Coalitions, voting power, and political instability

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

25 Oct 2005

- Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- Both topics involve:

 Collaboration with Francis Tuerlinckx, Joe Bafumi, and Jonathan Katz

- Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability

- ► Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- ▶ Both topics involve:
 - Open problems in mathematics (probability theory, cellular automata)
 - Open problems in political science (connections to empirical data)
- Collaboration with Francis Tuerlinckx, Joe Batumi, and Jonathan Katz

- ► Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- Both topics involve:
 - Open problems in mathematics (probability theory, cellular automata)
 - Open problems in political science (connections to empirical data)
- Collaboration with Francis Tuerlinckx, Joe Bafumi, and Ionathan Katz

- Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- Both topics involve:
 - Open problems in mathematics (probability theory, cellular automata)
 - Open problems in political science (connections to empirical data)
- Collaboration with Francis Tuerlinckx, Joe Bafumi, and Jonathan Katz

- Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- Both topics involve:
 - Open problems in mathematics (probability theory, cellular automata)
 - Open problems in political science (connections to empirical data)
- Collaboration with Francis Tuerlinckx, Joe Bafumi, and Jonathan Katz

- Coalition-formation as a prisoner's dilemma: a potential theoretical explanation for political instability
- Mathematical and statistical models of voting power
- Both topics involve:
 - Open problems in mathematics (probability theory, cellular automata)
 - Open problems in political science (connections to empirical data)
- Collaboration with Francis Tuerlinckx, Joe Bafumi, and Jonathan Katz

Coalitions and political instability

First part of the talk

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - Single coalition of 3 unterm
 - - Tillee Cualiffolis of 3 Voters Earli
- Compute Pr (voter is decisive) for:

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - Single coalition of 3 voters
 - Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:

- Several possibilities:
 - No coalitions
 - ► Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - Single coalition of 3 voters
 - Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - ▶ Three coalitions of 3 voters each
- ► Compute Pr (voter is decisive) for:

◆□ → ◆□ → ◆ □ → ○ ● ・ ◆ ○ ○ ○

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - ▶ Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:
 - voters in a coalition
 - voters outside the coalition
 - average over all 9 voters

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - ▶ Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:
 - voters in a coalition
 - voters outside the coalition
 - average over all 9 voters

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - ▶ Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:
 - voters in a coalition
 - voters outside the coalition
 - average over all 9 voters

- Several possibilities:
 - No coalitions
 - Single coalition of 9 voters
 - ► Single coalition of 3 voters
 - ▶ Three coalitions of 3 voters each
- Compute Pr (voter is decisive) for:
 - voters in a coalition
 - voters outside the coalition
 - average over all 9 voters

- ▶ *Voting power*. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- ▶ Not the same:

- ▶ *Voting power*. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- ▶ Not the same:

- Voting power. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- Not the same:
 - Consider an election in which 90% of the voters vote for A and 10% vote for B:
 - Almost everyone is satisfied but voters have essentially no power.

- Voting power. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- ▶ Not the same:
 - Consider an election in which 90% of the voters vote for A and 10% vote for B:
 - Almost everyone is satisfied but voters have essentially no power.

- Voting power. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- ▶ Not the same:
 - Consider an election in which 90% of the voters vote for A and 10% vote for B:
 - Almost everyone is satisfied but voters have essentially no power.

- Voting power. Pr (voter is decisive)
- Satisfaction: Pr (your desired outcome wins)
- ▶ Not the same:
 - Consider an election in which 90% of the voters vote for A and 10% vote for B:
 - Almost everyone is satisfied but voters have essentially no power.

	Have other voters	
	Have other voters formed coalitions?	
Your option	No	Yes
Stay alone	Moderate	Very low
Join a coalition	High	Low

- Joining a coalition increases your voting power
- ▶ But if all voters form a coalition, they all have low voting power
- Suboptimal outcome if all players act rationally

	Have other voters	
	Have other voters formed coalitions?	
Your option	No	Yes
Stay alone	Moderate	Very low
Join a coalition	High	Low

- Joining a coalition increases your voting power
- But if all voters form a coalition, they all have low voting power
- Suboptimal outcome if all players act rationally

	Have other voters	
	Have other voters formed coalitions?	
Your option	No	Yes
Stay alone	Moderate	Very low
Join a coalition	High	Low

- Joining a coalition increases your voting power
- But if all voters form a coalition, they all have low voting power
- Suboptimal outcome if all players act rationally

	Have other voters	
	Have other voters formed coalitions?	
Your option	No	Yes
Stay alone	Moderate	Very low
Join a coalition	High	Low

- Joining a coalition increases your voting power
- But if all voters form a coalition, they all have low voting power
- Suboptimal outcome if all players act rationally

- ► Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 Assuming random voting, this probability is proportional tools 17.7n
- One voter is chosen at random and gets to decide the outcome

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 Assuming random voting, this probability is proportional to 1/√n
- One voter is chosen at random and gets to decide the outcome

- Consider 2 extremes
- Everyone votes
 - ► Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome
 - Pr (decisive vote) = 1 for that person and 0 for all others
 Avg Pr (decisive vote) = 1/n
- But both systems are "fair"!

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome
 - ▶ Pr (decisive vote) = 1 for that person and 0 for all others
 - Avg Pr (decisive vote) = 1/r
- ▶ But both systems are "fair"!

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome
 - ▶ Pr (decisive vote) = 1 for that person and 0 for all others
 - Avg Pr (decisive vote) = 1/n
- But both systems are "fair"!

Voting power is not a zero-sum game!

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome
 - ▶ Pr (decisive vote) = 1 for that person and 0 for all others
 - Avg Pr (decisive vote) = 1/n
- ▶ But both systems are "fair"!

Voting power is not a zero-sum game!

- Consider 2 extremes
- Everyone votes
 - Pr (decisive vote) = Pr (election is tied)
 - Assuming random voting, this probability is proportional to $1/\sqrt{n}$
- One voter is chosen at random and gets to decide the outcome
 - ▶ Pr (decisive vote) = 1 for that person and 0 for all others
 - Avg Pr (decisive vote) = 1/n
- But both systems are "fair"!

Voting power if you are in a coalition of size m in an electorate of size n

Voting power if you are in a coalition of size m in an electorate of size n (for larger populations)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes
 - n=100 (U.S. Senate): $m_{\rm opt}=14$ n=405 (House of Representatives): $m_{\rm opt}=30$ n=5.000.000 (Pennsylvania): $m_{\rm opt}=3.000$ n=100,000,000 (United States): $m_{\rm opt}=14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

Optimal coalition size m in an electorate of size n

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:

```
▶ n = 10 (faculty committee or student club): m_{\rm opt} = 4
```

n = 100,000,000 (United 5.00)

Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - ▶ n = 10 (faculty committee or student club): $m_{\rm opt} = 4$
 - ▶ n = 100 (U.S. Senate): $m_{\rm opt} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - n = 5,000,000 (Pennsylvania): $m_{\rm opt} = 3,000$
 - ightharpoonup n = 100,000,000 (United States): $m_{
 m opt} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - ▶ n = 10 (faculty committee or student club): $m_{opt} = 4$
 - ▶ n = 100 (U.S. Senate): $m_{\text{opt}} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - ▶ n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - n = 100,000,000 (United States): $m_{\rm opt} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - n = 10 (faculty committee or student club): $m_{\rm opt} = 4$
 - n = 100 (U.S. Senate): $m_{\rm opt} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - ► n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - n = 100,000,000 (United States): $m_{\rm opt} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - n=10 (faculty committee or student club): $m_{
 m opt}=4$
 - ▶ n = 100 (U.S. Senate): $m_{\text{opt}} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\rm opt} = 30$
 - ▶ n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - n = 100,000,000 (United States): $m_{\text{opt}} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - n = 10 (faculty committee or student club): $m_{\rm opt} = 4$
 - ▶ n = 100 (U.S. Senate): $m_{\text{opt}} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - n = 100,000,000 (United States): $m_{\text{opt}} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - ▶ n = 10 (faculty committee or student club): $m_{opt} = 4$
 - n = 100 (U.S. Senate): $m_{\rm opt} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - ▶ n = 100,000,000 (United States): $m_{opt} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

- ▶ Using combinatorics, derive that optimal m is approx $1.4\sqrt{n}$
- Optimal coalition sizes:
 - n = 10 (faculty committee or student club): $m_{\rm opt} = 4$
 - ▶ n = 100 (U.S. Senate): $m_{\text{opt}} = 14$
 - ▶ n = 435 (House of Representatives): $m_{\text{opt}} = 30$
 - n = 5,000,000 (Pennsylvania): $m_{\text{opt}} = 3,000$
 - n = 100,000,000 (United States): $m_{opt} = 14,000$
- Voting power in optimal coalition is approx $0.57n^{-1/4}$ (compared to $0.80n^{-1/2}$ if there is no coalition)

But ...

- ▶ Your voting power if there are no coalitions is $0.80n^{-1/2}$
- Your voting power if you're in an optimal coalition is $0.57n^{-1/4}$
- ▶ But ... your voting power if everyone divides into optimal coalitions is $0.65n^{-1/2}$
- Example of the prisoner's dilemma of coalition formation

But ...

- ▶ Your voting power if there are no coalitions is $0.80n^{-1/2}$
- Your voting power if you're in an optimal coalition is $0.57n^{-1/4}$
- ▶ But ... your voting power if everyone divides into optimal coalitions is 0.65n^{-1/2}
- ▶ Example of the prisoner's dilemma of coalition formation

But . . .

- ▶ Your voting power if there are no coalitions is $0.80n^{-1/2}$
- Your voting power if you're in an optimal coalition is $0.57n^{-1/4}$
- ▶ But ... your voting power if *everyone* divides into optimal coalitions is $0.65n^{-1/2}$
- ► Example of the prisoner's dilemma of coalition formation

But ...

- ▶ Your voting power if there are no coalitions is $0.80n^{-1/2}$
- Your voting power if you're in an optimal coalition is $0.57n^{-1/4}$
- ▶ But ... your voting power if *everyone* divides into optimal coalitions is $0.65n^{-1/2}$
- ► Example of the prisoner's dilemma of coalition formation

But ...

- ▶ Your voting power if there are no coalitions is $0.80n^{-1/2}$
- Your voting power if you're in an optimal coalition is $0.57n^{-1/4}$
- ▶ But ... your voting power if *everyone* divides into optimal coalitions is $0.65n^{-1/2}$
- ► Example of the prisoner's dilemma of coalition formation

Coalition-formation as a random walk in the space of trees

- ▶ Picture of a coalition structure as a tree
- Possible moves in tree-space:

Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- ▶ Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - A coalition disbanding or dividing into sub-coalitions
 A coalition for a super coalition
- A set of coalitions merging into a single coalition
- Restrict to locally beneficial moves: Pr (decisive) mustinerease for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - ► A coalition disbanding or dividing into sub-coalitions
 - A set of coalitions forming a super-coalition
 - A set of coalitions merging into a single coalition.
- Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - ► A coalition disbanding or dividing into sub-coalitions
 - ► A set of coalitions forming a super-coalition
 - ► A set of coalitions merging into a single coalition
- Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - A coalition disbanding or dividing into sub-coalitions
 - ▶ A set of coalitions forming a super-coalition
 - ▶ A set of coalitions merging into a single coalition
- Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - A coalition disbanding or dividing into sub-coalitions
 - A set of coalitions forming a super-coalition
 - ► A set of coalitions merging into a single coalition
- Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - A coalition disbanding or dividing into sub-coalitions
 - A set of coalitions forming a super-coalition
 - ▶ A set of coalitions merging into a single coalition
- Restrict to locally beneficial moves: Pr (decisive) must increase for all voters who are involved in the decision

- Picture of a coalition structure as a tree
- Possible moves in tree-space:
 - Several voters forming a coalition
 - A coalition disbanding or dividing into sub-coalitions
 - A set of coalitions forming a super-coalition
 - ▶ A set of coalitions merging into a single coalition
- ► Restrict to *locally beneficial* moves: Pr (decisive) must increase for all voters who are involved in the decision

- Locally beneficial moves are nontransitive
- Similar to cartels in economics
- How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- Also, as with economics, can imagine reaching a global optimum using side payments

- ▶ Locally beneficial moves are nontransitive
- Similar to cartels in economics
- How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- Also, as with economics, can imagine reaching a global optimum using side payments

- ▶ Locally beneficial moves are nontransitive
- Similar to cartels in economics
- ▶ How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- ► Also, as with economics, can imagine reaching a global optimum using side payments

- ▶ Locally beneficial moves are nontransitive
- Similar to cartels in economics
- How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- ► Also, as with economics, can imagine reaching a global optimum using side payments

- ▶ Locally beneficial moves are nontransitive
- Similar to cartels in economics
- How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- ► Also, as with economics, can imagine reaching a global optimum using side payments

- ▶ Locally beneficial moves are nontransitive
- Similar to cartels in economics
- How easily can an individual voter compute Δ Pr (decisive), in order to decide whether a particular move is a good idea?
- Approximate calculations (similar to "expected utility" calculations for economic actors)
- Also, as with economics, can imagine reaching a global optimum using side payments

Open problems

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:

Fitting to real data (legislative committees, courts, politicalities, . . .)

Open problems

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:

- Different preferences for different issues
- Fitting to real data (legislative committees, courts, political parties, . . .)

Open problems

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:
 - Network structure of voters
 - Unequal probabilities p, for individual vocal
- Fitting to real data (legislative committees, courts, politicallies, . . .)

Open problems

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - \blacktriangleright Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- Fitting to real data (legislative committees, courts, political) parties, . . .)

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- Fitting to real data (legislative committees, courts, political parties, . . .)

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- Fitting to real data (legislative committees, courts, political parties, . . .)

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- ► Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- ▶ Fitting to real data (legislative committees, courts, political parties, . . .)

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- ► Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- ▶ Fitting to real data (legislative committees, courts, political parties, . . .)

- Conjecture: the coalition-formation process is inherently unstable for n > 3
- Local calculations of changes in voting power
- ► Generalizing the model:
 - Weighted voting
 - Network structure of voters
 - Unequal probabilities p_i for individual voters
 - Different preferences for different issues
- Fitting to real data (legislative committees, courts, political parties, . . .)

Mathematical and statistical models of voting power

Second part of the talk

Voting power in a 2-level electoral system

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:

Your vote is decisive if:

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - n; voters in state
 - e_i electoral votes contribute to U.S. totall
- Your vote is decisive it:

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - \triangleright e_i electoral votes contribute to U.S. total
- Your vote is decisive if:

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - *e*_i electoral votes contribute to U.S. total
- Your vote is decisive if:

Voting power in a 2-level electoral system

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - *e_i* electoral votes contribute to U.S. total
- ► Your vote is decisive if:
 - Your state is tied, and

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - e_i electoral votes contribute to U.S. total
- Your vote is decisive if:
 - Your state is tied, and
 - ▶ Your state's electoral votes are decisive, *if* your state is tied

- U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - e_i electoral votes contribute to U.S. total
- Your vote is decisive if:
 - Your state is tied, and
 - Your state's electoral votes are decisive, if your state is tied

- ▶ U.S. Electoral College, or E.U. Council of Ministers
- Electoral college:
 - \triangleright n_i voters in state j
 - e_i electoral votes contribute to U.S. total
- Your vote is decisive if:
 - Your state is tied, and
 - Your state's electoral votes are decisive, if your state is tied

- ▶ Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:

- ▶ Combining: voting power $\propto e_i / \sqrt{n_i}$
- According to this model, higher voting power in large states

- ▶ Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - ▶ Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:

- ▶ Combining: voting power $\propto e_i / \sqrt{n_i}$
- According to this model, higher voting power in large states

- ▶ Voting power = Pr (your vote is decisive):
 - ▶ Pr (your state is tied) ×
 - ▶ Pr (your state's electoral votes are decisive, *if* your state is tied)
- Simple calculation based on random voting model:

- ▶ Combining: voting power $\propto e_i / \sqrt{n_i}$
- According to this model, higher voting power in large states

- ▶ Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- ► Simple calculation based on random voting model:
- ▶ Pr (your state's electoral votes are decisive) oc e_i
- ▶ Combining: voting power $\propto e_i/\sqrt{n_i}$
- According to this model, higher voting power in large states

- ▶ Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:
 - ▶ Pr (your state is tied) $\propto 1/\sqrt{n_i}$
 - ightharpoonup Pr (your state's electoral votes are decisive) $\propto e_j$
- ▶ Combining: voting power $\propto e_i/\sqrt{n_i}$
- According to this model, higher voting power in large states

- Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:
 - Pr (your state is tied) $\propto 1/\sqrt{n_j}$
 - ightharpoonup Pr (your state's electoral votes are decisive) $\propto e_j$
- ▶ Combining: voting power $\propto e_j/\sqrt{n_j}$
- According to this model, higher voting power in large states

- Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:
 - Pr (your state is tied) $\propto 1/\sqrt{n_j}$
 - lacktriangle Pr (your state's electoral votes are decisive) $\propto e_j$
- ▶ Combining: voting power $\propto e_j/\sqrt{n_j}$
- According to this model, higher voting power in large states

- Voting power = Pr (your vote is decisive):
 - ► Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:
 - Pr (your state is tied) $\propto 1/\sqrt{n_j}$
 - ightharpoonup Pr (your state's electoral votes are decisive) $\propto e_j$
- ▶ Combining: voting power $\propto e_j/\sqrt{n_j}$
- ► According to this model, higher voting power in large states

- Voting power = Pr (your vote is decisive):
 - Pr (your state is tied) ×
 - Pr (your state's electoral votes are decisive, if your state is tied)
- Simple calculation based on random voting model:
 - Pr (your state is tied) $\propto 1/\sqrt{n_j}$
 - lacktriangle Pr (your state's electoral votes are decisive) $\propto e_j$
- ▶ Combining: voting power $\propto e_j/\sqrt{n_j}$
- ► According to this model, higher voting power in large states

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- Focus on voting power as a function of n_i
- Key prediction of random voting model:

- Classical voting power calculations can also be defined combinatorially
 - (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- \triangleright Focus on voting power as a function of n_i
- Key prediction of random voting model:

- Classical voting power calculations can also be defined combinatorially
 - (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- lacksquare Implies that voting power $\propto e_j/\sqrt{n_j}$
- \triangleright Focus on voting power as a function of n_i
- Key prediction of random voting model:

- Classical voting power calculations can also be defined combinatorially
 - (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- lacksquare Implies that voting power $\propto e_j/\sqrt{n_j}$
- \triangleright Focus on voting power as a function of n_i
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 - (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- lacktriangle Implies that voting power $\propto e_j/\sqrt{n_j}$
- Focus on voting power as a function of n_j
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 - (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- \triangleright Focus on voting power as a function of n_i
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- ▶ Focus on voting power as a function of n_i
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 (Mathematically, same as the random voting model)
- ▶ But does the model describe reality?

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- Focus on voting power as a function of n_j
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 (Mathematically, same as the random voting model)
- But does the model describe reality?

- Voters are flipping coins
- ▶ Implies that voting power $\propto e_j/\sqrt{n_j}$
- Focus on voting power as a function of n_j
- Key prediction of random voting model:
 - Large elections should be much closer (in percentage terms) than small elections
 - "Law of large numbers"
- Classical voting power calculations can also be defined combinatorially
 (Mathematically, same as the random voting model)
- But does the model describe reality?

Checking the random voting model

More checks of the random voting model

Voting power by state, 2000 (math and stat models)

Voters in large states do *not* have an electoral college advantage!

More realistic models using forecasting

- ▶ A voter in Ohio or Florida has more voting power (is more likely to cast a decisive vote) than a voter in Utah or Texas
- Estimate Pr (decisive vote) in each state and each year using hierarchical time-series cross-sectional forecasting model
- Empirical comparisons of voting power in large and small states

More realistic models using forecasting

- ▶ A voter in Ohio or Florida has more voting power (is more likely to cast a decisive vote) than a voter in Utah or Texas
- Estimate Pr (decisive vote) in each state and each year using hierarchical time-series cross-sectional forecasting model
- ► Empirical comparisons of voting power in large and small states

More realistic models using forecasting

- ➤ A voter in Ohio or Florida has more voting power (is more likely to cast a decisive vote) than a voter in Utah or Texas
- Estimate Pr (decisive vote) in each state and each year using hierarchical time-series cross-sectional forecasting model
- Empirical comparisons of voting power in large and small states

More realistic models using forecasting

- ➤ A voter in Ohio or Florida has more voting power (is more likely to cast a decisive vote) than a voter in Utah or Texas
- Estimate Pr (decisive vote) in each state and each year using hierarchical time-series cross-sectional forecasting model
- Empirical comparisons of voting power in large and small states

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - This model is useless: it still predicts a standard deviation that is tinv when n is large
 - We must take the next step and allow votes to be correlated.
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country
- Two tree models: Ising model and latent Gaussian model

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - ▶ This model is useless: it still predicts a standard deviation that is tiny when *n* is large
 - We must take the next step and allow votes to be correlated
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country)
- ▶ Two tree models: Ising model and latent Gaussian model

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - ► This model is useless: it still predicts a standard deviation that is tiny when *n* is large
 - We must take the next step and allow votes to be correlated
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country)
- ► Two tree models: Ising model and latent Gaussian model

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - ► This model is useless: it still predicts a standard deviation that is tiny when *n* is large
 - We must take the next step and allow votes to be correlated
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country)
- ► Two tree models: Ising model and latent Gaussian model

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - ► This model is useless: it still predicts a standard deviation that is tiny when *n* is large
 - We must take the next step and allow votes to be correlated
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country)
- ► Two tree models: Ising model and latent Gaussian model

- ► Simplest model: votes are independent with probability *p* instead of 1/2
 - ► This model is useless: it still predicts a standard deviation that is tiny when *n* is large
 - We must take the next step and allow votes to be correlated
- Probability models on trees (voters within neighborhoods within cities within states within regions within a country)
- ▶ Two tree models: Ising model and latent Gaussian model

- ▶ Put a 1 or −1 at each node of the tree; correlations along branches
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $cn^{-\alpha}$
- ▶ Random voting model implies $\alpha = 0.5$; actual data fit $\alpha = 0.1$

- ▶ Put a 1 or -1 at each node of the tree; correlations along branches
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $cn^{-\alpha}$
- ▶ Random voting model implies $\alpha = 0.5$; actual data fit $\alpha = 0.1$

- ▶ Put a 1 or −1 at each node of the tree; correlations along branches
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $cn^{-\alpha}$
- ▶ Random voting model implies $\alpha = 0.5$; actual data fit $\alpha = 0.1$

- ▶ Put a 1 or −1 at each node of the tree; correlations along branches
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- Standard deviation of \overline{V}_n has the form $cn^{-\alpha}$
- ▶ Random voting model implies $\alpha = 0.5$; actual data fit $\alpha = 0.1$

- ▶ Put a 1 or −1 at each node of the tree; correlations along branches
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- Standard deviation of \overline{V}_n has the form $cn^{-\alpha}$
- ▶ Random voting model implies $\alpha = 0.5$; actual data fit $\alpha = 0.1$

Estimating the parameter α

Estimating the parameter α

- ▶ Put a continuous value at each node of the tree; random variation added as you go down the tree
- Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $\sqrt{a-b\log n}$
- Also fits the data

- ▶ Put a continuous value at each node of the tree; random variation added as you go down the tree
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $\sqrt{a-b\log n}$
- Also fits the data

- ▶ Put a continuous value at each node of the tree; random variation added as you go down the tree
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $\sqrt{a-b\log n}$
- Also fits the data

- ▶ Put a continuous value at each node of the tree; random variation added as you go down the tree
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $\sqrt{a-b\log n}$
- Also fits the data

- ▶ Put a continuous value at each node of the tree; random variation added as you go down the tree
- ▶ Look at the implied probability distribution for \overline{V}_n , the average of n voters
- ▶ Standard deviation of \overline{V}_n has the form $\sqrt{a-b\log n}$
- Also fits the data

Comparing the models $cn^{-\alpha}$ and $\sqrt{a-b\log n}$

- General statements about voting power (for example, under what conditions are proportional voting systems roughly "fair"?)
- ▶ Fitting more realistic tree models to electoral data
- Fitting similar models to other data (for example, 5-level survey of smoking in India)
- Network models

- General statements about voting power (for example, under what conditions are proportional voting systems roughly "fair"?)
- ▶ Fitting more realistic tree models to electoral data
- ► Fitting similar models to other data (for example, 5-level survey of smoking in India)
- Network models

- General statements about voting power (for example, under what conditions are proportional voting systems roughly "fair"?)
- ▶ Fitting more realistic tree models to electoral data
- ► Fitting similar models to other data (for example, 5-level survey of smoking in India)
- Network models

- General statements about voting power (for example, under what conditions are proportional voting systems roughly "fair"?)
- ▶ Fitting more realistic tree models to electoral data
- ► Fitting similar models to other data (for example, 5-level survey of smoking in India)
- Network models

- General statements about voting power (for example, under what conditions are proportional voting systems roughly "fair"?)
- ▶ Fitting more realistic tree models to electoral data
- ► Fitting similar models to other data (for example, 5-level survey of smoking in India)
- Network models

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power

Mathematical models can give insights but must be looped back to real data

Coalitions

- Forming coalitions can help you but hurt others
- Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power

Mathematical models can give insights but must be looped back to real data

- Coalitions
 - Forming coalitions can help you but hurt others

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power
 - The electoral college favors voters in small states
 "Voting power" calculations that claim otherwise are based on the falsifiable (and falsified) rule that elections will be automated as a large of the contraction.
- Mathematical models can give insights but must be looped back to real data

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power
 - ► The electoral college favors voters in small states
 - "Voting power" calculations that claim otherwise are based on the falsifiable (and falsified) rule that elections will be extremely close in large states
- Mathematical models can give insights but must be looped back to real data

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power
 - ▶ The electoral college favors voters in small states
 - "Voting power" calculations that claim otherwise are based on the falsifiable (and falsified) rule that elections will be extremely close in large states
- ► Mathematical models can give insights but must be looped back to real data

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power
 - ▶ The electoral college favors voters in small states
 - "Voting power" calculations that claim otherwise are based on the falsifiable (and falsified) rule that elections will be extremely close in large states
- Mathematical models can give insights but must be looped back to real data

- Coalitions
 - Forming coalitions can help you but hurt others
 - Potential explanation for political instability (even in the absence of "real" disputes)
- Voting power
 - ▶ The electoral college favors voters in small states
 - "Voting power" calculations that claim otherwise are based on the falsifiable (and falsified) rule that elections will be extremely close in large states
- Mathematical models can give insights but must be looped back to real data