Learning about social and political polarization using "How many X's do you know" surveys

Andrew Gelman

Dept of Statistics and Dept of Political Science

Columbia University

4 April 2005

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - ▶ Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey dataset

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators
 - Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ▶ Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - ▶ Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ▶ Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - ▶ Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ► Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ► Tom DiPrete, Dept of Sociology, Columbia University
 - ▶ Julien Teitler, School of Social Work, Columbia University
 - ▶ Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ► Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - Jouni Kerman, Dept of Statistics, Columbia University
 - Peter Killworth and Chris McCarty shared their survey data

- Social polarization:
 - More variety in domestic arrangements
 - ► Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital

- Social polarization:
 - More variety in domestic arrangements
 - ► Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriage:
- Decline in social capital

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:

- Social polarization:
 - More variety in domestic arrangements
 - ► Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:

- Social polarization:
 - More variety in domestic arrangements
 - ► Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:
 - Later marriage, fewer children
 - "Bowling alone" (Putnam)

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:
 - ► Later marriage, fewer children
 - ▶ "Bowling alone" (Putnam
 - Less involvement in community groups, labor unions,

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:
 - Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, . . .

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:
 - ► Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, ...

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital:
 - Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, ...

▶ Polarization in political opinions:

- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - Democrats know Democrats, Republicans know Republicans
 Partisanship is correlated with income, religiosity

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - ▶ Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - Democrats know Democrats, Republicans know Republicans
 - ▶ Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held,
 - » GSS, NES questions on values (White, Brooks, ...)
 - General Social Survey: questions about your close contacts (DBB) serie
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - ► General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - Community surveys (Putnam, . . .)
 - ► General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization
 - Congressional votes (McCarty, Poole, Rosenthal, ...)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, . . .)

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization
 - Congressional votes (McCarty, Poole, Rosenthal, ...)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, ...)

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - Community surveys (Putnam, . . .)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization
 - Congressional votes (McCarty, Poole, Rosenthal, . . .)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, ...)

Example analysis: regression of residuals for "How many prisoners do you know?"

How many people do you know? Demonstration

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- Howmany peop alo you know who were resided in the past

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- How many people to you know who were robbed in the past

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- How many people to you know who were robbed in the past year?

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- ► How many people do you know who were robbed in the past year?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- \triangleright Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- ▶ On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 1.6/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- ► Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- ► Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- ▶ On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290$ million = 160,000 people robbed

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- ▶ On average, you know 0.25 people who were robbed last year
- ► Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ▶ Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- ▶ Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- ► Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- ► Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- ► Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- ► Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- ► Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- Our overdispersed model

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- ► Erdos-Renyi model: random links
- ▶ Our null model: some people are more popular than others
- Our overdispersed mode
- More general models

- ► Erdos-Renyi model: random links
- ▶ Our null model: some people are more popular than others
- Our overdispersed model
- ► More general models . .

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- Erdos-Renyi model: random links
- Our null model: some people are more popular than others
- Our overdispersed model
- More general models . . .

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Erdos-Renyi model

- y_{ik} = number of persons in group k known by person i
 - ► Erdos-Renyi model: random links
- \triangleright $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size}$ of group k
- ▶ Unrealistic: sometheople have many more friends than others

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Erdos-Renyi model

- y_{ik} = number of persons in group k known by person i
- Erdos-Renyi model: random links
- \triangleright $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size of group k}$
- Unrealistic: some neople have many more friends than others

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Erdos-Renyi model

- y_{ik} = number of persons in group k known by person i
- Erdos-Renyi model: random links
- \triangleright $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size of group k}$
- Unrealistic: some people have many more friends than others

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- \triangleright $y_{ik} \sim \text{Poisson}(a|b_k)$
- e^{α_i} , "gregariousness"

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- \triangleright $y_{ik} \sim \text{Poisson}(a_i b_k)$
- $a_i = e^{\alpha_i}$, "gregariousness" of per

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim Poisson(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- by etc. size of boup k in the social network

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim Poisson(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim Poisson(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- Unrealistic: data are actually overdispersed (for example, do χ^2 test)

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Our overdispersed model

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a; b_k, \omega_k)$

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Our overdispersed model

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- ear, "gregariousness" of person i

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $bl = e^{\beta_k}$ size of group k in the social network

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\triangleright \omega_k = 1$ is no overdispersion (Poissen model)
 - \triangleright Higher values of ω_k show overdispersion
- Overdispersion represents social structure

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - \triangleright Higher values of ω_k show overdispersion
- Overdispersion represents social structure

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - Higher values of ω_k show overdispersion

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - Higher values of ω_k show overdispersion
- Overdispersion represents social structure

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

How many Nicoles do you know?

How many Jaycees do you know?

Data, compared to simulations from 3 models

- ▶ Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jounil Kerman's Umacs function in R

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ightharpoonup 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- ▶ Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists

$$ightharpoonup lpha_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$$
, for $i = 1, \dots, 1370$

•
$$\omega_k \sim U(1, 20)$$
, for $k = 1, ..., 32$

- ▶ hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- lacktriangle Nonidentifiability in lpha+eta (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - $\sim \alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for $i = 1, \dots, 1370$

 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- ▶ hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - $\sim \alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for $i = 1, \dots, 1370$

 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - $\sim \alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for $i = 1, \dots, 1370$
 - lacksquare $\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$, for $k = 1, \dots, 32$
 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- ightharpoonup 1370 + 32 + 32 + 4 parameters to estimate
- Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - $\sim \alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for $i = 1, \dots, 1370$

 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- ightharpoonup 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

Gibbs-Metropolis algorithm: updating α, β, ω

- ▶ For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2).$
- ► For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating α, β, ω

- ▶ For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- ▶ For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2).$
- For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating α, β, ω

- ▶ For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- ▶ For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2).$
- For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ▶ Similarly with μ_{β} , σ_{β}
- ightharpoonup Renormalize to identify the α 's and β 's ...

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ► Similarly with μ_{β} , σ_{β}
- ▶ Renormalize to identify the α 's and β 's . . .

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ▶ Similarly with $\mu_{\beta}, \sigma_{\beta}$
- ▶ Renormalize to identify the α 's and β 's . . .

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ▶ Similarly with $\mu_{\beta}, \sigma_{\beta}$
- ▶ Renormalize to identify the α 's and β 's . . .

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example) ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
- \blacktriangleright Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_α
 - ▶ Subtract C from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract C from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract *C* from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract *C* from all the β_k 's and μ_β

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- ► Save *p*_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(
 ho_{
 m jump}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- ▶ Parallel scalar updating of the components of α, β, ω
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- ► Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\text{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- ▶ Parallel scalar updating of the components of α, β, ω
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - Where avg $p_{\text{jump}} < 0.44$, decrease the jump scale
- ► After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- ▶ More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- ▶ Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- ► Save *p*_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- ▶ Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- ► Save *p*_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distance

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- ► Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- ► Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- ► Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- ► Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- ► Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- ► Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

3 models Fitting our model Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

3 models Fitting our model Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
v <- as.matrix (read.dta ("social.dta"))</pre>
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
mu.alpha.update <- function()
  rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
  rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
  sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
  sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
  rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
  rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
  sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
  sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
  rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
  rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
  sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
  sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
  rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
  rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
  sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
  sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

Log-likelihood for each data point

```
f.loglik <- function (y, alpha, beta, omega, data.n){
  theta.mat <- exp(outer(alpha, beta, "+"))
  omega.mat <- outer(rep(0, data.n), omega, "+")
  dnbinom (y, theta.mat/(omega.mat-1), 1/omega.mat,
    log=T)}</pre>
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Bounded jumping for the ω_k 's

Customized Metropolis jumping rule for the components of ω :

```
omega.jump <- function (omega, sigma) {
  reflect (rnorm (length(omega), omega, sigma),
     .lower, .upper)}</pre>
```

Renormalization of the α_i 's and β_k 's

```
renorm.network <- function() {
  const <- log (sum(exp(beta[1:12]))/0.069)
  alpha <- alpha + const
  mu.alpha <- mu.alpha + const
  beta <- beta - const
  mu.beta <- mu.beta - const}</pre>
```

net <- run(network.1)</pre>

3 models Fitting our model Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Running MCMC and looking at the output

```
attach (as.rv (net))
Some output:
                  sd
                        25% 50% 75%
                                         Rhat.
name
         mean
beta[1]
          -5.1
                0.1
                      (-5.4 - 5.2 - 5.1)
                                          1.0
beta[2]
          -6.4
                0.1
                      (-6.9 - 6.7 - 6.5)
                                          1.2
                      (-6.5 -6.3 -6.2)
beta[3]
          -6.1
                0.1
                                          1.1
                0.2
                      (-7.6 - 7.4 - 7.1)
beta[4]
          -7.0
                                          1.0
beta[5]
                      (-5.4 - 5.3 - 5.2)
          -5.1
                0.1
                                          1.2
beta[6]
                0.2
                      (-6.1 - 5.9 - 5.8)
                                          1.0
         -5.6
```

3 models Fitting our model Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Running MCMC and looking at the output

```
net <- run(network.1)
attach (as.rv (net))</pre>
```

Some output:

```
sd
                        25% 50% 75%
                                         Rhat.
name
          mean
beta[1]
          -5.1
                0.1
                      (-5.4 - 5.2 - 5.1)
                                          1.0
beta[2]
          -6.4
                0.1
                      (-6.9 - 6.7 - 6.5)
                                          1.2
                      (-6.5 -6.3 -6.2)
beta[3]
          -6.1
                0.1
                                          1.1
                      (-7.6 - 7.4 - 7.1)
beta[4]
          -7.0
                0.2
                                          1.0
beta[5]
                      (-5.4 - 5.3 - 5.2)
          -5.1
                0.1
                                          1.2
beta[6]
                0.2
                      (-6.1 - 5.9 - 5.8)
                                          1.0
          -5.6
```

net <- run(network.1)

Running MCMC and looking at the output

```
attach (as.rv (net))
Some output:
                  sd 25% 50% 75%
                                        Rhat
name
         mean
beta[1]
         -5.1
                0.1
                      (-5.4 - 5.2 - 5.1)
                                          1.0
beta[2]
         -6.4
                0.1
                      (-6.9 - 6.7 - 6.5)
                                          1.2
                      (-6.5 -6.3 -6.2)
beta[3]
         -6.1
                0.1
                                          1.1
beta[4]
         -7.0
                0.2
                      (-7.6 - 7.4 - 7.1)
                                          1.0
beta[5]
         -5.1
                0.1
                      (-5.4 - 5.3 - 5.2)
                                          1.2
beta[6]
                      (-6.1 - 5.9 - 5.8)
         -5.6
                0.2
                                          1.0
```

Estimated distributions of network sizes for men and women

Regression of log(gregariousness)

Parameter estimates for the 32 subpopulations

Subpopulations

- ► Names (Stephanie, Michael, etc.)
- Other groups (pilots, diabetics, etc.)
- Parameters

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{Dk}

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{β_k}
 - Overdispersion, ω_k

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{β_k}
 - Overdispersion, ω_k

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{β_k}
 - Overdispersion, ω_k

Overview
Social and political polarization
Background: how many people do you know?
Learning from "How many X's do you know" surveys
Conclusions

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Comparing estimated and actual group sizes

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups

Explanations

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups

Explanations

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 Common groups (new mothers, diabetics, etc.) are
- Explanations

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Other groups

- ▶ Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
- Sallence of rare events in memory
- Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Other groups

- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled

Explanations

- Difficulty recalling all the Michaels you know
- Salience of rare events in memory
- ▶ Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Other groups

- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled

Explanations

- Difficulty recalling all the Michaels you know
- Salience of rare events in memory
- Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Other groups

- Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled

Explanations

- Difficulty recalling all the Michaels you know
- Salience of rare events in memory
- ▶ Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
 - Salience of rare events in memory
- Recall Nicole and Anthony from the demo!

Correlations in the residuals

$$r_{ik} = \sqrt{y_{ik}} - \sqrt{\hat{a}_i \hat{b}_k}$$

negative experience

Postal Worker Gun Dealer Javcees

HIV positive

Prison Homicide Homeless Rape Sulcide Auto Accident

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - ▶ Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

- ▶ Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - ▶ Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- ▶ Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

Actual vs. simulated proportions of y = 0, 1, ...

Censored-data model

- $y_{ik} = 0, 1, 2, \text{ or } \geq 3$
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), Pr(y=0) = Pr(y=1) = Pr(y=2)
- ▶ Gibbs-Metropolis algorithm is otherwise unchanged
- Check with our data: parameter estimates are similar but problems with model fit for high values of y

- Censored-data model
- ▶ $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- ► Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

- Censored-data model
- $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- Use negative-binomial likelihood function:

$$Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)$$

- Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

- Censored-data model
- $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- ▶ Use negative-binomial likelihood function:

$$Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)$$

- Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

- Censored-data model
- $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- Use negative-binomial likelihood function: Pr(v=0), Pr(v=1), Pr(v=2).

$$1 - \Pr(y=0) - \Pr(y=1) - \Pr(y=2)$$

- Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

Evaluation of inferences using fake data

Fake: censored at 5

gregariousness, exp(α,)

Fake: censored at 5

0.1%

% of network, exp(β_k)

Fake: censored at 5

overdispersion, ea

estimated w/o censoring

estimated w/o censoring

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000
 - Date (00 Seconds)
 - » Altering the presentation: 15 minutessa
- lacktriangle Results for social network sizes, lpha
- Results for group sizes, \(\beta \)
- \triangleright Results for overdispersions, ω

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- Results for group sizes, β
- \triangleright Results for overdispersions, ω

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- lacktriangle Results for social network sizes, lpha
- Results for group sizes, β
- Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- \triangleright Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ► How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- Results for social network sizes, a
- ightharpoonup Results for group sizes, β
- Results for overdispersions. ω

- ► How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- \triangleright Results for overdispersions, ω

- ► How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ▶ Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ► How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ▶ Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ▶ Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, lpha
- ightharpoonup Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ightharpoonup Social network sizes, α
 - Mean network size estimated at 370 ± 20
 - ▶ We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - ▶ Mean network size estimated at 370 ± 20
 - ▶ We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - ▶ Mean network size estimated at 370 ± 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - ▶ Mean network size estimated at 370 ± 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- ► Scale-up
 - Nicole: 500,000

 Anthony: 800,000
 - Robbed last year: 200,000

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000
 - ► Anthony: 800,000
 - ► Lawyers: 2.6 million
 - Robbed last year: 200,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - ► Nicole: 500,000
 - Anthony: 800,000
 - Lawyers: 2.6 million
 - Robbed last year: 200,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - ► Nicole: 500,000
 - ► Anthony: 800,000
 - ► Lawyers: 2.6 million
 - Robbed last year: 200,000

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - ► Nicole: 500,000
 - Anthony: 800,000
 - Lawyers: 2.6 million
 - ▶ Robbed last year: 200,000

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - ► Nicole: 500,000
 - Anthony: 800,000
 - Lawyers: 2.6 million
 - Robbed last year: 200,000

Results of the demo

ightharpoonup Overdispersions, ω

```
Nicole: 1.1 \pm 0.1
```

Anthony: 1.2 ± 0.1

 \triangleright Robbed last year: 1.3 \pm 0.3

Results of the demo

ightharpoonup Overdispersions, ω

▶ Nicole: 1.1 ± 0.1

Anthony: 1.2 ± 0.1

Lawyers: 4.2 ± 0.9

Nobbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1
 Anthony: 1.2 ± 0.1

Lawyers: 4.2 ± 0.9

▶ Robbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1
 Anthony: 1.2 ± 0.1
 Lawyers: 4.2 ± 0.9

▶ Robbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1
 Anthony: 1.2 ± 0.1
 Lawyers: 4.2 ± 0.9

▶ Robbed last year: 1.3 ± 0.3

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

- Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

- Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- ▶ Plan of future research

- Bayesian data analysis
- ▶ What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Interences summarized graphically

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically . . .

- ► Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically . . .

- ► Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ► Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically . . .

Regression of log(gregariousness): as a table

Coefficient	Estimate (s.e.)
female	-0.11 (0.03)
nonwhite	0.06 (0.04)
age < 30	-0.02(0.04)
age > 65	-0.14(0.05)
married	0.04 (0.05)
college educated	0.11 (0.03)
employed	0.13 (0.04)
income < \$20,000	-0.18(0.05)
income > \$80,000	0.18 (0.05)

Regression of log(gregariousness): as a graph

- Network size
 - ▶ On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion

- Network size
 - ▶ On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners . . .)
- Difficulty with recal
- Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, . . .)
- Difficulty with recal
- Potential design using partial information:

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- ▶ Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recal
- Potential design using partial information:

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- ▶ Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - ▶ Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - ▶ Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)

- Design and analysis of "How many X's" surveys
 - ▶ Ask about 0/1+, or 0/1/2+, or . . . ?
 - Use rare names to normalize?
 - ► Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - ► Hierarchical regression models with lots of parameters
- ► Conduct new survey (GSS module, possibly NES also)

- ▶ Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
 - Goals: estimating overdispersion of subpopulations, regression models of # known and individual characteristics and attitudes
 - Measuring and understanding social and political polarization
 - Leraning about individuals and groups

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
 - Goals: estimating overdispersion of subpopulations, regression models of # known and individual characteristics and attitudes
 - Measuring and understanding social and political polarization
 - Leraning about individuals and groups

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
 - ► Goals: estimating overdispersion of subpopulations, regression models of # known and individual characteristics and attitudes
 - Measuring and understanding social and political polarization
 - Leraning about individuals and groups

- ▶ Design and analysis of "How many X's" surveys
 - ▶ Ask about 0/1+, or 0/1/2+, or . . . ?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Conduct new survey (GSS module, possibly NES also)
 - ► Goals: estimating overdispersion of subpopulations, regression models of # known and individual characteristics and attitudes
 - Measuring and understanding social and political polarization
 - Leraning about individuals and groups