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Bayes in R

I I’m a software user

I This is my chance to reach the software developers!

I I want the best of R, BUGS, and graphical models
I Collaborators:

I Jouni Kerman, Dept of Statistics, Columbia University
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Graphical models and Bayesian data analysis

Computing like a Bayesian
Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

BUGS and features
BUGS is great!
But BUGS could be even better!

Conclusion
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Graphical models and Bayesian data analysis

I My view of graphical models:
I Bayesian data analysis
I Structured model (not simply p(θ), p(y |θ), p(θ|y))
I I think of hierarchical (multilevel) models
I But also time series, spatial, networks, etc.

I BDA: goal is model building and checking, not just
“inference”

I Connection between graphical modeling and Bayesian model
checking and debugging
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Options for Bayesian data analysis in R

I Why R?
I Flexibility for data analysis and simulation
I Open-source

I Programming it yourself (in R or Fortran/C)

I Setting it up in a Gibbs/Metropolis environment (Kerman’s
UMACS)

I Specialized programs for specific models (e.g., Martin and
Quinn’s MCMCpack)

I BUGS (as called from R)
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Fully Bayesian computing

I All unknowns are random variables

I Potential randomness is implicit in all “random variable”
objects

I Example: regression y = Xβ + ε, predictions ỹ for new data X̃
I β is a random vector of length k (uncertainty from regression

estimation)
I ỹ is a random vector of length n

I Goal: direct manipulation of random vectors and arrays
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Data y , fit to a normal distribution

> hist (y)
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20 posterior predictive replications y rep

> hist (y.rep)
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

The test statistic, T (y) = minn
i=1 yi

> rv.hist (T(y), T(y.rep))
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Another example of a posterior predictive check

> plot (y, type="l")
> lines (y.rep)
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Operations with random variables

I Summaries: means, quantiles, etc.

I Plots

I Predictive checking

I No awkward syntax; e.g., we want to say beta[1], not
beta[,1]

I Some open questions (e.g., how to make plots that show
posterior uncertainty)

I More in Jouni Kerman’s talk Thursday morning
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Checking graphical models through predictive replications

I Quick summary of posterior predictive checking
I Data y , inference from p(θ|y)
I Predictive replications from p(y rep|θ)
I Compare y to y rep using (graphical) test variables
I Graphical structure: y−−θ−−y rep

I More general formulation
I Data y , inference from p(θ|X , y)
I Predictive replications from p(y rep|X , θ)

I Connection to graphical models!
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Predictive checking and graphical models

I A posterior predictive check requires:
I Set of conditioning variables θ
I Set of fixed design variables X (e.g., sample size)
I Test variable T (y) (more generally, T (X , y , θ))

I Simulating posterior predictive replications is a fundamental
operation in graphical models

I Requires a new node, y rep whose distribution is implied by the
existing model
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Examples of posterior predictive checking
Operations of fully Bayesian computing
Model checking and predictive replication

Fake-data debugging

I Models can be debugged by simulating fake data:
I Sample θtrue from the prior distribution p(θ)
I Sample y from the model p(y |θ)
I Perform Bayesian inference, simulations from p(θ|y)
I Check calibration of posterior means, predictive intervals, etc.

compared to θtrue

I Fake-data simulation is a fundamental operation in graphical
models

I θtrue is a new node
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parameters
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BUGS is great!
But BUGS could be even better!

Great things about BUGS

I It really works! I use it in my own applied research

I Easy to use and to teach, intuitive syntax

I Free

I Can be called directly from R
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I Efficiently-programmed models can get really long
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BUGS is great!
But BUGS could be even better!

Potential improvements to BUGS

I Functions or macros
I Instead of:

for (i in 1:n){
y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- a[county[i]] + b[county[i]]*x[i]
e.y[i] <- y[i] - y.hat[i]

}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 1000)

I We want something like:
y ~ norm (a[county] + b[county]*x, sigma.y)

I Lots more examples
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More potential improvements to BUGS

I Automatic convergence monitoring (run until the sequences
have mixed)

I Model building, using simulations from previous simpler
models as starting points

I Correlation modeling (e.g., Daniels/Kass,
Barnard/Meng/McCulloch)

I Automatic data subsetting

I Going beyond the “production run” mentality
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Graphical models for Bayesian data analysis

I Direct computation and graphing of “random variable” objects

I Work with posterior simulations, not means and medians
I Generalization to model checking and fake-data debugging

I Should be easy to do
I Generalizes graphical model structure

I Using graphical models as a structure for building up from
simple models

I Open source to allow modules for Gibbs and Metropolis
updating
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