Toward an environment for Bayesian data analysis in R

Andrew Gelman

8 August 2004
Bayes in R

- I’m a software user
- This is my chance to reach the software developers!
- I want the best of R, BUGS, and graphical models
- Collaborators:
 - Jouni Kerman, Dept of Statistics, Columbia University
 - (implicitly) the developers of Bugs and R
Bayes in R

- I’m a software *user*
- This is my chance to reach the software *developers*!
- I want the best of R, BUGS, and graphical models
- Collaborators:
 - Jouni Kerman, Dept of Statistics, Columbia University
 - (implicitly) the developers of Bugs and R
Bayes in R

- I’m a software user
- This is my chance to reach the software developers!
- I want the best of R, BUGS, and graphical models
- Collaborators:
 - Jouni Kerman, Dept of Statistics, Columbia University
 - (implicitly) the developers of Bugs and R
Bayes in R

▶ I’m a software *user*
▶ This is my chance to reach the software *developers*!
▶ I want the best of R, BUGS, and graphical models
▶ Collaborators:
 ▶ Jouni Kerman, Dept of Statistics, Columbia University
 ▶ (implicitly) the developers of Bugs and R
Graphical models and Bayesian data analysis

Computing like a Bayesian
- Examples of posterior predictive checking
- Operations of fully Bayesian computing
- Model checking and predictive replication

BUGS and features
- BUGS is great!
- But BUGS could be even better!

Conclusion
Graphical models and Bayesian data analysis

- My view of graphical models:
 - Bayesian data analysis
 - Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 - I think of hierarchical (multilevel) models
 - But also time series, spatial, networks, etc.

- BDA: goal is model building and checking, not just "inference"

- Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

- My view of graphical models:
 - Bayesian data analysis
 - Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 - I think of hierarchical (multilevel) models
 - But also time series, spatial, networks, etc.

- BDA: goal is model building and checking, not just "inference"
- Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

- My view of graphical models:
 - Bayesian data analysis
 - Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 - I think of hierarchical (multilevel) models
 - But also time series, spatial, networks, etc.
 - BDA: goal is model building and checking, not just “inference”
 - Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

► My view of graphical models:
 ▶ Bayesian data analysis
 ▶ Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 ▶ I think of hierarchical (multilevel) models
 ▶ But also time series, spatial, networks, etc.

► BDA: goal is model building and checking, not just “inference”

► Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

My view of graphical models:
- Bayesian data analysis
- Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
- I think of hierarchical (multilevel) models
- But also time series, spatial, networks, etc.

BDA: goal is model building and checking, not just “inference”
Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

- My view of graphical models:
 - Bayesian data analysis
 - Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 - I think of hierarchical (multilevel) models
 - But also time series, spatial, networks, etc.

- BDA: goal is model building and checking, not just “inference”

- Connection between graphical modeling and Bayesian model checking and debugging
Graphical models and Bayesian data analysis

- My view of graphical models:
 - Bayesian data analysis
 - Structured model (not simply $p(\theta), p(y|\theta), p(\theta|y)$)
 - I think of hierarchical (multilevel) models
 - But also time series, spatial, networks, etc.

- BDA: goal is model building and checking, not just “inference”

- Connection between graphical modeling and Bayesian model checking and debugging
Options for Bayesian data analysis in R

Why R?

- Flexibility for data analysis and simulation
- Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman's UMACS)
- Specialized programs for specific models (e.g., Martin and Quinn's MCMCpack)
- BUGS (as called from R)
Options for Bayesian data analysis in R

- Why R?
 - Flexibility for data analysis and simulation
 - Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
- Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
- BUGS (as called from R)
Options for Bayesian data analysis in R

- Why R?
 - Flexibility for data analysis and simulation
 - Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
- Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
- BUGS (as called from R)
Options for Bayesian data analysis in R

- **Why R?**
 - Flexibility for data analysis and simulation
 - Open-source

- **Programming it yourself (in R or Fortran/C)**
 - Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
 - Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
 - BUGS (as called from R)
Options for Bayesian data analysis in R

- Why R?
 - Flexibility for data analysis and simulation
 - Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
 - Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
 - BUGS (as called from R)
Options for Bayesian data analysis in R

- Why R?
 - Flexibility for data analysis and simulation
 - Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
- Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
- BUGS (as called from R)
Options for Bayesian data analysis in R

- Why R?
 - Flexibility for data analysis and simulation
 - Open-source
- Programming it yourself (in R or Fortran/C)
- Setting it up in a Gibbs/Metropolis environment (Kerman’s UMACS)
- Specialized programs for specific models (e.g., Martin and Quinn’s MCMCpack)
- BUGS (as called from R)
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Fully Bayesian computing

- All unknowns are random variables
- Potential randomness is implicit in all “random variable” objects
- Example: regression $y = X\beta + \epsilon$, predictions \tilde{y} for new data \tilde{X}
 - β is a random vector of length k (uncertainty from regression estimation)
 - \tilde{y} is a random vector of length n
- Goal: direct manipulation of random vectors and arrays
Data y, fit to a normal distribution

```r
> hist(y)
```

![Histogram of data](image)
20 posterior predictive replications y^{rep}

> hist (y.rep)
The test statistic, \(T(y) = \min_{i=1}^n y_i \)

\[
> \text{rv.hist}(T(y), T(y\text{.rep}))
\]
Another example of a posterior predictive check

```r
> plot (y, type="l")
> lines (y.rep)
```

![Graph showing data and replicated data](image-url)
Operations with random variables

- Summaries: means, quantiles, etc.
- Plots
- Predictive checking
- No awkward syntax; e.g., we want to say `beta[1]`, not `beta[,1]`
- Some open questions (e.g., how to make plots that show posterior uncertainty)
- More in Jouni Kerman's talk Thursday morning
Operations with random variables

- Summaries: means, quantiles, etc.
- Plots
 - Predictive checking
 - No awkward syntax; e.g., we want to say `beta[1]`, not `beta[,1]`
 - Some open questions (e.g., how to make plots that show posterior uncertainty)
- More in Jouni Kerman's talk Thursday morning
Operations with random variables

- Summaries: means, quantiles, etc.
- Plots
- Predictive checking
 - No awkward syntax; e.g., we want to say beta[1], not beta[,1]
 - Some open questions (e.g., how to make plots that show posterior uncertainty)
- More in Jouni Kerman’s talk Thursday morning
Operations with random variables

▶ Summaries: means, quantiles, etc.
▶ Plots
▶ Predictive checking
▶ No awkward syntax; e.g., we want to say beta[1], not beta[,1]
▶ Some open questions (e.g., how to make plots that show posterior uncertainty)
▶ More in Jouni Kerman’s talk Thursday morning
Operations with random variables

- Summaries: means, quantiles, etc.
- Plots
- Predictive checking
- No awkward syntax; e.g., we want to say `beta[1]`, not `beta[,1]`
- Some open questions (e.g., how to make plots that show posterior uncertainty)
- More in Jouni Kerman’s talk Thursday morning
Operations with random variables

- Summaries: means, quantiles, etc.
- Plots
- Predictive checking
- No awkward syntax; e.g., we want to say `beta[1]`, not `beta[,1]`
- Some open questions (e.g., how to make plots that show posterior uncertainty)
- More in Jouni Kerman’s talk Thursday morning
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \rightarrow \theta \rightarrow y^{\text{rep}}$
- More general formulation
- Connection to graphical models!
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data \(y \), inference from \(p(\theta | y) \)
 - Predictive replications from \(p(y^{\text{rep}} | \theta) \)
 - Compare \(y \) to \(y^{\text{rep}} \) using (graphical) test variables
 - Graphical structure: \(y \rightarrow \theta \rightarrow y^{\text{rep}} \)
- More general formulation
- Connection to graphical models!
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta | y)$
 - Predictive replications from $p(y^{\text{rep}} | \theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \rightarrow \theta \rightarrow y^{\text{rep}}$

- More general formulation
 - Data y, inference from $p(\theta | X, y)$
 - Predictive replications from $p(y^{\text{rep}} | X, \theta)$

- Connection to graphical models
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta | y)$
 - Predictive replications from $p(y^{\text{rep}} | \theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \rightarrow \theta \rightarrow y^{\text{rep}}$

- More general formulation
 - Data y, inference from $p(\theta | X, y)$
 - Predictive replications from $p(y^{\text{rep}} | X, \theta)$

- Connection to graphical models!
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta | y)$
 - Predictive replications from $p(y^{\text{rep}} | \theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \rightarrow \theta \rightarrow y^{\text{rep}}$

- More general formulation
 - Data y, inference from $p(\theta | X, y)$
 - Predictive replications from $p(y^{\text{rep}} | X, \theta)$

- Connection to graphical models!
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta | y)$
 - Predictive replications from $p(y^{rep} | \theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \leftarrow \theta \rightarrow y^{rep}$

- More general formulation
 - Data y, inference from $p(\theta | X, y)$
 - Predictive replications from $p(y^{rep} | X, \theta)$

- Connection to graphical models!
Checking graphical models through predictive replications

- Quick summary of posterior predictive checking
 - Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{rep}|\theta)$
 - Compare y to y^{rep} using (graphical) test variables
 - Graphical structure: $y \leftarrow \theta \rightarrow y^{rep}$

- More general formulation
 - Data y, inference from $p(\theta|X, y)$
 - Predictive replications from $p(y^{rep}|X, \theta)$

- Connection to graphical models!
Checking graphical models through predictive replications

Quick summary of posterior predictive checking

- Data y, inference from $p(\theta|y)$
- Predictive replications from $p(y^{\text{rep}}|\theta)$
- Compare y to y^{rep} using (graphical) test variables
- Graphical structure: $y \rightarrow \theta \rightarrow y^{\text{rep}}$

More general formulation

- Data y, inference from $p(\theta|X, y)$
- Predictive replications from $p(y^{\text{rep}}|X, \theta)$

Connection to graphical models!
A posterior predictive check requires:

- Set of conditioning variables θ
- Set of fixed design variables X (e.g., sample size)
- Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

Simulating posterior predictive replications is a fundamental operation in graphical models.

Requires a new node, y^{rep} whose distribution is implied by the existing model.
Predictive checking and graphical models

A posterior predictive check requires:

- Set of conditioning variables θ
- Set of fixed design variables X (e.g., sample size)
- Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

Simulating posterior predictive replications is a fundamental operation in graphical models.

Requires a new node, y^{rep} whose distribution is implied by the existing model.
Predictive checking and graphical models

- A posterior predictive check requires:
 - Set of conditioning variables θ
 - Set of fixed design variables X (e.g., sample size)
 - Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

Simulating posterior predictive replications is a fundamental operation in graphical models.

- Requires a new node, y^{rep} whose distribution is implied by the existing model.
Predictive checking and graphical models

- A posterior predictive check requires:
 - Set of conditioning variables θ
 - Set of fixed design variables X (e.g., sample size)
 - Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

- Simulating posterior predictive replications is a fundamental operation in graphical models

- Requires a new node, y^{rep} whose distribution is implied by the existing model
A posterior predictive check requires:
- Set of conditioning variables θ
- Set of fixed design variables X (e.g., sample size)
- Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

Simulating posterior predictive replications is a fundamental operation in graphical models

Requires a new node, y^{rep} whose distribution is implied by the existing model
Predictive checking and graphical models

- A posterior predictive check requires:
 - Set of conditioning variables θ
 - Set of fixed design variables X (e.g., sample size)
 - Test variable $T(y)$ (more generally, $T(X, y, \theta)$)

- Simulating posterior predictive replications is a fundamental operation in graphical models

- Requires a new node, y^{rep} whose distribution is implied by the existing model
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models
- θ^{true} is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models

- θ^{true} is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models

- θ^{true} is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models

- θ^{true} is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample \(\theta^{\text{true}} \) from the prior distribution \(p(\theta) \)
 - Sample \(y \) from the model \(p(y|\theta) \)
 - Perform Bayesian inference, simulations from \(p(\theta|y) \)
 - Check calibration of posterior means, predictive intervals, etc. compared to \(\theta^{\text{true}} \)

- Fake-data simulation is a fundamental operation in graphical models

- \(\theta^{\text{true}} \) is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models

- θ^{true} is a new node
Fake-data debugging

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - Check calibration of posterior means, predictive intervals, etc. compared to θ^{true}

- Fake-data simulation is a fundamental operation in graphical models

- θ^{true} is a new node
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!
- Design of data collection is integrated with graphical modeling
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!
- Design of data collection is integrated with graphical modeling.
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!
- Design of data collection is integrated with graphical modeling
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!

- Design of data collection is integrated with graphical modeling
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!
- Design of data collection is integrated with graphical modeling
Predictive checking and fake-data debugging

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available
 - Run and look at the results!
- Design of data collection is integrated with graphical modeling
Great things about BUGS

- It really works! I use it in my own applied research
- Easy to use and to teach, intuitive syntax
- Free
- Can be called directly from R
Great things about BUGS

- It really works! I use it in my own applied research
- Easy to use and to teach, intuitive syntax
- Free
- Can be called directly from R
Great things about BUGS

- It really works! I use it in my own applied research
- Easy to use and to teach, intuitive syntax
- Free
 - Can be called directly from R
Great things about BUGS

▶ It really works! I use it in my own applied research
▶ Easy to use and to teach, intuitive syntax
▶ Free
▶ Can be called directly from R
Running Bugs from R

80% interval for each chain

R-hat

medians and 80% intervals
Problems with BUGS

- Often needs lots of “hand-holding” to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Problems with BUGS

- Often needs lots of “hand-holding” to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Problems with BUGS

- Often needs lots of "hand-holding" to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Problems with BUGS

- Often needs lots of “hand-holding” to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Problems with BUGS

- Often needs lots of “hand-holding” to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Problems with BUGS

- Often needs lots of “hand-holding” to work
- Efficiently-programmed models can get really long
- Can’t debug by running interactively (as in R)
- Need to use work-arounds when it crashes
- Not open-source; can’t go inside and improve/fix it
- You have to stop it to check convergence
Potential improvements to BUGS

- Functions or macros
 - Instead of:
    ```
    for (i in 1:n){
        y[i] ~ dnorm (y.hat[i], tau.y)
        y.hat[i] <- a[county[i]] + b[county[i]]*x[i]
        e.y[i] <- y[i] - y.hat[i]
    }
    tau.y <- pow(sigma.y, -2)
    sigma.y ~ dunif (0, 1000)
    ```
 - We want something like:
    ```
    y ~ norm (a[county] + b[county]*x, sigma.y)
    ```
 - Lots more examples
Potential improvements to BUGS

- Functions or macros
 - Instead of:
    ```
    for (i in 1:n){
        y[i] ~ dnorm (y.hat[i], tau.y)
        y.hat[i] <- a[county[i]] + b[county[i]]*x[i]
        e.y[i] <- y[i] - y.hat[i]
    }
    tau.y <- pow(sigma.y, -2)
    sigma.y ~ dunif (0, 1000)
    ```
 - We want something like:
    ```
    y ~ norm (a[county] + b[county]*x, sigma.y)
    ```
 - Lots more examples
Potential improvements to BUGS

▶ Functions or macros
 ▶ Instead of:
    ```
    for (i in 1:n){
      y[i] ~ dnorm (y.hat[i], tau.y)
      y.hat[i] <- a[county[i]] + b[county[i]]*x[i]
      e.y[i] <- y[i] - y.hat[i]
    }
    tau.y <- pow(sigma.y, -2)
    sigma.y ~ dunif (0, 1000)
    ▶ We want something like:
    y ~ norm (a[county] + b[county]*x, sigma.y)
    ▶ Lots more examples
Potential improvements to BUGS

- Functions or macros
  - Instead of:
    ```r
 for (i in 1:n){
 y[i] ~ dnorm (y.hat[i], tau.y)
 y.hat[i] <- a[county[i]] + b[county[i]]*x[i]
 e.y[i] <- y[i] - y.hat[i]
 }
 tau.y <- pow(sigma.y, -2)
 sigma.y ~ dunif (0, 1000)
    ```
  - We want something like:
    ```r
 y ~ norm (a[county] + b[county]*x, sigma.y)
    ```
  - Lots more examples
More potential improvements to BUGS

- Automatic convergence monitoring (run until the sequences have mixed)
- Model building, using simulations from previous simpler models as starting points
- Correlation modeling (e.g., Daniels/Kass, Barnard/Meng/McCulloch)
- Automatic data subsetting
- Going beyond the “production run” mentality
More potential improvements to BUGS

- Automatic convergence monitoring (run until the sequences have mixed)
- Model building, using simulations from previous simpler models as starting points
  - Correlation modeling (e.g., Daniels/Kass, Barnard/Meng/McCulloch)
- Automatic data subsetting
- Going beyond the “production run” mentality
More potential improvements to BUGS

- Automatic convergence monitoring (run until the sequences have mixed)
- Model building, using simulations from previous simpler models as starting points
- Correlation modeling (e.g., Daniels/Kass, Barnard/Meng/McCulloch)
- Automatic data subsetting
- Going beyond the “production run” mentality
More potential improvements to BUGS

- Automatic convergence monitoring (run until the sequences have mixed)
- Model building, using simulations from previous simpler models as starting points
- Correlation modeling (e.g., Daniels/Kass, Barnard/Meng/McCulloch)
- Automatic data subsetting

- Going beyond the “production run” mentality
More potential improvements to BUGS

- Automatic convergence monitoring (run until the sequences have mixed)
- Model building, using simulations from previous simpler models as starting points
- Correlation modeling (e.g., Daniels/Kass, Barnard/Meng/McCulloch)
- Automatic data subsetting

- Going beyond the “production run” mentality
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior *simulations*, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior *simulations*, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior simulations, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior *simulations*, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior simulations, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating

Andrew Gelman

Toward an environment for Bayesian data analysis in R
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior *simulations*, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
  - Open source to allow modules for Gibbs and Metropolis updating
Graphical models for Bayesian data analysis

- Direct computation and graphing of “random variable” objects
- Work with posterior simulations, not means and medians
- Generalization to model checking and fake-data debugging
  - Should be easy to do
  - Generalizes graphical model structure
- Using graphical models as a structure for building up from simple models
- Open source to allow modules for Gibbs and Metropolis updating