Expanded graphical models: Inference, Model comparison, Model checking, Fake-data debugging, and Model understanding

Andrew Gelman

Dept of Statistics and Dept of Political Science, Columbia University, New York

1 Aug 2011

- Expand graphical modeling to include:
 - Predictive model checking
 - Fake-data simulation
 - Scaffolding
- Common features:
 - Small changes to an existing fitted model
 - Comparisons of nodes between models

- (applied) Building confidence in our computations and our models
- (methodological) Being able to do this routinely
- (theoretical): A unified framework for model building, model fitting, and model checking
- (computational): Implementing in a Bayesian computing environment such as stan

- Setting up a realistic (i.e., complicated) model
- Regularization or partial pooling
- Fitting the model
- Checking the fit to data
- Confidence building
- Understanding the fitted model

The models we're fitting

Andrew Gelman

Expanded graphical models

- Main effects, 2-way, 3-way, etc.
- Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- Also, group-level predictors (linear trends for age and income, previous voting patterns for states)
- Need a richer modeling language than this:
 - bglmer (y ~ z.age*z.inc*rvote.st + (z.age*z.inc | st) +
 (z.age*rvote.st | inc) + (z.inc*rvote.st | age) +
 (z.age | inc*st) + (z.inc | age*st) + (z.st |age*inc) +
 (1 | age*inc*st), family=binomial(link="logistic"))
 - No easy way to write this in Bugs or to program it oneself!

Posterior predictive checking: 3 examples

Example 1: a normal distribution is fit to the following data:

20 replicated datasets under the model:

Example 2: checking a model fit to data with time ordering

```
> plot (y, type="l")
> lines (y.rep)
```


data and replicated data

Example 3: checking a model with three-way structure

Data and 7 replications:

Theoretical framework for predictive checking

- All our models are wrong
- What aspects of our models don't fit the data?
- Data and replicated data: $heta
 ightarrow y, y^{
 m rep}$
- Posterior predictive distribution, $p(y^{rep}|y)$
- Computation:
 - Simulate θ from the posterior distribution, $p(\theta|y)$
 - Simulate y^{rep} from the predictive distribution, $p(y^{\text{rep}}|\theta, y)$
 - Compare y to the replicated datasets y^{rep}
- The generalized graphical model:

```
M --> theta --> y
\
\
y.rep
```

A posterior predictive check requires:

- Set of conditioning variables θ
- Set of fixed design variables X (e.g., sample size)
- Test variable T(y) (more generally, $T(X, y, \theta)$)
- Simulating posterior predictive replications is a fundamental operation in graphical models
- Requires a new node, y^{rep}, whose distribution is implied by the existing model

Fake-data debugging

- Sample θ^{pretend} from the prior distribution $p(\theta)$
- Sample y from the model $p(y|\theta^{|pretend})$
- Perform Bayesian inference, simulations from $p(\theta|y)$
- Check calibration of posterior means, predictive intervals, etc. compared to θ^{pretend} (Cook, Gelman, and Rubin, 2007)
- Fake-data simulation is a fundamental operation in graphical models
- θ^{pretend} is a new node

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- Step 1: Graph of models
 - Each model is a node of this super-graph
 - Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, ...)
- Step 2: Integrated graph
 - Nodes within models are linked within a larger graph
 - All models coexist
 - Analogy to computational method of parallel tempering

```
Example in Bugs:
for (i in 1:n){
    y[i] ~ dnorm (y.hat[i], tau.y)
    y.rep[i] <- dnorm (y.hat[i], tau.y)
    . . .
```

- But y^{rep} should be included automatically
- Implicit graphical structure for model checking: $y \leftarrow \theta \rightarrow y^{rep}$

- Ideal of model checking or debugging in stan, Bugs, etc.:
 - On/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
- Design of data collection is integrated with graphical modeling

- Each node is itself a graphical model
- Common parameters in neighboring models are linked
- Computations in the network:
 - Inference within a model
 - Inference among models (model comparison, averaging, and expansion)
 - Model checking
 - Fake-data debugging
 - Model understanding (exploratory model analysis)

Generalized graphical models:

- ▶ All these quantities— θ, y, y^{rep} —exist together
- Model checking can be done systematically
- All is completely Bayesian—there is no "double use of data"!
- A theoretical and computational unification of different aspects of statistical practice