Learning about social and political polarization using "How many X's do you know" surveys

Andrew Gelman
Dept of Statistics and Dept of Political Science
Columbia University

4 April 2005

Overview

Overview

- Social and political polarization
 "How many X's do you know" surveys

Overview

- Social and political polarization
"How many X's do you know" surveys

Overview

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference

Overview

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
collaborators:

Overview

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators:
- Tian Zheng, Dept of Statistics, Columbia University
- Matt Salganik, Dept of Sociology, Columbia University - Tom DiPrete, Dept of Sociology, Columbia University - Julien Teitler, School of Social Work, Columbia University
- Jouni Kerman, Dept of Statistics, Columbia University
- Peter Killworth and Chris McCarty shared their survey data

Overview

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators:
- Tian Zheng, Dept of Statistics, Columbia University
- Matt Salganik, Dept of Sociology, Columbia University
- Tom DiPrete, Dept of Sociology, Columbia University
- Julien Teitler, School of Social Work, Columbia University
- Jouni Kerman, Dept of Statistics, Columbia University
- Peter Killworth and Chris McCarty shared their survey data

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
* Greater income inequality

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
* Greater income inequality
- We tend to know people of similar social class to ourselves

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital:

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital:
- Later marriage, fewer children
- "Bowling alone" (Putnam)

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital:
- Later marriage, fewer children
- "Bowling alone" (Putnam)
- Less involvement in community groups, labor unions

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital:
- Later marriage, fewer children
- "Bowling alone" (Putnam)
- Less involvement in community groups, labor unions,

Increasing social/economic heterogeneity in U.S. since 1950s?

- Social polarization:
- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital:
- Later marriage, fewer children
- "Bowling alone" (Putnam)
- Less involvement in community groups, labor unions, ...

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
b Connection to economic and social networks:

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
- Democrats know Democrats, Republicans know Republicans Partisanship is correlated with income, religiosity

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
- Democrats know Democrats, Republicans know Republicans
- Partisanship is correlated with income, religiosity Diffusion of information and attitudes through social networks

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
- Democrats know Democrats, Republicans know Republicans
- Partisanship is correlated with income, religiosity
- Diffusion of information and attitudes through social networks

Increasing political polarization in U.S. since 1970s?

- Polarization in political opinions:
- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
- Democrats know Democrats, Republicans know Republicans
- Partisanship is correlated with income, religiosity
- Diffusion of information and attitudes through social networks

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held,
- GSS, NES questions on values (White, Brooks,

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, - Community surveys (Putnam

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)

- Community surveys (Putnam,

- General Social Survey: questions about your close contacts

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)
- Community surveys (Putnam, ...)
- General Social Survey: questions about your close contacts (DiMaggio,
- Political polarization

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)
- Community surveys (Putnam, ...)
- General Social Survey: questions about your close contacts (DiMaggio, ...)
- Political polarization

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)
- Community surveys (Putnam, ...)
- General Social Survey: questions about your close contacts (DiMaggio, ...)
- Political polarization
- Congressional votes (McCarty, Poole, Rosenthal,

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)
- Community surveys (Putnam, ...)
- General Social Survey: questions about your close contacts (DiMaggio, ...)
- Political polarization
- Congressional votes (McCarty, Poole, Rosenthal, ...)
- NES and commercial polls (Page and Shapiro, Bafumi

Past work studying polarization using surveys

- Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
- Census data on family characteristics (Cherlin, Mayer, Held, ...)
- GSS, NES questions on values (White, Brooks, ...)
- Community surveys (Putnam, ...)
- General Social Survey: questions about your close contacts (DiMaggio, ...)
- Political polarization
- Congressional votes (McCarty, Poole, Rosenthal, ...)
- NES and commercial polls (Page and Shapiro, Bafumi, ...)

Example analysis: regression of residuals for "How many prisoners do you know?"

Coefficient
female
nonwhite
age <30
age >65
married
college educated
employed
income $<\$ 20,000$
income $>\$ 80,000$

How many people do you know? Demonstration

How many people do you know? Demonstration

- How many people do you know named Nicole?
- How many people doyou know named Anthony?

How many people do you know? Demonstration

- How many people do you know named Nicole?
- How many people do you know named Anthony?

How many people do you know? Demonstration

- How many people do you know named Nicole?
- How many people do you know named Anthony?
- How many lawyers do you know?
- How many peopre do you know who were robbed in the past

How many people do you know? Demonstration

- How many people do you know named Nicole?
- How many people do you know named Anthony?
- How many lawyers do you know?
- How many people do you know who were robbed in the past year?

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole

Assume 0.13% of your acquaintances are Nicoles

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13\% of your acquaintances are Nicoles

Estimate: on average, you know $0.6 / 0.0013=450$ people

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know 0.6/0.0013 $=450$ people

On average, you know 0.8 Anthonys

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know $0.6 / 0.0013=450$ people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know $0.6 / 0.0013=450$ people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
> Estimate: on average, you
on average, you know 1.6/0.0031

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know $0.6 / 0.0013=450$ people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know $0.6 / 0.0013=450$ people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- Estimate: on average, you know $1.6 / 0.0031=260$ people
- Why do these differ?

Scale-up method: demonstration

- On average, you knew 0.6 Nicoles
- 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know $0.6 / 0.0013=450$ people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- Estimate: on average, you know $1.6 / 0.0031=260$ people
- Why do these differ?

Estimating group sizes: demonstration

- On average, you know 2.6 lawyers

- Assume average network size is 450 people

 Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network
Estimating group sizes: demonstration

- On average, you know 2.6 lawyers
- Assume average network size is 450 people
- Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network Estimate: $0.0058 \cdot 290$ million

Estimating group sizes: demonstration

- On average, you know 2.6 lawyers
- Assume average network size is 450 people
- Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network
- Estimate: $0.0058 \cdot 290$ million $=1.7$ million lawyers in the U.S

On average, you know 0.25 people who were robbed last year

Estimating group sizes: demonstration

- On average, you know 2.6 lawyers
- Assume average network size is 450 people
- Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network
- Estimate: $0.0058 \cdot 290$ million $=1.7$ million lawyers in the U.S.
- On average, you know 0.25 people who were robbed last year Fstimate: $\frac{0.25}{450} \cdot 290$ million $=160.000$ neople robbed

Estimating group sizes: demonstration

- On average, you know 2.6 lawyers
- Assume average network size is 450 people
- Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network
- Estimate: $0.0058 \cdot 290$ million $=1.7$ million lawyers in the U.S.
- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450}$ 290 million $=160,000$ people robbed

Estimating group sizes: demonstration

- On average, you know 2.6 lawyers
- Assume average network size is 450 people
- Estimate: lawyers represent $2.6 / 450=0.58 \%$ of the network
- Estimate: $0.0058 \cdot 290$ million $=1.7$ million lawyers in the U.S.
- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290$ million $=160,000$ people robbed

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer Christopher, David, Anthony, Robert, James, Michael

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65 Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65

male in prison, homeless

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

Killworth, McCarty et al. surveys

- How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

Models of social network data

- Erdos-Renyi model: random links
- Our null model: some people are more popular than others

Models of social network data

- Erdos-Renyi model: random links
- Our null model: some people are more popular than others
- Our overdispersed model

Models of social network data

- Erdos-Renyi model: random links
- Our null model: some people are more popular than others
- Our overdispersed model

Models of social network data

- Erdos-Renyi model: random links
- Our null model: some people are more popular than others
- Our overdispersed model
- More general models...

Erdos-Renyi model

- $y_{i k}=$ number of persons in group k known by person i
- Erdos-Renyi model: random links

Erdos-Renyi model

- $y_{i k}=$ number of persons in group k known by person i
- Erdos-Renyi model: random links
- $y_{i k} \sim \operatorname{Poisson}\left(b_{k}\right)$, where $b_{k}=$ size of group k

- Unreatistic: some people have many more friends than others

Erdos-Renyi model

- $y_{i k}=$ number of persons in group k known by person i
- Erdos-Renyi model: random links
- $y_{i k} \sim \operatorname{Poisson}\left(b_{k}\right)$, where $b_{k}=$ size of group k
- Unrealistic: some people have many more friends than others

Our null model

- $y_{i k}=$ number of persons in group k known by person i
- Our null model: some people are more popular than others
\square

Our null model

- $y_{i k}=$ number of persons in group k known by person i
- Our null model: some people are more popular than others
- $y_{i k} \sim \operatorname{Poisson}\left(a_{i} b_{k}\right)$

Our null model

- $y_{i k}=$ number of persons in group k known by person i
- Our null model: some people are more popular than others
- $y_{i k} \sim \operatorname{Poisson}\left(a_{i} b_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i

Our null model

- $y_{i k}=$ number of persons in group k known by person i
- Our null model: some people are more popular than others
- $y_{i k} \sim \operatorname{Poisson}\left(a_{i} b_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- Unrealistic: data are actually øverdispersed (for example, do x^{2} test)

Our null model

- $y_{i k}=$ number of persons in group k known by person i
- Our null model: some people are more popular than others
- $y_{i k} \sim \operatorname{Poisson}\left(a_{i} b_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- Unrealistic: data are actually overdispersed (for example, do χ^{2} test)

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
$\Rightarrow \omega_{k}$ is overdispersion of group k

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- ω_{k} is overdispersion of group k

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- ω_{k} is overdispersion of group k
- $\omega_{k}=1$ is no overdispersion (Poisson model)

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- ω_{k} is overdispersion of group k
- $\omega_{k}=1$ is no overdispersion (Poisson model)
- Higher values of ω_{k} show overdispersion
- Overdispe in represents social structure

Our overdispersed model

- $y_{i k}=$ number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{i k} \sim$ Negative-binomial $\left(a_{i} b_{k}, \omega_{k}\right)$
- $a_{i}=e^{\alpha_{i}}$, "gregariousness" of person i
- $b_{k}=e^{\beta_{k}}$, size of group k in the social network
- ω_{k} is overdispersion of group k
- $\omega_{k}=1$ is no overdispersion (Poisson model)
- Higher values of ω_{k} show overdispersion
- Overdispersion represents social structure

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

How many Nicoles do you know?
How many Jaycees do you know?

Data, compared to simulations from 3 models

Bayesian inference

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
$1370+32+32+4$ parameters to estimate

Bayesian inference

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- $1370+32+32+4$ parameters to estimate
- Computation using the Gibbs/Metropolis sampler

Bayesian inference

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- $1370+32+32+4$ parameters to estimate
- Computation using the Gibbs/Metropolis sampler Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

Bayesian inference

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- $1370+32+32+4$ parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

Bayesian inference

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- $1370+32+32+4$ parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

The overdispersed model

- data model: $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$, for $i=1, \ldots, 1370, k=1, \ldots, 32$
- prior dists

The overdispersed model

- data model: $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$, for $i=1, \ldots, 1370, k=1, \ldots, 32$
- prior dists
- $\alpha_{i} \sim \mathrm{~N}\left(\mu_{\alpha}, \sigma_{\alpha}^{2}\right)$, for $i=1, \ldots, 1370$
- $\beta_{k} \sim \mathrm{~N}\left(\mu_{\beta}, \sigma_{\beta}^{2}\right)$, for $k=1, \ldots, 32$
- $\omega_{k} \sim \mathrm{U}(1,20)$, for $k=1, \ldots, 32$
- hyperprior dist: $p\left(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}\right) \propto 1$
$\rightarrow 1370+32+32+4$ parameters to estimate

The overdispersed model

- data model: $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$, for $i=1, \ldots, 1370, k=1, \ldots, 32$
- prior dists
- $\alpha_{i} \sim \mathrm{~N}\left(\mu_{\alpha}, \sigma_{\alpha}^{2}\right)$, for $i=1, \ldots, 1370$
- $\beta_{k} \sim \mathrm{~N}\left(\mu_{\beta}, \sigma_{\beta}^{2}\right)$, for $k=1, \ldots, 32$
- $\omega_{k} \sim \mathrm{U}(1,20)$, for $k=1, \ldots, 32$
- hyperprior dist: $p\left(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}\right) \propto 1$
$\Rightarrow 1370+32+32+4$ parameters to estimate
Nonidentifiability in $\alpha+\beta$ (to be discussed soon)

The overdispersed model

- data model: $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$, for $i=1, \ldots, 1370, k=1, \ldots, 32$
- prior dists
- $\alpha_{i} \sim \mathrm{~N}\left(\mu_{\alpha}, \sigma_{\alpha}^{2}\right)$, for $i=1, \ldots, 1370$
- $\beta_{k} \sim \mathrm{~N}\left(\mu_{\beta}, \sigma_{\beta}^{2}\right)$, for $k=1, \ldots, 32$
- $\omega_{k} \sim \mathrm{U}(1,20)$, for $k=1, \ldots, 32$
- hyperprior dist: $p\left(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}\right) \propto 1$
- $1370+32+32+4$ parameters to estimate
- Nonidentifiability in $\alpha+\beta$ (to be discussed soon)

The overdispersed model

- data model: $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$, for $i=1, \ldots, 1370, k=1, \ldots, 32$
- prior dists
- $\alpha_{i} \sim \mathrm{~N}\left(\mu_{\alpha}, \sigma_{\alpha}^{2}\right)$, for $i=1, \ldots, 1370$
- $\beta_{k} \sim \mathrm{~N}\left(\mu_{\beta}, \sigma_{\beta}^{2}\right)$, for $k=1, \ldots, 32$
- $\omega_{k} \sim \mathrm{U}(1,20)$, for $k=1, \ldots, 32$
- hyperprior dist: $p\left(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}\right) \propto 1$
- $1370+32+32+4$ parameters to estimate
- Nonidentifiability in $\alpha+\beta$ (to be discussed soon)

Gibbs-Metropolis algorithm: updating α, β, ω

- For each i, update α_{i} using Metropolis with jumping dist. $\alpha_{i}^{*} \sim \mathrm{~N}\left(\alpha_{i}^{(t-1)},\left(\text { jumping scale of } \alpha_{i}\right)^{2}\right)$.
For each k, update β_{k} using Metropolis with jumping dist. $\left.\beta_{k}^{*} \sim N\left(\beta_{k}^{(t-1)} \text {, (jumping scale of } \beta_{k}\right)^{2}\right)$.

Gibbs-Metropolis algorithm: updating α, β, ω

- For each i, update α_{i} using Metropolis with jumping dist. $\alpha_{i}^{*} \sim \mathrm{~N}\left(\alpha_{i}^{(t-1)},\left(\text { jumping scale of } \alpha_{i}\right)^{2}\right)$.
- For each k, update β_{k} using Metropolis with jumping dist. $\left.\beta_{k}^{*} \sim \mathrm{~N}\left(\beta_{k}^{(t-1)} \text {, (jumping scale of } \beta_{k}\right)^{2}\right)$.

Gibbs-Metropolis algorithm: updating α, β, ω

- For each i, update α_{i} using Metropolis with jumping dist. $\alpha_{i}^{*} \sim \mathrm{~N}\left(\alpha_{i}^{(t-1)},\left(\text { jumping scale of } \alpha_{i}\right)^{2}\right)$.
- For each k, update β_{k} using Metropolis with jumping dist. $\left.\beta_{k}^{*} \sim \mathrm{~N}\left(\beta_{k}^{(t-1)} \text {, (jumping scale of } \beta_{k}\right)^{2}\right)$.
- For each k, update ω_{k} using Metropolis with jumping dist. $\omega_{k}^{*} \sim \mathrm{~N}\left(\omega_{k}^{(t-1)},\left(\text { jumping scale of } \omega_{k}\right)^{2}\right)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating hyperparameters

- Update $\mu_{\alpha} \sim \mathrm{N}\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sigma^{2}\right)$
- Update $\sigma_{\alpha}^{2} \sim \operatorname{Inv}-\chi^{2}\left(n-1, \frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\mu_{\alpha}\right)^{2}\right)$
\Rightarrow Similarly with $\mu_{\beta}, \sigma_{\beta}$

Gelman, DiPrete, Salganik, Teitler, Zheng

Gibbs-Metropolis algorithm: updating hyperparameters

- Update $\mu_{\alpha} \sim \mathrm{N}\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sigma^{2}\right)$
- Update $\sigma_{\alpha}^{2} \sim \operatorname{Inv}-\chi^{2}\left(n-1, \frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\mu_{\alpha}\right)^{2}\right)$
- Similarly with $\mu_{\beta}, \sigma_{\beta}$
- Renormalize to identify the α 's and β^{\prime} 's

Gibbs-Metropolis algorithm: updating hyperparameters

- Update $\mu_{\alpha} \sim \mathrm{N}\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sigma^{2}\right)$
- Update $\sigma_{\alpha}^{2} \sim \operatorname{Inv}-\chi^{2}\left(n-1, \frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\mu_{\alpha}\right)^{2}\right)$
- Similarly with $\mu_{\beta}, \sigma_{\beta}$
- Renormalize to identify the α 's and β 's

Gibbs-Metropolis algorithm: updating hyperparameters

- Update $\mu_{\alpha} \sim \mathrm{N}\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sigma^{2}\right)$
- Update $\sigma_{\alpha}^{2} \sim \operatorname{Inv}-\chi^{2}\left(n-1, \frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\mu_{\alpha}\right)^{2}\right)$
- Similarly with $\mu_{\beta}, \sigma_{\beta}$
- Renormalize to identify the α 's and β 's ...

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$
- Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_{k} 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$
- Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_{k} 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$
- Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_{k} 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
- Compute $C=\log \left(\sum_{k=1}^{12} e^{\beta_{k}} / 0.069\right)$
- Add C to all the α_{i}^{\prime} 's and μ_{α}

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$
- Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_{k} 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
- Compute $C=\log \left(\sum_{k=1}^{12} e^{\beta_{k}} / 0.069\right)$
- Add C to all the α_{i} 's and μ_{α}
- Subtract C from all the β_{k} 's and μ_{β}

Renormalizing the α_{i} 's and β_{k} 's

- Problem: α_{i} 's and β_{k} 's are not separately identified in the model, $y_{i k} \sim$ Negative-binomial $\left(e^{\alpha_{i}+\beta_{k}}, \omega_{k}\right)$
- Possible solutions:
- Choose a "baseline" value: set $\alpha_{1}=0$ (for example)
- Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_{i}=0$
- Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_{k} 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
- Compute $C=\log \left(\sum_{k=1}^{12} e^{\beta_{k}} / 0.069\right)$
- Add C to all the α_{i} 's and μ_{α}
- Subtract C from all the β_{k} 's and μ_{β}

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$ Save $p_{j u m p}$ from each Metropolis step, then average them and rescale every 50 iterations:

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω
- Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$
- Save pjump from each Metropolis step, then average them and rescale every 50 iterations:
- Where avg $p_{\text {iump }}>0.44$, increase the jump scale
* Where avg pjump <0.44, decrease the jump scale

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω
- Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$
- Save $p_{\text {jump }}$ from each Metropolis step, then average them and rescale every 50 iterations:
- Where avg $p_{\text {jump }}>0.44$, increase the jump scale
- Where avg $p_{\text {jump }}<0.44$, decrease the jump scale
- After burn-in, stop adapting If we had vector jumps, we would adapt the scale so that

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω
- Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$
- Save $p_{\text {jump }}$ from each Metropolis step, then average them and rescale every 50 iterations:
- Where avg $p_{\text {jump }}>0.44$, increase the jump scale
- Where avg $p_{\text {jump }}<0.44$, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E\left(p_{\text {jump }}\right) \approx 0.23$
More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω
- Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$
- Save $p_{\text {jump }}$ from each Metropolis step, then average them and rescale every 50 iterations:
- Where avg $p_{\text {jump }}>0.44$, increase the jump scale
- Where avg $p_{\text {jump }}<0.44$, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E\left(p_{\text {jump }}\right) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- Parallel scalar updating of the components of α, β, ω
- Adapt each of $1370+32+32$ jumping scales to have $E\left(p_{\text {jump }}\right) \approx 0.44$
- Save $p_{\text {jump }}$ from each Metropolis step, then average them and rescale every 50 iterations:
- Where avg $p_{\text {jump }}>0.44$, increase the jump scale
- Where avg $p_{\text {jump }}<0.44$, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E\left(p_{\mathrm{jump}}\right) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Computation in R

- BUGS was too slow (over 1400 parameters)

Programming from scratch in R is awkward, buggy
Instead, we use our general Gibbs/Metropolis programming environment

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment

- Set up MCMC object

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
\rightarrow Log-posterior density for Metropolis steps

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps - Bounds on overdispersion parameters $\omega \in[1,20]$

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
\rightarrow Bounds on overdispersion parameters $\omega \in[1,20]$ Renormalization step

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- Bounds on overdispersion parameters $\omega \in[1,20]$
- Renormalization step Result is a set of posterior simulations

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- Bounds on overdispersion parameters $\omega \in[1,20]$
- Renormalization step
- Result is a set of posterior simulations

Computation in R

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- Bounds on overdispersion parameters $\omega \in[1,20]$
- Renormalization step
- Result is a set of posterior simulations

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega, jump=Jump ("omega.jump", lower=1.01, upper=20)), mu.alpha $=$ Gibbs (mu.alpha.update), mu.beta $=$ Gibbs (mu.beta.update), sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha),
beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega, jump=Jump ("omega.jump", lower=1.01, upper=20)), mu.alpha $=$ Gibbs (mu.alpha.update), mu.beta $=$ Gibbs (mu.beta.update), sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta), omega $=$ Metropolis (f.logpost.omega, jump=Jump ("omega.jump", lower=1.01, upper=20)), mu.alpha $=$ Gibbs (mu.alpha.update), mu.beta $=$ Gibbs (mu.beta.update), sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega,
jump=Jump ("omega.jump", lower=1.01, upper=20)),
mu.alpha $=$ Gibbs (mu.alpha.update),
mu.beta $=$ Gibbs (mu.beta.update),
sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega,
jump=Jump ("omega.jump", lower=1.01, upper=20)),
mu.alpha $=$ Gibbs (mu.alpha.update),
mu.beta $=$ Gibbs (mu.beta.update),
sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update),
renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega, jump=Jump("omega.jump", lower=1.01, upper=20)), mu.alpha $=$ Gibbs (mu.alpha.update), mu.beta $=$ Gibbs (mu.beta.update), sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Setting up the MCMC object

network. 1 <- mcmcEngine (network.data, network.init, update=network.update, n.iter=1000, n.chains=3) network. update <- list(
alpha $=$ Metropolis (f.logpost.alpha), beta $=$ Metropolis (f.logpost.beta),
omega $=$ Metropolis (f.logpost.omega, jump=Jump("omega.jump", lower=1.01, upper=20)), mu.alpha $=$ Gibbs (mu.alpha.update), mu.beta $=$ Gibbs (mu.beta.update), sigma.alpha $=$ Gibbs (sigma.alpha.update), sigma.beta $=$ Gibbs (sigma.beta.update), renorm.network)

Data and initial values

```
y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),
    data.j=ncol(y))
network.init <- function()\{
    alpha <- rnorm(data.n)
    beta <- rnorm(data.j)
    omega <- runif (data.j,1.01,20)
    mu.alpha <- rnorm(1)
    mu.beta <- rnorm(1)
    sigma.alpha <- runif(1)
    sigma.beta <- runif(1)\}
```


Data and initial values

```
y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),
    data.j=ncol(y))
network.init <- function()\{
    alpha <- rnorm(data.n)
    beta <- rnorm(data.j)
    omega <- runif(data.j,1.01,20)
    mu.alpha <- rnorm(1)
    mu.beta <- rnorm(1)
    sigma.alpha <- runif(1)
    sigma.beta <- runif(1)\}
```


Data and initial values

```
y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),
    data.j=ncol(y))
network.init <- function(){
    alpha <- rnorm(data.n)
    beta <- rnorm(data.j)
    omega <- runif(data.j,1.01,20)
    mu.alpha <- rnorm(1)
    mu.beta <- rnorm(1)
    sigma.alpha <- runif(1)
    sigma.beta <- runif(1)}
```


Data and initial values

```
y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),
    data.j=ncol(y))
network.init <- function(){
    alpha <- rnorm(data.n)
    beta <- rnorm(data.j)
    omega <- runif(data.j,1.01,20)
    mu.alpha <- rnorm(1)
    mu.beta <- rnorm(1)
    sigma.alpha <- runif(1)
    sigma.beta <- runif(1)}
```


Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)~2)/rchisq(1, data.j-1))

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n)) mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j)) sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)~2)/rchisq(1, data.j-1))

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n)) mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)~2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))

Log-likelihood for each data point

f.loglik <- function (y, alpha, beta, omega, data.n)\{ theta.mat <- exp(outer(alpha, beta, "+")) omega.mat <- outer(rep(0, data.n), omega, "+") dnbinom (y, theta.mat/(omega.mat-1), 1/omega.mat, $\log =T)\}$

Log-posterior density for each vector parameter

f.logpost.alpha <- function() \{ loglik <- f.loglik (y, alpha, beta, omega, data.n) rowSums (loglik, na.rm=TRUE) +
dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE) \}
f.logpost.beta <- function() \{
loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=TRUE) +
dnorm (beta, mu.beta, sigma.beta, log=TRUE) \}
f.logpost.omega <- function() \{
loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=T) \}

Log-posterior density for each vector parameter

f.logpost.alpha <- function() \{ loglik <- f.loglik (y, alpha, beta, omega, data.n) rowSums (loglik, na.rm=TRUE) +
dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE) \}
f.logpost.beta <- function() \{
loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=TRUE) +
dnorm (beta, mu.beta, sigma.beta, log=TRUE) \}
f.logpost.omega <- function() \{
loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=T) \}

Log-posterior density for each vector parameter

f.logpost.alpha <- function() \{ loglik <- f.loglik (y, alpha, beta, omega, data.n) rowSums (loglik, na.rm=TRUE) +
dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE) \}
f.logpost.beta <- function() \{ loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=TRUE) +
dnorm (beta, mu.beta, sigma.beta, log=TRUE) \}
f.logpost.omega <- function() \{ loglik <- f.loglik (y, alpha, beta, omega, data.n) colSums (loglik, na.rm=T) \}

Bounded jumping for the ω_{k} 's

Customized Metropolis jumping rule for the components of ω :

```
omega.jump <- function (omega, sigma) {
    reflect (rnorm (length(omega), omega, sigma),
    .lower, .upper)}
```


Renormalization of the α_{i} 's and β_{k} 's

```
renorm.network <- function() {
    const <- log (sum(exp(beta[1:12]))/0.069)
    alpha <- alpha + const
    mu.alpha <- mu.alpha + const
    beta <- beta - const
    mu.beta <- mu.beta - const}
```


Running MCMC and looking at the output

```
net <- run(network.1)
attach (as.rv (net))
```

Some output:

name	mean	sd	25%	50%	75%	Rhat
beta[1]	-5.1	0.1	$(-5.4$	-5.2	$-5.1)$	1.0
beta[2]	-6.4	0.1	$(-6.9$	-6.7	$-6.5)$	1.2
beta[3]	-6.1	0.1	$(-6.5$	-6.3	$-6.2)$	1.1
beta[4]	-7.0	0.2	$(-7.6$	-7.4	$-7.1)$	1.0
beta[5]	-5.1	0.1	$(-5.4$	-5.3	$-5.2)$	1.2
beta[6]	-5.6	0.2	$(-6.1$	-5.9	$-5.8)$	1.0

Running MCMC and looking at the output

net <- run(network.1)
attach (as.rv (net))

Some output:

name	mean	sd	25%	50%	75%	Rhat
beta[1]	-5.1	0.1	$(-5.4$	-5.2	$-5.1)$	1.0
beta[2]	-6.4	0.1	$(-6.9$	-6.7	$-6.5)$	1.2
beta[3]	-6.1	0.1	$(-6.5$	-6.3	$-6.2)$	1.1
beta[4]	-7.0	0.2	$(-7.6$	-7.4	$-7.1)$	1.0
beta[5]	-5.1	0.1	$(-5.4$	-5.3	$-5.2)$	1.2
beta[6]	-5.6	0.2	$(-6.1$	-5.9	$-5.8)$	1.0

Running MCMC and looking at the output

net <- run(network.1)
attach (as.rv (net))

Some output:

name	mean	sd	25%	50%	75%	Rhat
beta[1]	-5.1	0.1	$(-5.4$	-5.2	$-5.1)$	1.0
beta[2]	-6.4	0.1	$(-6.9$	-6.7	$-6.5)$	1.2
beta[3]	-6.1	0.1	$(-6.5$	-6.3	$-6.2)$	1.1
beta[4]	-7.0	0.2	$(-7.6$	-7.4	$-7.1)$	1.0
beta[5]	-5.1	0.1	$(-5.4$	-5.3	$-5.2)$	1.2
beta[6]	-5.6	0.2	$(-6.1$	-5.9	$-5.8)$	1.0

Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Estimated distributions of network sizes for men and women

Regression of log(gregariousness)

Coefficient
female
nonwhite
age <30
age >65
married
college educated
employed
income < \$20,000
income > \$80,000

Estimate

3 models

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.) - Other groups (pilots, diabetics, etc.)

3 models

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters

3 models

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters

3 models

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters
- Proportion of the social network, $e^{\beta_{k}}$
- Overdispersion,

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters
- Proportion of the social network, $e^{\beta_{k}}$
- Overdispersion, ω_{k}

Parameter estimates for the 32 subpopulations

- Subpopulations
- Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters
- Proportion of the social network, $e^{\beta_{k}}$
- Overdispersion, ω_{k}

3 models

Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Group, j

Stephanie Jacqueline Kimberly
Nicole
Christina
Jennifer
Christopher
David
Anthony
Robert
James
Michael
Woman adopted kid in past yr Gave birth in past yr Woman raped

Commercial pilot
Gun dealer
AIDS
HIV-positive Male in prison Member of Jaycees

Suicide in past yr

Twin

Comparing estimated and actual group sizes

other groups

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled

Explanations

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Salience of rare events in memory

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
- Difficulty recalling all the Michaels you know
- Salience of rare events in memory

Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
- Difficulty recalling all the Michaels you know
- Salience of rare events in memory
- Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
- Difficulty recalling all the Michaels you know
- Salience of rare events in memory
- Recall Nicole and Anthony from the demo!

Fitting our model

Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Correlations in the residuals

$$
r_{i k}=\sqrt{y_{i k}}-\sqrt{\hat{\mathrm{a}}_{i} \hat{b}_{k}}
$$

Confidence building

- Posterior predictive checking: compare data to simulated replications from the model
- Model fit is good, not perfect
- Consistent patterns with names compared to other groups

Confidence building

- Posterior predictive checking: compare data to simulated replications from the model
- Model fit is good, not perfect
- Consistent patterns with names compared to other groups Many fewer 9's and more 10 's in data than predicted by the model

Confidence building

- Posterior predictive checking: compare data to simulated replications from the model
- Model fit is good, not perfect
- Consistent patterns with names compared to other groups
- Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

Confidence building

- Posterior predictive checking: compare data to simulated replications from the model
- Model fit is good, not perfect
- Consistent patterns with names compared to other groups
- Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

Confidence building

- Posterior predictive checking: compare data to simulated replications from the model
- Model fit is good, not perfect
- Consistent patterns with names compared to other groups
- Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

3 models

Actual vs. simulated proportions of $y=0,1, \ldots$

Do you know 0, 1, 2, or 3 or more Nicoles?

- Censored-data model

Do you know $0,1,2$, or 3 or more Nicoles?

- Censored-data model
- $y_{i k}=0,1,2$, or ≥ 3
- Use negative-binomial likelihood function: $\operatorname{Pr}(y=0), \operatorname{Pr}(y=1), \operatorname{Pr}(y=2)$, $1-\operatorname{Pr}(y=0)-\operatorname{Pr}(y=1)-\operatorname{Pr}(y=2)$ Gibbs-Metropolis algorithm is otherwise unchanged

Do you know $0,1,2$, or 3 or more Nicoles?

- Censored-data model
- $y_{i k}=0,1,2$, or ≥ 3
- Use negative-binomial likelihood function:
$\operatorname{Pr}(y=0), \operatorname{Pr}(y=1), \operatorname{Pr}(y=2)$,
$1-\operatorname{Pr}(y=0)-\operatorname{Pr}(y=1)-\operatorname{Pr}(y=2)$
- Gibbs-Metropolis algorithm is otherwise unchanged Check with our data: parameter estimates are similar but problems with model fit for high values of y

Do you know $0,1,2$, or 3 or more Nicoles?

- Censored-data model
- $y_{i k}=0,1,2$, or ≥ 3
- Use negative-binomial likelihood function:

$$
\begin{aligned}
& \operatorname{Pr}(y=0), \operatorname{Pr}(y=1), \operatorname{Pr}(y=2) \\
& 1-\operatorname{Pr}(y=0)-\operatorname{Pr}(y=1)-\operatorname{Pr}(y=2)
\end{aligned}
$$

- Gibbs-Metropolis algorithm is otherwise unchanged

$$
\begin{aligned}
& \text { Check with our data: parameter estimates are similar but } \\
& \text { problems with model fit for high values of } y
\end{aligned}
$$

Do you know $0,1,2$, or 3 or more Nicoles?

- Censored-data model
- $y_{i k}=0,1,2$, or ≥ 3
- Use negative-binomial likelihood function:
$\operatorname{Pr}(y=0), \operatorname{Pr}(y=1), \operatorname{Pr}(y=2)$,
$1-\operatorname{Pr}(y=0)-\operatorname{Pr}(y=1)-\operatorname{Pr}(y=2)$
- Gibbs-Metropolis algorithm is otherwise unchanged
- Check with our data: parameter estimates are similar but problems with model fit for high values of y

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Evaluation of inferences using fake data

gregariousness, $\exp (\alpha)$
greganousness, exp (α))
estimated wio censoring
 estimated w/o censoring

overdispersion, ek
estimated wo censoring

gregariousness, $\exp \left(\alpha_{i}\right)$ estimated wo censoring

overdispersion, ω_{k} estimated wio censoring

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!
- Results for social network sizes, α

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes,

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes,
- Results for overdispersions,

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes, β
- Results for overdispersions, ω

Running the demo

- How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
- Entering in the data: 20 minutes
- Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
- Real-time debugging: 15 minutes!
- Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes, β
- Results for overdispersions, ω

Results of the demo

- Social network sizes, α
- Mean network size estimated at 370 ± 20
- We don't really believe this precision!

Results of the demo

- Social network sizes, α
- Mean network size estimated at 370 ± 20
- We don't really believe this precision!
- Implicit hierarchical model

Gelman, DiPrete, Salganik, Teitler, Zheng

Results of the demo

- Social network sizes, α
- Mean network size estimated at 370 ± 20
- We don't really believe this precision!

Results of the demo

- Social network sizes, α
- Mean network size estimated at 370 ± 20
- We don't really believe this precision!
- Implicit hierarchical model

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network

Lawyers: 0.90% of the social network

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
* Robbed last year: 0.20% of the social network

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network

- Robbed last year: 0.20% of the social network

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up
- Nicole: 500,000

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up
- Nicole: 500,000
- Anthony: 800,000
- Lawyers: 2.6 million

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up
- Nicole: 500,000
- Anthony: 800,000
- Lawyers: 2.6 million - Robbed last year: 200,000

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up
- Nicole: 500,000
- Anthony: 800,000
- Lawyers: 2.6 million
- Robbed last year: 200,000

Results of the demo

- Group sizes, β
- Nicole: 0.17% of the social network
- Anthony: 0.27% of the social network
- Lawyers: 0.90% of the social network
- Robbed last year: 0.20% of the social network
- Scale-up
- Nicole: 500,000
- Anthony: 800,000
- Lawyers: 2.6 million
- Robbed last year: 200,000

Results of the demo

- Overdispersions, ω

Results of the demo

- Overdispersions, ω
- Nicole: 1.1 ± 0.1

Results of the demo

- Overdispersions, ω
- Nicole: 1.1 ± 0.1
- Anthony: 1.2 ± 0.1
- Lawyers: 4.2 ± 0.9
- Robbed last year: 1.3 ± 0.3

3 models

Results of the demo

- Overdispersions, ω
- Nicole: 1.1 ± 0.1
- Anthony: 1.2 ± 0.1
- Lawyers: 4.2 ± 0.9
- Robbed last year: 1.3 ± 0.3

Results of the demo

- Overdispersions, ω
- Nicole: 1.1 ± 0.1
- Anthony: 1.2 ± 0.1
- Lawyers: 4.2 ± 0.9
- Robbed last year: 1.3 ± 0.3

Conclusions

- Bayesian data analysis

- What we learned about social networks

Conclusions

- Bayesian data analysis

- What we learned about social networks

- Advantages of "How many X's" surveys

Conclusions

- Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys Plan of future research

Conclusions

- Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

Conclusions

- Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

Bayesian data analysis

- Model-building motivated by failures of simpler models Checking model by comparing data to predictive replications

Bayesian data analysis

- Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications Chec
data

Bayesian data analysis

- Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications

Computation using automated Metropolis algorithm

Bayesian data analysis

- Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically

Bayesian data analysis

- Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically

Bayesian data analysis

- Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically ...

Regression of \log (gregariousness): as a table

Coefficient	Estimate (s.e.)
female	$-0.11(0.03)$
nonwhite	$0.06(0.04)$
age <30	$-0.02(0.04)$
age >65	$-0.14(0.05)$
married	$0.04(0.05)$
college educated	$0.11(0.03)$
employed	$0.13(0.04)$
income $<\$ 20,000$	$-0.18(0.05)$
income $>\$ 80,000$	$0.18(0.05)$

Regression of $\log ($ gregariousness): as a graph

Coefficient
female
nonwhite
age <30
age >65
married
college educated
employed
income < \$20,000
income > \$80,000

Estimate

What have we learned about social networks

- Network size
- On average, people know about 750 people

Gelman, DiPrete, Salganik, Teitler, Zheng

What have we learned about social networks

- Network size
- On average, people know about 750 people - Distribution is similar for men and women

What have we learned about social networks

- Network size
- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion

What have we learned about social networks

- Network size
- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion
- Names are roughly uniformly distributed
- Some other groups show more structure

What have we learned about social networks

- Network size
- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion
- Names are roughly uniformly distributed
- Some other groups show more structure
- Potential for regression models (with geographic and social
predictors)

What have we learned about social networks

- Network size
- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion
- Names are roughly uniformly distributed
- Some other groups show more structure
- Potential for regression models (with geographic and social predictors)

What have we learned about social networks

- Network size
- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion
- Names are roughly uniformly distributed
- Some other groups show more structure
- Potential for regression models (with geographic and social predictors)

Learning from "How many X's" surveys

- Network info from a non-network sample

We can even learn about small groups, less than 0.3% of population
Implicit survey of $1500 \times 750=1$ million people!

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people! Characterising people by how they are perceived

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived Potentially useful for small or hard-to-reach groups (prisoners,

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners,

Difficulty with recall

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
- Do you know any Nicoles?

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
- Do you know any Nicoles?
- Do you know 0, 1, 2, or 3 or more Nicoles?

Learning from "How many X's" surveys

- Network info from a non-network sample
- We can even learn about small groups, less than 0.3% of population
- Implicit survey of $1500 \times 750=1$ million people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
- Do you know any Nicoles?
- Do you know 0, 1, 2, or 3 or more Nicoles?

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or \ldots ?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or \ldots ?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or \ldots ?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters Conduct new survey (GSS module, possibly NES also)

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or \ldots ?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or \ldots ?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
- Goals: estimating overdispersion of subpopulations, regression models of \# known and individual characteristics and attitudes - Measuring and understanding social and nolitical nolarization

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or ...?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
- Goals: estimating overdispersion of subpopulations, regression models of \# known and individual characteristics and attitudes
- Measuring and understanding social and political polarization Leraning about individuals and groups

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or ...?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
- Goals: estimating overdispersion of subpopulations, regression models of \# known and individual characteristics and attitudes
- Measuring and understanding social and political polarization
- Leraning about individuals and groups

Our research plan

- Design and analysis of "How many X's" surveys
- Ask about $0 / 1+$, or $0 / 1 / 2+$, or ...?
- Use rare names to normalize?
- Efficient estimation given fixed respondent time
- Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
- Goals: estimating overdispersion of subpopulations, regression models of \# known and individual characteristics and attitudes
- Measuring and understanding social and political polarization
- Leraning about individuals and groups

