Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University

- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University

- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Andrew Gelman, Department of Statistics and Department of Political Science, Columbia University
- collaborators:
 - Joseph Bafumi, Dept. of Political Science, Columbia
 - David Park, Dept. of Political Science, Washington University
 - Noah Kaplan, Dept. of Political Science, Texas A&M
 - Gary King, Dept. of Political Science, Harvard
 - Jonathan Katz, Div. of Social Science, Caltech
 - Aaron Edlin, Dept. of Economics, UC Berkeley
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?

- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
 - What is the probability that your vote makes a difference?
 - When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
Polls and Presidential elections

- Why do Presidential election campaign polls vary so much when votes are so predictable?
 - How are pre-election polls conducted?
 - How are Presidential elections forecasted?
- Does the Electoral College favor one party or another?
- What is the probability that the election is tied?
- What is the probability that your vote makes a difference?
- When and why is it rational to vote?
First topic:

Why do Presidential election campaign polls vary so much when votes are so predictable?

- Presidential polls fluctuate wildly
- But the candidates’ vote shares can be accurately forecast (within a few percentage points) months before the election
- If voters are so fickle, how can they be predicted?
First topic:
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Presidential polls fluctuate wildly
 - But the candidates’ vote shares can be accurately forecast (within a few percentage points) months before the election
 - If voters are so fickle, how can they be predicted?
First topic:
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Presidential polls fluctuate wildly
- But the candidates’ vote shares can be accurately forecast (within a few percentage points) months before the election
- If voters are so fickle, how can they be predicted?
First topic:
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Presidential polls fluctuate wildly
- But the candidates’ vote shares can be accurately forecast (within a few percentage points) months before the election
- If voters are so fickle, how can they be predicted?
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, ...
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, ...

How are pre-election polls conducted?
- How are Presidential elections forecasted?
- Why do Presidential election campaign polls vary so much ...
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, ...
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, ...
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, . . .
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, . . .
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, . . .
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, . . .
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, . . .
- Weighting to adjust to Census
 - Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, . . .
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, ...
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, ...
Pre-election polls

- ABC, CBS, Gallup, etc.
- Mostly random-digit-dial surveys (but other countries use face-to-face interviews)
- Response rates below 30%
- Over/undersample by sex, ethnicity, age, education, ...
- Weighting to adjust to Census
- Can estimate state-level opinion from national polls using Bayesian hierarchical modeling
- Also state polls, academic polls, internet polls, ...
Why do we trust the polls?

- A poll is a snapshot, not a forecast
- Polls taken just before the election are usually pretty accurate
Why do we trust the polls?

- A poll is a snapshot, not a forecast
- Polls taken just before the election are usually pretty accurate
Republican share of two-party preference in pre-election polls

1992

1988

1984

1980

1976

1972

1968

1964

1960

Andrew Gelman
Polls and Presidential Elections
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Presidential election forecasting

- 4 years ahead, 2 years ahead, 1 year, 4 months, 2 months, 2 weeks, ... election night
- 2 months before election: candidates have been chosen, final campaign still to go
- Predict election outcome using polls, national economy, incumbency, candidates’ ideologies, state economic and political trends, home states, home regions
- Fit model using elections since 1948, use to predict current election
- Errors at state, regional, national levels
- Can also use this model on election night (Bayesian inference, combine with exit poll and vote data)
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
 - (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Forecast for 2004

- National forecast from Wlezien and Erikson based on polls and economic indicators: 51.7% (±2.5%) for Bush
- Take relative positions of states from 2000, correct for home-state effects
- (Better state-level forecasting is possible)
- Add forecasting errors at state, regional, and national levels
- Forecast for each state and entire U.S.
 - 66% chance Bush wins Florida
 - 75% chance Bush wins majority of U.S. popular vote
 - U.S. electoral vote: 320 for Bush (probably between 280 and 360), 80% chance Bush wins election
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow…”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate
- Undecided voters?
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow…”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate

- Undecided voters?
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow…”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate

- Undecided voters?
 - No trends during the campaign
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow...”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate

- Undecided voters?
 - No trends during the campaign
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow...”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate

- Undecided voters?
 - No trends during the campaign
Why do Presidential election campaign polls vary so much when votes are so predictable?

- Question wording?
 - Some surveys ask “If the election were held tomorrow…”
 - Some surveys ask “Which candidate will you definitely vote for?”
 - Different nonresponse rates but no effect on % support for each candidate

- Undecided voters?
 - No trends during the campaign
Uniform partisan swing

- Who’s doing the fluctuating?
 - All groups move together
 - Even during each Democratic and Republican conventions, all groups move in the same direction ("uniform swing")
 - Consider a voter polled before the Republican convention:
Uniform partisan swing

- Who’s doing the fluctuating?
- All groups move together
 - Even during each Democratic and Republican conventions, all groups move in the same direction (“uniform swing”)
 - Consider a voter polled before the Republican convention:
 - “Now I plan to vote for Kerry, but in a week I plan to switch to Bush.”
 - Voters do not (on average) discount for expected future events!
Uniform partisan swing

- Who’s doing the fluctuating?
- All groups move together
- Even during each Democratic and Republican conventions, all groups move in the same direction ("uniform swing")
- Consider a voter polled before the Republican convention:
 - “Now I plan to vote for Kerry, but in a week I plan to switch to Bush.”
 - Voters do not (on average) discount for expected future events!
Uniform partisan swing

- Who’s doing the fluctuating?
- All groups move together
- Even during each Democratic and Republican conventions, all groups move in the same direction (“uniform swing”)
- Consider a voter polled before the Republican convention:
 - “Now I plan to vote for Kerry, but in a week I plan to switch to Bush.”
 - Voters do not (on average) discount for expected future events!
Uniform partisan swing

- Who’s doing the fluctuating?
- All groups move together
- Even during each Democratic and Republican conventions, all groups move in the same direction (“uniform swing”)
- Consider a voter polled before the Republican convention:
 - “Now I plan to vote for Kerry, but in a week I plan to switch to Bush.”
 - Voters do not (on average) discount for expected future events!
Uniform partisan swing

- Who’s doing the fluctuating?
- All groups move together
- Even during each Democratic and Republican conventions, all groups move in the same direction (“uniform swing”)
- Consider a voter polled before the Republican convention:
 - “Now I plan to vote for Kerry, but in a week I plan to switch to Bush.”
 - Voters do not (on average) discount for expected future events!
Pre-election polls and forecasting
Partisan bias in the electoral college?
Probability the election is tied
When and why is it rational to vote?

Presidential Support by Group

Party

Ideology

Race

Region

Sex

Income

Andrew Gelman

Polls and Presidential Elections
Changes in Presidential campaign polls during Democratic and Republican conventions, 1964-1992

(conventions in 1988 circled)
You can predict a voter’s preference given “demographics”: sex, ethnicity, age, education, political ideology, party identification.

This prediction improves as the campaign goes on:
- Fit model to a series of polls before the 2000 election
- The coefficients for the predictors increase
- The residual error of the model decreases
Moving toward a predictable outcome

- You can predict a voter’s preference given “demographics”: sex, ethnicity, age, education, political ideology, party identification
- This prediction improves as the campaign goes on
 - Fit model to a series of polls before the 2000 election
 - The coefficients for the predictors increase
 - The residual error of the model decreases
Moving toward a predictable outcome

- You can predict a voter’s preference given “demographics”: sex, ethnicity, age, education, political ideology, party identification
- This prediction improves as the campaign goes on
 - Fit model to a series of polls before the 2000 election
 - The coefficients for the predictors increase
 - The residual error of the model decreases
Moving toward a predictable outcome

- You can predict a voter’s preference given “demographics”: sex, ethnicity, age, education, political ideology, party identification
- This prediction improves as the campaign goes on
 - Fit model to a series of polls before the 2000 election
 - The coefficients for the predictors increase
 - The residual error of the model decreases
Moving toward a predictable outcome

- You can predict a voter’s preference given “demographics”: sex, ethnicity, age, education, political ideology, party identification
- This prediction improves as the campaign goes on
 - Fit model to a series of polls before the 2000 election
 - The coefficients for the predictors increase
 - The residual error of the model decreases
Increasing coefficients for fundamental predictors
Decreasing residual error of model of individual vote
Increasing predictive power for new data
The random-walk and mean-reversion models

- **Random-walk model**: voters are bounced around by campaign events, then the election comes

- **Mean-reversion model**: voters will mostly end up where predicted. It just takes them awhile to get there

- Mean-reversion model fits the data better, also explains why polls vary so much when elections are so predictable
The random-walk and mean-reversion models

- **Random-walk model**: voters are bounced around by campaign events, then the election comes
- **Mean-reversion model**: voters will mostly end up where predicted. It just takes them awhile to get there
- **Mean-reversion model** fits the data better, also explains why polls vary so much when elections are so predictable
The random-walk and mean-reversion models

- **Random-walk model**: voters are bounced around by campaign events, then the election comes
- **Mean-reversion model**: voters will mostly end up where predicted. It just takes them awhile to get there
- **Mean-reversion model** fits the data better, also explains why polls vary so much when elections are so predictable
Next topic:
Does the Electoral College favor one party or the other?

To find out, use state-by-state forecasts for each election year.
Forecasts are uncertain (probabilistic).
What is \(\Pr(\text{Democrats win in electoral college}) \), if they receive \(X\% \) of the popular vote?
Next topic:
Does the Electoral College favor one party or the other?

- To find out, use state-by-state forecasts for each election year
- Forecasts are uncertain (probabilistic)
- What is $\Pr(\text{Democrats win in electoral college})$, if they receive $X\%$ of the popular vote?
Next topic:
Does the Electoral College favor one party or the other?

- To find out, use state-by-state forecasts for each election year
- Forecasts are uncertain (probabilistic)
- What is $\Pr(\text{Democrats win in electoral college}),$ if they receive $X\%$ of the popular vote?
Percentage of the popular vote required for Democrats to have a given chance of winning the Electoral College.
Next topic:
What is the chance that the Electoral College will be tied?

- Use the state-by-state forecast for 2004
- Estimated probability is 0.05 (1 in 200)
- Combinatorics is not an issue

With a large number of states, the Central Limit Theorem takes over.
Next topic:

What is the chance that the Electoral College will be tied?

- Use the state-by-state forecast for 2004
- Estimated probability is 0.05 (1 in 200)
- Combinatorics is not an issue
 - #states is large
 - Central Limit Theorem takes over
Next topic:
What is the chance that the Electoral College will be tied?

- Use the state-by-state forecast for 2004
- Estimated probability is 0.05 (1 in 200)
- Combinatorics is not an issue
 - #states is large
 - Central Limit Theorem takes over
Next topic:
What is the chance that the Electoral College will be tied?

- Use the state-by-state forecast for 2004
- Estimated probability is 0.05 (1 in 200)
- Combinatorics is not an issue
 - #states is large
 - Central Limit Theorem takes over
Next topic:
What is the chance that the Electoral College will be tied?

- Use the state-by-state forecast for 2004
- Estimated probability is 0.05 (1 in 200)
- Combinatorics is not an issue
 - #states is large
 - Central Limit Theorem takes over
Next topic: What is the chance that your vote will be decisive?

- \(\Pr(\text{your state is tied}) \times \Pr(\text{your state's electoral votes are needed, given that your state is tied}) \)

- A state with \(N \) voters and \(E \) electoral votes
 - approx. \(\Pr(\text{your state is tied}) \propto 1/N \)
 - approx. \(\Pr(\text{your state's electoral votes are needed}) \propto E \)
 - approx. \(\Pr(\text{your vote is decisive}) \propto E/N \)

- Higher for small states and states closer to the national average
Next topic:
What is the chance that your vote will be decisive?

► Pr(your state is tied) \times Pr(your state’s electoral votes are needed, \textit{given} that your state is tied)

► A state with N voters and E electoral votes
 ► approx. $Pr(your \ state \ is \ tied) \propto 1/N$
 ► approx. $Pr(your \ state’s \ electoral \ votes \ are \ needed) \propto E$
 ► approx. $Pr(your \ vote \ is \ decisive) \propto E/N$

► Higher for small states and states closer to the national average
Next topic:
What is the chance that your vote will be decisive?

- \(\text{Pr(your state is tied)} \times \text{Pr(your state’s electoral votes are needed, given that your state is tied)} \)
- A state with \(N \) voters and \(E \) electoral votes
 - approx. \(\text{Pr(your state is tied)} \propto 1/N \)
 - approx. \(\text{Pr(your state’s electoral votes are needed)} \propto E \)
 - approx. \(\text{Pr(your vote is decisive)} \propto E/N \)
- Higher for small states and states closer to the national average
Next topic:
What is the chance that your vote will be decisive?

- \(\Pr(\text{your state is tied}) \times \Pr(\text{your state's electoral votes are needed, given that your state is tied}) \)
- A state with \(N \) voters and \(E \) electoral votes
 - \(\approx \Pr(\text{your state is tied}) \propto 1/N \)
 - \(\approx \Pr(\text{your state's electoral votes are needed}) \propto E \)
 - \(\approx \Pr(\text{your vote is decisive}) \propto E/N \)
- Higher for small states and states closer to the national average
Next topic:
What is the chance that your vote will be decisive?

- $\text{Pr(your state is tied)} \times \text{Pr(your state’s electoral votes are needed, given that your state is tied)}$
- A state with N voters and E electoral votes
 - approx. $\text{Pr(your state is tied)} \propto 1/N$
 - approx. $\text{Pr(your state’s electoral votes are needed)} \propto E$
 - approx. $\text{Pr(your vote is decisive)} \propto E/N$
- Higher for small states and states closer to the national average
Next topic:
What is the chance that your vote will be decisive?

- $\Pr(\text{your state is tied}) \times \Pr(\text{your state's electoral votes are needed, given that your state is tied})$
- A state with N voters and E electoral votes
 - approx. $\Pr(\text{your state is tied}) \propto 1/N$
 - approx. $\Pr(\text{your state's electoral votes are needed}) \propto E$
 - approx. $\Pr(\text{your vote is decisive}) \propto E/N$
- Higher for small states and states closer to the national average
What is the chance that your vote will be decisive?

![Graph showing the probability of an individual voter being decisive vs. the number of electoral votes for the state.](graph.png)
A mathematical digression

- We said \(\Pr(\text{your state is tied}) \propto 1/N \)
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, sd is 0.5/\(\sqrt{N} \)
 - \(\Pr(\text{tie}) \propto 1/\sqrt{N} \)
- Binomial model implies that elections in large states are much closer than in small states
- Binomial model does not fit actual election data!
A mathematical digression

- We said $\Pr(\text{your state is tied}) \propto 1/N$
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, sd is $0.5/\sqrt{N}$
 - $\Pr(\text{tie}) \propto 1/\sqrt{N}$
- Binomial model implies that elections in large states are *much* closer than in small states
- Binomial model does not fit actual election data!
A mathematical digression

- We said \(\Pr(\text{your state is tied}) \propto 1/N \)
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, sd is \(0.5/\sqrt{N} \)
 - \(\Pr(\text{tie}) \propto 1/\sqrt{N} \)
- Binomial model implies that elections in large states are *much* closer than in small states
- Binomial model does *not* fit actual election data!
A mathematical digression

- We said $\Pr(\text{your state is tied}) \propto 1/N$
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, sd is $0.5/\sqrt{N}$
 - $\Pr(\text{tie}) \propto 1/\sqrt{N}$
- Binomial model implies that elections in large states are much closer than in small states
- Binomial model does not fit actual election data!
A mathematical digression

- We said \(\text{Pr(your state is tied)} \propto 1/N \)
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, sd is \(0.5/\sqrt{N} \)
 - \(\text{Pr(tie)} \propto 1/\sqrt{N} \)
- Binomial model implies that elections in large states are much closer than in small states
- Binomial model does not fit actual election data!
A mathematical digression

- We said $\Pr(\text{your state is tied}) \propto 1/N$
- Simple “binomial model” of random votes
 - Mean proportion of votes for Democrat is 0.5, $\text{sd is } 0.5/\sqrt{N}$
 - $\Pr(\text{tie}) \propto 1/\sqrt{N}$
- Binomial model implies that elections in large states are *much* closer than in small states
- Binomial model does *not* fit actual election data!
Historical Pres. elections by state: vote margins vs. N
Other electoral systems: vote margins vs. N

- U.S. state house elections
- U.S. state senate elections
- U.S. Congressional elections
- U.S. Senate elections
- U.S. statewide offices
- European national elections
Next topic:
When and why is it rational to vote?

- The probability of your vote being decisive is about 1 in 10 million, so why vote?
- Utility calculation: $\Delta U = pB - c$
 - ΔU = utility from voting
 - p = probability that your vote changes the election outcome
 - B = your benefit from your preferred candidate winning
 - c = net cost of voting
- Suppose $p = 10^{-7}$ and $B = $1000. Then $pB = 1/100$ of a cent!
Next topic:
When and why is it rational to vote?

- The probability of your vote being decisive is about 1 in 10 million, so why vote?
- Utility calculation: $\Delta U = pB - c$
 - $\Delta U =$ utility from voting
 - $p =$ probability that your vote changes the election outcome
 - $B =$ your benefit from your preferred candidate winning
 - $c =$ net cost of voting
- Suppose $p = 10^{-7}$ and $B =$ 1000. Then $pB =$ 1/100 of a cent!
Next topic: When and why is it rational to vote?

- The probability of your vote being decisive is about 1 in 10 million, so why vote?
- Utility calculation: $\Delta U = pB - c$
 - $\Delta U =$ utility from voting
 - $p =$ probability that your vote changes the election outcome
 - $B =$ your benefit from your preferred candidate winning
 - $c =$ net cost of voting
- Suppose $p = 10^{-7}$ and $B =$ $1000. Then $pB = 1/100$ of a cent!
Next topic:
When and why is it rational to vote?

- The probability of your vote being decisive is about 1 in 10 million, so why vote?
- Utility calculation: $\Delta U = pB - c$
 - $\Delta U =$ utility from voting
 - $p =$ probability that your vote changes the election outcome
 - $B =$ your benefit from your preferred candidate winning
 - $c =$ net cost of voting
- Suppose $p = 10^{-7}$ and $B = $1000. Then $pB = 1/100$ of a cent!
Next topic: When and why is it rational to vote?

The probability of your vote being decisive is about 1 in 10 million, so why vote?

Utility calculation: $\Delta U = pB - c$

- $\Delta U =$ utility from voting
- $p =$ probability that your vote changes the election outcome
- $B =$ your benefit from your preferred candidate winning
- $c =$ net cost of voting

Suppose $p = 10^{-7}$ and $B = $1000. Then $pB = 1/100$ of a cent!
Next topic:
When and why is it rational to vote?

The probability of your vote being decisive is about 1 in 10 million, so why vote?

Utility calculation: $\Delta U = pB - c$

- $\Delta U = \text{utility from voting}$
- $p = \text{probability that your vote changes the election outcome}$
- $B = \text{your benefit from your preferred candidate winning}$
- $c = \text{net cost of voting}$

Suppose $p = 10^{-7}$ and $B = $1000. Then $pB = 1/100$ of a cent!
Next topic:
When and why is it rational to vote?

- The probability of your vote being decisive is about 1 in 10 million, so why vote?
- Utility calculation: $\Delta U = pB - c$
 - $\Delta U =$ utility from voting
 - $p =$ probability that your vote changes the election outcome
 - $B =$ your benefit from your preferred candidate winning
 - $c =$ net cost of voting
- Suppose $p = 10^{-7}$ and $B =$ $1000. Then $pB = 1/100$ of a cent!
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only 1!
- Maybe the net “cost” c is negative
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only $1!$
- Maybe the net “cost” c is negative
 - Voting is fun!
 - Or a “ civic duty”: you feel bad if you didn’t vote now then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only 1!
- Maybe the net “cost” c is negative
 - Voting is fun!
 - Or a “civic duty”: you feel bad if you didn’t vote
 - But then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only 1!
- Maybe the net “cost” c is negative
 - Voting is fun!
 - Or a “civic duty”: you feel bad if you didn’t vote
 - But then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only 1
- Maybe the net "cost" c is negative
 - Voting is fun!
 - Or a "civic duty": you feel bad if you didn't vote
 - But then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: typical explanations

- (Utility calculation: $\Delta U = pB - c$)
- Maybe p is overestimated
 - But even if $p = 10^{-3}$, the product pB is only 1!
- Maybe the net “cost” c is negative
 - Voting is fun!
 - Or a “civic duty”: you feel bad if you didn’t vote
 - But then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: typical explanations

- (Utility calculation: \(\Delta U = pB - c \))
- Maybe \(p \) is overestimated
 - But even if \(p = 10^{-3} \), the product \(pB \) is only $1!
- Maybe the net “cost” \(c \) is negative
 - Voting is fun!
 - Or a “civic duty”: you feel bad if you didn’t vote
 - But then you have no motivation to increase the chance that your candidate will win!
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{\text{self}} + \alpha NB_{\text{soc}}$
 - B_{self}: individual benefit of your candidate winning
 - B_{soc}: your view of the average social benefit of your candidate winning
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish
- Now B is proportional to N, and so it can be rational to act so as to improve your candidate's chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{self} + \alpha NB_{soc}$
 - $B_{self} = \text{individual benefit of your candidate winning}$
 - $B_{soc} = \text{your view of the average social benefit of your candidate winning}$
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish
- Now B is proportional to N, and so it can be rational to act so as to improve your candidate’s chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{\text{self}} + \alpha NB_{\text{soc}}$
 - $B_{\text{self}} = \text{individual benefit of your candidate winning}$
 - $B_{\text{soc}} = \text{your view of the average social benefit of your candidate winning}$
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish
- Now B is proportional to N, and so it can be rational to act so as to improve your candidate’s chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{self} + \alpha NB_{soc}$
 - $B_{self} =$ individual benefit of your candidate winning
 - $B_{soc} =$ your view of the average social benefit of your candidate winning
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish

- Now B is proportional to N, and so it can be rational to act so as to improve your candidate’s chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{\text{self}} + \alpha NB_{\text{soc}}$
 - $B_{\text{self}} = \text{individual benefit of your candidate winning}$
 - $B_{\text{soc}} = \text{your view of the average social benefit of your candidate winning}$
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish

- Now B is proportional to N, and so it can be rational to act so as to improve your candidate's chance of winning

- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{self} + \alpha NB_{soc}$
 - $B_{self} =$ individual benefit of your candidate winning
 - $B_{soc} =$ your view of the average social benefit of your candidate winning
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish

- Now B is proportional to N, and so it can be rational to act so as to improve your candidate’s chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Rationality and voting: our explanation

- (Utility calculation: $\Delta U = pB - c$)
- $B = B_{self} + \alpha NB_{soc}$
 - B_{self} = individual benefit of your candidate winning
 - B_{soc} = your view of the average social benefit of your candidate winning
 - $\alpha < 1$ implying that you care less about other people than yourself
 - $\alpha > 0$ implying that you are not completely selfish
- Now B is proportional to N, and so it can be rational to act so as to improve your candidate’s chance of winning
- Feedback keeps voter turnout stable: if turnout declines, then p increases, and it becomes more compelling to vote
Short-term political tactics aren’t so important—even if the polls jump around

Elections are predictable given fundamental variables and campaign resources

The Electoral College does not favor either party

The Electoral College favors voters in small states (so does the U.S. Senate!)

National opinion moves in synch

Pr(your vote is decisive) \approx 10^{-7}

But voting is rational if you think your guy can make the country a better place!

The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)
- National opinion moves in synch
- Pr(your vote is decisive) $\approx 10^{-7}$
- But voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)
- National opinion moves in synch
- $\Pr(\text{your vote is decisive}) \approx 10^{-7}$
- But voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)
- National opinion moves in synch
- \(\Pr(\text{your vote is decisive}) \approx 10^{-7} \)
- *But* voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic
Summary

▶ Short-term political tactics aren’t so important—even if the polls jump around
▶ Elections are predictable given fundamental variables and campaign resources
▶ The Electoral College does not favor either party
▶ The Electoral College favors voters in small states (so does the U.S. Senate!)
▶ National opinion moves in synch
 ▶ Pr(your vote is decisive) \(\approx 10^{-7} \)
 ▶ But voting is rational if you think your guy can make the country a better place!
▶ The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)

- National opinion moves in synch
- $\Pr(\text{your vote is decisive}) \approx 10^{-7}$

- *But* voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)
- National opinion moves in synch
- \(\Pr(\text{your vote is decisive}) \approx 10^{-7} \)
- *But* voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic
Summary

- Short-term political tactics aren’t so important—even if the polls jump around
- Elections are predictable given fundamental variables and campaign resources
- The Electoral College does not favor either party
- The Electoral College favors voters in small states (so does the U.S. Senate!)
- National opinion moves in synch
- $\Pr(\text{your vote is decisive}) \approx 10^{-7}$
- *But* voting is rational if you think your guy can make the country a better place!
- The rational reason for voting is altruistic