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I Regression model: yi = Tiθ + Xiβ + εi
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I Before-after correlation is higher for controls than for treated
units
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Observational study of legislative redistricting:
before-after data

Estimated partisan bias in previous election
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Educational experiment: correlation between pre-test and
post-test data for controls and for treated units
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Correlation between two successive Congressional elections
for incumbents running (controls) and open seats (treated)
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Interactions as variance components

Unit-level “error term” ηi

I For control units, ηi persists from time 1 to time 2
I For treatment units, ηi changes:

I Subtractive treatment error (ηi only at time 1)
I Additive treatment error (ηi only at time 2)
I Replacement treatment error

I Under all these models, the before-after correlation is higher
for controls than treated units
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Summary of first part of talk

I Treatment interactions are important

I Before-after correlations are lower in treatment group

I Interpret as additional variance component that is altered by
the treatment

Andrew Gelman, Samantha Cook, and Shouhao Zhao Interactions in multilevel models



Interactions in before-after studies
Interactions in regressions

Conclusions

Legislative redistricting
Educational experiment
Incumbency advantage
Hierarchical models for treatment interactions

Summary of first part of talk

I Treatment interactions are important

I Before-after correlations are lower in treatment group

I Interpret as additional variance component that is altered by
the treatment

Andrew Gelman, Samantha Cook, and Shouhao Zhao Interactions in multilevel models



Interactions in before-after studies
Interactions in regressions

Conclusions

Legislative redistricting
Educational experiment
Incumbency advantage
Hierarchical models for treatment interactions

Summary of first part of talk

I Treatment interactions are important

I Before-after correlations are lower in treatment group

I Interpret as additional variance component that is altered by
the treatment

Andrew Gelman, Samantha Cook, and Shouhao Zhao Interactions in multilevel models



Interactions in before-after studies
Interactions in regressions

Conclusions

Legislative redistricting
Educational experiment
Incumbency advantage
Hierarchical models for treatment interactions

Summary of first part of talk

I Treatment interactions are important

I Before-after correlations are lower in treatment group

I Interpret as additional variance component that is altered by
the treatment

Andrew Gelman, Samantha Cook, and Shouhao Zhao Interactions in multilevel models



Interactions in before-after studies
Interactions in regressions

Conclusions

Federal spending
Vote preferences
Income and voting
Incentives in sample surveys
Summary

Examples of interactions in regression

I Federal spending by state, year, category (50× 19× 10)

I Vote preference given state and demographic variables
(50× 2× 2× 4× 4)

I Rich state, poor state, red state, blue state (50× 2 for each
election)

I Meta-analysis of incentives in sample surveys (26)
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General concerns

I Lots of potential interactions

I Setting high-level interactions to zero? Too extreme,
especially when interactions are of substantive interest

I Simple hierarchical model for interactions is too crude

I Model: large main effects can have large interactions. In
hierarchical setting, model should come “naturally”
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Federal spending by state

I Federal spending by state, year, category (50× 19× 10)

I For each spending category, 50× 19 data structure

I yjt = αj + βt + γjt

I possible model: γjt ∼ N (0, A + B|αjβt |)
I Some example data
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Interactions |γjt plotted vs. main effects |αjβt |
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Logistic regression for pre-election polls

I Logistic regression: Pr(yi = 1) = logit−1((Xβ)i )

I X includes demographic and geographic factors: sex,
ethnicity, age, education, state

I Hierarchical model for 4 age levels, 4 education levels, 16 age
× education, 50 states

I Also consider interactions such as ethnicity × state
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Logistic regression with lots of predictors

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

B.0 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110

b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000

b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500

b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000

B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45

B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190

B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130

B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32

B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31

B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160

B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45

B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37

B.age.edu[1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000

B.age.edu[1,2] 0.059 0.123 -0.153 -0.011 0.032 0.118 0.353 1.016 580

B.age.edu[1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280

B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000

B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140

B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120

B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940

B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170

B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230

B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610

B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61

B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150

B.age.edu[4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270

B.age.edu[4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240

B.age.edu[4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0.332 1.010 210

B.age.edu[4,4] 0.042 0.142 -0.193 -0.022 0.016 0.095 0.377 1.015 160

B.state[1] 0.201 0.211 -0.131 0.047 0.172 0.326 0.646 1.003 960

B.state[2] 0.466 0.252 0.008 0.310 0.440 0.603 1.047 1.001 1000

B.state[3] 0.393 0.196 0.023 0.268 0.380 0.518 0.814 1.002 1000

B.state[4] -0.164 0.209 -0.607 -0.290 -0.149 -0.041 0.228 1.003 590

B.state[5] -0.054 0.141 -0.322 -0.143 -0.061 0.035 0.229 1.001 1000

B.state[6] 0.126 0.206 -0.313 0.010 0.126 0.256 0.512 1.011 1000

B.state[7] 0.095 0.183 -0.263 -0.023 0.087 0.207 0.466 1.004 490

B.state[8] -0.210 0.207 -0.666 -0.322 -0.194 -0.080 0.155 1.001 1000

B.state[9] -2.648 0.728 -4.291 -3.067 -2.602 -2.187 -1.385 1.007 290

B.state[10] 0.097 0.173 -0.296 -0.010 0.115 0.214 0.402 1.014 270

B.state[11] -0.138 0.173 -0.467 -0.253 -0.148 -0.034 0.240 1.005 1000
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Bayesian Anova display
Source df Est. sd of effects

0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1

age 3
education 3

age * education 9

region 3
region * state 46

0 0.5 1 1.5

Source df Est. sd of effects
0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1
age 3

education 3
age * education 9

region 3
region * state 46

ethnicity * region 3
ethnicity * region * state 46

0 0.5 1 1.5
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Prediction error as function of # of predictors
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Rich state, poor state, red state, blue state; or,
What’s the matter with Connecticut?

I Richer voters favor the Republicans, but

I Richer states favor the Democrats

I Hierarchical logistic regression: predict your vote given your
income and your state (“varying-intercept model”)
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Varying-intercept model
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Varying-intercept, varying-slope model
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Interactions!

Avg Income 2000 vs. Var Slope 2000
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3-way interactions!
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Meta-analysis of effects of incentives on survey response
rates

I 6 factors
I Incentive or not
I Value of incentive
I Form (gift or cash)
I Timing (before or after)
I Mode (telephone or face-to-face)
I Burden (short or long survey)

I Models
I No interactions: estimates don’t make sense
I Interactions: estimates are out of control
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Model without interactions

I Estimated effects on response rate (in percentage points)

Beta (s.e.)
Intercept 1.4 (1.6)
Value of incentive 0.34 (0.17)
Prepayment 2.8 (1.8)
Gift −6.9 (1.5)
Burden 3.3 (1.3)

I Will a low-value postpaid gift really reduce response rates by 7
percentage points??
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Models with interactions

Model I Model II Model III Model IV
Constant 60.7 (2.2) 60.8 (2.5) 61.0 (2.5) 60.1 (2.5)
Incentive 5.4 (0.7) 3.7 (0.8) 2.8 (1.0) 6.1 (1.2)
Mode 15.2 (4.7) 16.1 (5.1) 16.0 (4.9) 18.0 (4.6)
Burden −7.2 (4.3) −8.9 (5.0) −8.7 (5.0) −9.9 (5.0)
Mode × Burden −7.6 (9.8) −7.8 (9.4) −4.9 (9.1)
Incentive × Value 0.14 (0.03) 0.33 (0.09) 0.26 (0.09)
Incentive × Timing 4.4 (1.3) 1.7 (1.7) −0.2 (2.1)
Incentive × Form 1.4 (1.3) 1.1 (1.2) −1.2 (2.0)
Incentive × Mode −2.3 (1.6) −2.0 (1.7) 7.8 (2.9)
Incentive × Burden 4.8 (1.5) 5.4 (1.8) −5.2 (2.7)
Incentive × Value × Timing 0.40 (0.17) 0.58 (0.18)
Incentive × Value × Burden −0.06 (0.06) 1.10 (0.24)
Incentive × Timing × Burden 11.1 (3.9)
Incentive × Value × Form 0.30 (0.20)
Incentive × Value × Mode −1.20 (0.24)
Incentive × Timing × Form 9.9 (2.7)
Incentive × Timing × Mode −17.4 (4.1)
Incentive × Form × Mode −0.3 (2.5)
Incentive × Form × Burden 5.9 (3.2)
Incentive × Mode × Burden −5.8 (3.0)
Within-study sd, σ 4.2 (0.3) 3.6 (0.3) 3.6 (0.3) 2.8 (0.3)
Between-study sd, τ 18 (2) 19 (2) 18 (2) 18 (2)
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Summary of second part of talk

I With many predictors come many many potential interactions

I Interactions can be crucial to substantive understanding

I Simple pooling of high-level interactions (“Anova” or even
“Bayesian Anova”) is too crude, does not respect the
structure of the parameters

I Simple inclusion of additional batches of interactions can hurt
predictive power

I Goal: models where large main effects are more likely to have
large interactions

I possible model: γjt ∼ N (0, A + B|αjβt |)
I But we really don’t know yet what will work!
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Structured hierarchical models

I Need to go beyond exchangeability to shrink batches of
parameters in a reasonable way

I For example, parameter matrices αjk don’t look like
exchangeable vectors

I Similar problems arise in shrinking higher-order terms in
neural nets, wavelets, tree models, image models, . . .

I Recall the “blessing of dimensionality”: as the number of
factors, and the number of levels per factor, increases, more
information is available to estimate the hyperparameters of
the big model

I In the background: advances in Bayesian computation
including parameter expansion (Meng, Liu, Liu, Rubin, van
Dyk), adaptive Metropolis algorithms (Pasarica), structured
computations (Kerman)
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Conclusions

What have we learned?

I Interactions are important
I Treatment interactions in before-after studies
I 2-way, 3-way, . . . , interactions in regression models

I Appropriate models have lots of structure

I We need to try out different classes of models and see what
works
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