (as.rv (net))

Some output:
name mean sd 25% 50% 75% Rhat
beta[1] -5.1 0.1 (-5.4 -5.2 -5.1) 1.0
beta[2] -6.4 0.1 (-6.9 -6.7 -6.5) 1.2
beta[3] -6.1 0.1 (-6.5 -6.3 -6.2) 1.1
beta[4] -7.0 0.2 (-7.6 -7.4 -7.1) 1.0
beta[5] -5.1 0.1 (-5.4 -5.3 -5.2) 1.2
beta[6] -5.6 0.2 (-6.1 -5.9 -5.8) 1.0
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Data collection

I We can learn network info from a non-network sample

I We can even learn about small groups, less than 0.3% of
population

I Implicit survey of 1500× 750 = 1 million people!

I Potentially useful for small or hard-to-reach groups

I Difficulty with recall
I Potential design using partial information:

I Do you know any Nicoles?
I Do you know 0, 1, 2, or 3 or more Nicoles?
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Do you know 0, 1, 2, or 3 or more Nicoles?

I Censored-data model

I yik = 0, 1, 2, or ≥ 3

I Use negative-binomial likelihood function:
Pr(y =0), Pr(y =1), Pr(y =2),
1− Pr(y =0)− Pr(y =1)− Pr(y =2)

I Gibbs-Metropolis algorithm is otherwise unchanged

I Check with our data: parameter estimates are similar but
problems with model fit for high values of y
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Other applications?

I Models for overdispersion in two-way tables
I Social surveys

I Learning about children by interviewing adults
I Targeted surveys for hard-to-reach groups
I Combining with network sampling

I Other application areas
I Genetics
I Political science
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Gibbs-Metropolis algorithm

I Parallel Metropolis updating for each vector α, β, ω

I Automated adaptive updating

I Automated convergence monitoring

I Modular, expandable framework
I Goal of inference is parameters, not posterior means; for

example:
I Good: “θ is estimated at 3.5± 0.4, or [3.1, 3.9]”
I Bad: “E(θ) is estimated at 3.514± 0.003”
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Bayesian data analysis

I Model-building motivated by failures of simpler models

I The model can be further improved!

I Checking model by comparing data to predictive replications

I Checking computer program by checking inferences from fake
data

I Inferences summarized graphically . . .
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Regression of log(gregariousness): as a graph

Coefficient Estimate

−0.2 −0.1 0 0.1 0.2

female
nonwhite
age < 30
age > 65

married
college educated
employed
income < $20,000
income > $80,000
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Regression of log(gregariousness): as a table

Coefficient Estimate (s.e.)
female −0.11 (0.03)
nonwhite 0.06 (0.04)
age < 30 −0.02 (0.04)
age > 65 −0.14 (0.05)
married 0.04 (0.05)
college educated 0.11 (0.03)
employed 0.13 (0.04)
income < $20, 000 −0.18 (0.05)
income > $80, 000 0.18 (0.05)
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Running the demo

I How many Nicoles, Anthonys, lawyers, people robbed?
I Real-time data analysis

I Entering in the data: 20 minutes
I Running the program: 500 iterations (40 seconds), 1000

iterations (80 seconds)
I Real-time debugging: 15 minutes!
I Altering the presentation: 15 minutes!

I Results for social network sizes, α

I Results for group sizes, β

I Results for overdispersions, ω
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I Social network sizes, α
I Mean network size estimated at 370± 20
I We don’t really believe this precision!
I Implicit hierarchical model

I Sorry, no graph
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I Group sizes, β
I Nicole: 0.17% of the social network
I Anthony: 0.27% of the social network
I Lawyers: 0.90% of the social network
I Robbed last yeare: 0.20% of the social network

I Scale-up
I Nicole: 500,000
I Anthony: 800,000
I Lawyers: 2.6 million
I Robbed last year: 200,000
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I Overdispersions, ω
I Nicole: 1.1± 0.1
I Anthony: 1.2± 0.1
I Lawyers: 4.2± 0.9
I Robbed last yeare: 1.3± 0.3

I Sorry, no graph
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