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Motivation

I Trial design with hierarchical models using patient data and
summaries of external data

I More generally: incorporating aggregate data into statistical
analysis



Scenario

I Non-inferiority and bio-similarity trials
I Test of a candidate substance against an active control

I Candidate substance developed in-house: lots of raw data,
individual patient level longitudinal data

I Active control developed externally: we only have data
summaries from publications or submission documents

I New trial will be similar to earlier trials of the active control
drug, but still to some extent different

I Also the conditions differ in the two experiments



Meta-analysis

I Partial pooling of information from two studies
I Statistical challenges:

I Only summary data are available on one study
I Nonlinear model, so no closed-form model for average data
I Only 2 “groups” so hierarchical modeling is not so easy,

requires strong prior information



Drug disease modeling of drug responses

I Key application is clinical trial simulations for study design
I Simulation of drug responses of patients over time

I New designs can be considered
I Different endpoints can be explored including time to event

I Hierarchical (population) based models require patient-level
data

I Problem: Same disease progression, same patient population
and likely similar mechanism of action, but population model
describes only in-house drug

I How to learn from published summaries of longitudinal data in
the context of nonlinear hierarchical models?



Semi-Mechanistic Turn-Over Models 

 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public 5 

Linking Pharmacokinetics (PK) with Pharmacodynamics (PD) 

� PD response «R» can be safety or efficacy related driven 
by PK effect on «bio-compartement» 
• Zero order «production» / first order «elimination» of response R 
• 4 variants: zero / first order inhibition / stimulation due to PK 
• Drug response with respect to reference state (placebo) 

� Some regimens may lead to PK causing oscillations and 
hence oscillations in response 

Source: Peletie LA et al.; J Pharmacokinet Pharmacodyn. 2005 



General formulation

I Direct data y = (yjt ; j = 1, . . . , J; t = 1, . . . ,T ) with model
p(yj |αj , φ)

I Hierarchical model p(α, φ) = p(φ)
∏J

j=1 p(αj |φ)

I Use Stan to draw posterior simulations from
p(α, φ|y) ∝ p(φ)

∏J
j=1 p(αj |φ)

∏J
j=1 p(yj |αj , φ)

I External dataset y ′ = (y ′
jt ; j = 1, . . . , J ′; t = 1, . . . ,T ′)

I Observe time series of averages: ȳ ′ = (ȳ ′
1, . . . , ȳ

′
T )

I External dataset has parameters φ′ = φ+ δ

I Informative prior on δ



Simulated Example Data Set 

 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public 8 

50 Patients per Treatment Arm Placebo, Treatment 1 & 2 

� Solid line is true population 
mean 
 
 

� No population differences 

� No between-trial variation 

 



Integrating external summary data

I Simplest case: 2 datasets follow the same model
I Populations must be comparable
I Parameters must be identical
I Natural disease progression must be the same

I Relax these assumptions: φ′ = φ+ δ

I Extreme cases
I δ ≡ 0: complete pooling
I p(δ) ∝ 1: no pooling



Natural Bayesian approach doesn’t work

I Consider external data as latent variables
I y ′ not observed; all we see is ȳ ′

I Computationally expensive
I For example, 300 patients and 15 measurements per patient

I Instead, we’ll model ȳ ′ directly
I Take advantage of central limit theorem



Multivariate normal approx to p(ȳ ′|φ′)

I Given φ′ simulate data from 1000 hypothetical patients
I Compute mean M and T × T covariance matrix S
I Approx p(ȳ ′|φ′) by N(ȳ ′|M, S/J ′)
I J ′ = number of patients in external data, not the same as the

“1000”



Importance sampling algorithm

I Fit model to direct data; get draws from p(α, φ|y)
I For each draw of α, φ:

I Draw δ from prior p(δ)
I Compute φ′ = φ+ δ
I Simulate data from 1000 hypothetical patients
I Approx p(ȳ ′|φ′) by N(ȳ ′|M,S/J ′)
I Compute importance ratio N(ȳ ′|M,S/J ′)



Hierarchical expectation propagation (EP) algorithm

I Simple importance sampling won’t work if p(δ) is broad
I Need iterative algorithm
I At each step, sample from “pseudo-prior” g(φ, δ)

I Multiply importance ratios by p(φ,δ)
g(φ,δ)

I EP: match moments to get update for g
I Use smoothed importance weights and stable moment

matching



Examples

I Hierarchical linear model:
I Local data: yjt ∼ N(αj1 + αj2xt + βx2

t , σ
2
y )

I αj ∼ N(µα,Σα)
I External data: yjt ∼ N(α′

j1 + α′
j2xt + βx2

t , σ
2
y )

I α′
j ∼ N(µ′

α,Σα).
I δ = µ′

α − µα.

I Hierarchical logistic
I Hierarchical PKPD
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Hierarchical linear model example:  Posterior mean +/− sd from EP algorithm from 3 starting points
(Red lines show estimate from local data, blue includes aggregate data, green uses complete data)
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Hierarchical logistic example:  Posterior mean +/− sd from EP algorithm from 3 starting points
(Red lines show estimate from local data, green uses complete data)
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Hierarchical PK/PD example:  Posterior mean +/− sd from EP algorithm from 3 starting points
(Red lines show estimate from local data, green uses complete data)



Discussion

I Use fake-data simulation to build trust in results
I Hope to improve efficiency of EP by approximating p(φ, δ)

(currently approximating p(φ) and p(δ))
I Shift parameter δ instead of “cut”
I New way to think about meta-analysis


