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Themes

� Popular view of Bayesian statistics
� Subjective probability
� Elicited prior distributions

� Bayesian data analysis as we do it
� Hierarchical modeling
� Many applications

� Conceptual framework
� Fit a probability model to data
� Check fit, ride the model as far as it will take you
� Improve/expand/extend model
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Overview

� Decision analysis for home radon
� Where did the prior dist come from?
� Quotes illustrating misconceptions of 
Bayesian inference

� State-level opinions from national polls 
(hierarchical modeling and validation)

� Serial dilution assay
(handling uncertainty in a nonlinear model)

� Simulation-based model checking
� Some open problems in BDA
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Decision analysis for home 
radon

� Radon gas

� Causes 15,000 lung cancers per year in U.S.

� Comes from underground; home exposure

� Radon webpage

� Click for recommended decision

� Bayesian inference

� Prior + data = posterior

� Where did the prior distribution come from?
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Prior distribution for your 
home’s radon level

� Example of Bayesian data analysis
� Radon model

� theta_i = log of radon level in house i in county j(i)
� linear regression model:

theta_i = a_j(i) + b_1*base_i + b_2*air_i + … + e_i
� linear regression model for the county levels a_j,

given geology and uranium level in the county, with county-
level errors

� Data model
� y_i = log of radon measurement in house I
� y_i = theta_i + Bias + error_i
� Bias depends on the measurement protocol
� error_i is not the same as e_i in radon model above 
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Radon data sources

� National radon survey
� Accurate unbiased data—but sparse

� 5000 homes in 125 counties

� State radon surveys
� Noisy biased data, but dense

� 80,000 homes in 3000 counties

� Other info
� House level (basement status, etc.)

� County level (geologic type, uranium level)
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Bayesian inference for home 
radon

� Set up and compute model
� 3000 + 19 + 50 parameters
� Inference using iterative simulation (Gibbs sampler)

� Inference for quantities of interest
� Uncertainty dist for any particular house

(use as prior dist in the webpage)
� County-level estimates and national averages
� Potential $7 billion savings

� Model checking
� Do inferences make sense?
� Compare replicated to actual data, cross-validation
� Dispersed model validation (“beta-testing”)
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Bayesian inference for home 
radon

� Allows estimation of over 3000 
parameters

� Summarizes uncertainties using 
probability

� Combines data sources

� Model is testable (falsifiable)
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Pro-Bayesian quotes

� Hox (2002):
“In classical statistics, the population parameter has 
only one specific value, only we happen not to know 
it.  In Bayesian statistics, we consider a probability 
distribution of possible values for the unknown 
population distribution.”

� Somebody’s webpage:
“To a true subjective Bayesian statistician, the prior 
distribution represents the degree of belief that the 
statistician or client has in the value of the unknown 
parameter . . . it is the responsibility of the 
statistician to elicit the true beliefs of the client.”
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Why these views of Bayesian 
statistics are wrong!

� Hox quote (distribution of parameter values)
� Our response:  parameter values are “fixed but 
unknown” in Bayesian inference also!

� Confusion between quantities of interest and 
inferential summaries

� Anonymous quote
� Our response:  the statistical model is an 
assumption to be held if useful

� Confusion between statistical analysis and 
decision making
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Anti-Bayesian quotes

� Efron (1986):
“Bayesian theory requires a great deal of 
thought about the given situation to apply 
sensibly.”

� Ehrenberg (1986):
“Bayesianism assumes:  (a) Either a weak or 
uniform prior, in which case why bother?, (b) 
Or a strong prior, in which case why collect 
new data?, (c) Or more realistically, 
something in between, in which case 
Bayesianism always seems to duck the issue.”
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Why these views of Bayesian 
statistics are wrong!

� Efron quote (difficulty of Bayes)

� Our response:  demonstration that Bayes solves 
many problems more easily that other methods

� Mistaken focus on the simplest problems

� Ehrenberg quote (arbitrariness of prior dist)

� Our response:  the “prior dist” represents the 
information provided by a group-level analysis

� One “prior dist” serves many analyses
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State-level opinions from 
national polls

� Goal:  state-level opinions
� State polls:  infrequent and low quality

� National polls:  N is too small for individual states

� Also must adjust for survey nonresponse

� Try solving a harder problem
� Estimate opinion in each of 3264 categories:

� 51 states

� 64 demographic categories (sex, ethnicity, age, education)

� Logistic regression model

� Sum over 64 categories within each state

� Validate using pre-election polls



14

State-level opinions from 
national polls

� Logistic regression model
� y_i = 1 if person i supports Bush, 0 otherwise
� logit (Pr(y_i=1)) = linear predictor given demographics and 

state of person i
� Hierarchical model for 64 demographic predictors and 51 state 

predictors (including region and previous Republican vote 
share in the state)

� State polls could be included also if we want

� Sum over 64 categories within each state
� “Post-stratification”
� In state s, the estimated proportion of Bush supporters is 

sum(j=1 to 64) N_j Pr(y=1 in category j) / sum(j=1 to 64) N_j
� Also simple to adjust for turnout of likely voters
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Compare to “no pooling” and 
“complete pooling”

� “No pooling”
� Separate estimate within each state

� Treat the survey as 49 state polls

� Expect “overfitting”:  too many parameters

� “Complete pooling”
� Include demographics only

� Give up on estimating 51 state parameters

� Competition
� Use pre-election polls and compare to election outcome

� Estimated Bush support in U.S.

� Estimates in individual states
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Election poll analysis and 
Bayesian inference

� Where was the “prior distribution”?

� In logistic regression model, 51 state 
effects, a_k

� a_k = b*presvote_k + c_region(k) + e_k

� Errors e_k have Normal (0, sigma^2) 
distribution; sigma estimated from data

� Where was the “subjectivity”?
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Election poll analysis:  
validation

No Complete

pooling pooling Bayes

Avg std errors of

state estimates 5.1% 0.9% 3.1%

Avg of actual absolute

state errors 5.1% 5.9% 3.2%
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Serial dilution assays
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Serial dilution assays
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Serial dilution assays:  motivation 
for Bayesian inference

� Classical approach:  read the estimate off the 
calibration curve

� Difficulties
� “above detection limit”:  curve is too flat

� “below detection limit”:  signal/noise ratio is too low

� For some samples, all the data are above or below 
detection limits!

� Goal:  downweight—but don’t discard—weak data 

� Maximum likelihood (weighted least squares)

� Bayes handles uncertainty in the parameters of 
the calibration curve
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Serial dilution:  validation
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Model checking

� Basic idea:
� Display observed data (always a good idea anyway)

� Simulate several replicated datasets from the 
estimated model

� Display the replicated datasets and compare to the 
observed data

� Comparison can be graphical or numerical

� Generalization of classical methods:
� Hypothesis testing

� Exploratory data analysis

� Crucial “safety valve” in Bayesian data analysis
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Model checking:  simple example

� A normal distribution is fit to the following 
data:
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20 replicated datasets under the 
model
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Comparison using a numerical 
test statistic
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Model checking:  another 
example

� Logistic regression model fit to data 
from psychology:  a 15 x 23 array of 
responses for each of 6 persons

� Next slide shows observed data (at left) 
and 7 replicated datasets (at right)
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Observed and replicated datasets
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Another example:  checking 
the fit of prior distributions

� Curves show priors for 2 sets of parameters; 
histograms show estimates for each set
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Improve the model, try again!

� Curves show new priors; histograms show 
new parameter estimates
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Summary

� Bayesian data analysis is about modeling

� Not an optimization problem; no “loss function”

� Make a (necessarily) false set of assumptions, 
then work them hard

� Complex models --> complex inferences --> lots 
of places to check model fit

� Prior distributions are usually not “subjective”
and do not represent “belief”

� Models are applied repeatedly (“beta-testing”)
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Some open problems in 
Bayesian data analysis

� Complex, highly structured models
� (polling example) interactions between states and 

demographic predictors, modeling changes over time

� Need reasonable classes of hierarchical models (with “just 
enough” structure)

� Computation
� Algorithms walk through high-dimensional parameter space

� Key idea:  link to computations of simpler models 
(“multiscale computation”, “simulated tempering”)

� Model checking
� Automatic graphical displays

� Estimation of out-of-sample predictive error
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