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I Rodents in NYC: apts within buildings within neighborhoods

I State-level opinions from national polls: mlm and
poststratification

I Mlm when number of groups is small

I Finite-population and superpopulation inference

I Understanding a fitted multilevel regression: Anova, average
predictive effects, partial pooling, and R2

I Why I don’t use the terms “fixed” and “random” effects

I Questions . . .
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Rodents
Opinions
MLM with few groups

NYC Dept of Health study

I Survey of 16000 apts in 9000 bldgs in 55 neighborhoods in
NYC

I Do you have rodents?

I Hierarchical logistic regression:

Pr(yi = 1) = logit−1((Xβ)i + αbldg(i) + γneighborhood(i))

I Try to fit in WinBUGS, but too slow! Solutions:
I Fit to subset of the data (900 apts in 500 bldgs)
I Fit to all the data, separate model for each neighborhood
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State-level opinion trends

I Goal: estimating time series within each state

I One poll at a time: small-area estimation

I It works! Validated for pre-election polls

I Combining surveys: model for parallel time series

I Multilevel modeling + poststratification

I Poststratification cells: sex × ethnicity × age × education ×
state
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Multilevel modeling of opinions

I Logistic regression: Pr(yi = 1) = logit−1((Xβ)i )

I X includes demographic and geographic predictors

I Group-level model for the 16 age × education predictors

I Group-level model for the 50 state predictors

I Bayesian inference, summarize by posterior simulations of β:
Simulation θ1 · · · θ75

1 ** · · · **
...

...
. . .

...
1000 ** · · · **
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Interlude: why “multilevel” 6= “hierarchical”

I Logistic regression: Pr(yi = 1) = logit−1((Xβ)i )

I X includes demographic and geographic predictors

I Group-level model for the 16 age × education predictors

I Group-level model for the 50 state predictors

I Crossed (nonnested) structure of age, education, state

I Several overlapping “hierarchies”
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Poststratification to estimate state opinions

I Implied inference for θj = logit−1(Xβ) in each of 3264 cells j
(e.g., black female, age 18–29, college graduate, Georgia)

I Poststratification
I Within each state s, average over 64 cells:∑

j∈s Njθj

/ ∑
j∈s Nj

I Nj = population in cell j (from Census)
I 1000 simulation draws propagate to uncertainty for each θj
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CBS/New York Times pre-election polls from 1988

I Validation study: fit model on poll data and compare to
election results

I Competing estimates:
I No pooling: separate estimate within each state
I Complete pooling: no state predictors
I Hierarchical model and poststratify

I Mean absolute state errors:
I No pooling: 10.4%
I Complete pooling: 5.4%
I Hierarchical model with poststratification: 4.5%
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Validation study: comparison of state errors

1988 election outcome vs. poll estimate

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

no pooling of state effects

Estimated Bush support

A
ct

ua
l e

le
ct

io
n 

ou
tc

om
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

complete pooling (no state effects)

Estimated Bush support

A
ct

ua
l e

le
ct

io
n 

ou
tc

om
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

multilevel model

Estimated Bush support

A
ct

ua
l e

le
ct

io
n 

ou
tc

om
e

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models
Understanding multilevel models and variance components

Conclusions

Rodents
Opinions
MLM with few groups

How many groups do you need to fit a mlm?

I 9000 bldgs, 55 neighborhoods, 50 states: that’s ok
I But why do mlm with only 4 categories?

I Age 18–29, 30–44, 45–64, 65+
I Education less than HS, HS, some college, college grad

I Simple to set up as mlm

I No need to choose a “baseline” category”

I Extends to interactions (16 age × education categories)
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Finite-population and superpopulation estimands

I Consider the 4 coefficients, βage
1 , . . . , βage

4

I Finite-population centering:

β̃age
j = βage

j − β̄age, for j = 1, . . . , 4

β̃0 = β0 + β̄age

I Adjusted parameters are more precisely estimated

I Especially when # of groups is small
I Sd of group effects

I βage
j ∼ N(0, σ2

age), for j=1,. . . ,4
I Superpopulation sd: σage

I Finite-population sd:
√

1
3

∑4
j=1(β

age
j − β̄age)2
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Redundant parameterization

I Data model: Pr(yi = 1) = logit−1
(
β0 + βage

age(i) + βstate
state(i)

)
I Usual model for the coefficients:

βage
j ∼ N(0, σ2

age), for j = 1, . . . , 4

βstate
j ∼ N(0, σ2

state), for j = 1, . . . , 50

I Additively redundant model:

βage
j ∼ N(µage, σ

2
age), for j = 1, . . . , 4

βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Why add the redundant µage, µstate?
I Iterative algorithm moves more smoothly
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Motivation for redundant parameterization

80% interval for each chain R−hat
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sigma.y

0.77

0.83

sigma.eta

0

2

deviance

2170

2220

Bugs model at "C:/research/radon/radon.anova.1.txt", 3 chains, each with 100 iterations
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Redundant additive parameterization

I Model

Pr(yi = 1) = logit−1
(
β0 + βage

age(i) + βstate
state(i)

)
βage

j ∼ N(µage, σ
2
age), for j = 1, . . . , 4

βstate
j ∼ N(µstate, σ

2
state), for j = 1, . . . , 50

I Identify using centered parameters:

β̃age
j = βage

j − β̄age, for j = 1, . . . , 4

β̃state
j = βstate

j − β̄state, for j = 1, . . . , 50

I Redefine the constant term:

β̃0 = β0 + β̄age + β̄age
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MLM and partial pooling

I Goal is to more accurately estimate coefficients that are
grouped

I A reparameterization can change a model
(even if it leaves the likelihood unchanged)

I Redundant additive parameterization

I Redundant multiplicative parameterization

I Weakly-informative prior distribution for group-level variance
parameters
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Raw display of inference

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

B.0 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110

b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000

b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500

b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000

B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45

B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190

B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130

B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32

B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31

B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160

B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45

B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37

B.age.edu[1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000

B.age.edu[1,2] 0.059 0.123 -0.153 -0.011 0.032 0.118 0.353 1.016 580

B.age.edu[1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280

B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000

B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140

B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120

B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940

B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170

B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230

B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610

B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61

B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150

B.age.edu[4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270

B.age.edu[4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240

B.age.edu[4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0.332 1.010 210

B.age.edu[4,4] 0.042 0.142 -0.193 -0.022 0.016 0.095 0.377 1.015 160

B.state[1] 0.201 0.211 -0.131 0.047 0.172 0.326 0.646 1.003 960

B.state[2] 0.466 0.252 0.008 0.310 0.440 0.603 1.047 1.001 1000

B.state[3] 0.393 0.196 0.023 0.268 0.380 0.518 0.814 1.002 1000

B.state[4] -0.164 0.209 -0.607 -0.290 -0.149 -0.041 0.228 1.003 590

B.state[5] -0.054 0.141 -0.322 -0.143 -0.061 0.035 0.229 1.001 1000

B.state[6] 0.126 0.206 -0.313 0.010 0.126 0.256 0.512 1.011 1000

B.state[7] 0.095 0.183 -0.263 -0.023 0.087 0.207 0.466 1.004 490

B.state[8] -0.210 0.207 -0.666 -0.322 -0.194 -0.080 0.155 1.001 1000

B.state[9] -2.648 0.728 -4.291 -3.067 -2.602 -2.187 -1.385 1.007 290

B.state[10] 0.097 0.173 -0.296 -0.010 0.115 0.214 0.402 1.014 270

B.state[11] -0.138 0.173 -0.467 -0.253 -0.148 -0.034 0.240 1.005 1000
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Better graphical display 1: demographics
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Better graphical display 2: within states
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Better graphical display 3: between states
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Anova and multilevel models

I Each row of the Anova table is a variance component
I Goal

I How important is each source of variation?
I Estimating and comparing variance components
I Not testing if a variance component equals 0

I Multilevel regression solves classical Anova problems
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Raw display of inference

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

B.0 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110

b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000

b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500

b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000

B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45

B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190

B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130

B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32

B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31

B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160

B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45

B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37

B.age.edu[1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000

B.age.edu[1,2] 0.059 0.123 -0.153 -0.011 0.032 0.118 0.353 1.016 580

B.age.edu[1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280

B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000

B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140

B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120

B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940

B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170

B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230

B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610

B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61

B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150

B.age.edu[4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270

B.age.edu[4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240

B.age.edu[4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0.332 1.010 210

B.age.edu[4,4] 0.042 0.142 -0.193 -0.022 0.016 0.095 0.377 1.015 160

B.state[1] 0.201 0.211 -0.131 0.047 0.172 0.326 0.646 1.003 960

B.state[2] 0.466 0.252 0.008 0.310 0.440 0.603 1.047 1.001 1000

B.state[3] 0.393 0.196 0.023 0.268 0.380 0.518 0.814 1.002 1000

B.state[4] -0.164 0.209 -0.607 -0.290 -0.149 -0.041 0.228 1.003 590

B.state[5] -0.054 0.141 -0.322 -0.143 -0.061 0.035 0.229 1.001 1000

B.state[6] 0.126 0.206 -0.313 0.010 0.126 0.256 0.512 1.011 1000

B.state[7] 0.095 0.183 -0.263 -0.023 0.087 0.207 0.466 1.004 490

B.state[8] -0.210 0.207 -0.666 -0.322 -0.194 -0.080 0.155 1.001 1000

B.state[9] -2.648 0.728 -4.291 -3.067 -2.602 -2.187 -1.385 1.007 290

B.state[10] 0.097 0.173 -0.296 -0.010 0.115 0.214 0.402 1.014 270

B.state[11] -0.138 0.173 -0.467 -0.253 -0.148 -0.034 0.240 1.005 1000
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Bayesian Anova
Source df Est. sd of effects

0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1

age 3
education 3

age * education 9

region 3
region * state 46

0 0.5 1 1.5

Source df Est. sd of effects
0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1
age 3

education 3
age * education 9

region 3
region * state 46

ethnicity * region 3
ethnicity * region * state 46

0 0.5 1 1.5

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models
Understanding multilevel models and variance components

Conclusions

Graphical display of a fitted mlm
Analysis of variance
Average predictive effects
R2 and pooling factors

Fixed and random effects?

I What are “fixed” and “random” effects?

I Five incompatible definitions:

1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)

2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)

3. Fixed effects are the entire population, random are a
small sample from a larger population (Tukey, 1960)

4. Random effects are realized values of a random variable
(LaMotte, 1983)

5. Fixed effects are estimated using least squares, random
effects are esitmated using shrinkage (Snijders, 1999)
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How to think about fixed and random effects

I Ideally, allow all coefficients to vary by group
I Main limitation: complicated models can be overwhelming

I Bayesian multilevel modeling
I Simultaneously estimate population parameters and individual

coefficients
I Suppose you are estimating a finite set of effects,

then told they are a sample from a larger population
I No need to change the model
I But estimand of interest might change!

I Separation of modeling, inference, and decision analysis
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Average predictive effects

I What is E (y | x1 = high) − E(y | x1 = low), with all other x ’s
held constant?

u

v

y
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Average predictive effects

I What is E (y | x1 = high) − E(y | x1 = low), with all other x ’s
held constant?

I In general, difference can depend on x
I Average over distribution of x in the data

I You can’t just use a central value of x

I Compute APE for each input variable x

I Multilevel factors are categorical input variables
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APE: why you can’t just use a central value of x
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Framework for average predictive effects

I Regresion model, E (y |x , θ)
I Predictors come from “input variables”

I Example: regression on age, sex, age × sex, and age2

I 5 linear predictors (including the constant term)
I But only 4 inputs

I Compute APE for each input variable, one at a time, with all
others held constant

I Scalar input u: the “input of interest”
I Vector v : all other inputs
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Defining predictive effects

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Average over:
I The transition, u(1) → u(2)

I The other inputs, v
I The regression coefficients, θ
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Average predictive effects for binary inputs

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Binary input u:
I predictive effect: δu(0 → 1, v , θ) = E (y |1, v , θ)− E (y |0, v , θ)
I Average over v1, . . . , vn in the data (or weighted average if

desired)
I Average over θ from inferential simulations
I Standard error of APE from uncertainty in θ
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Scenarios for average predictive effects

I predictive effect:

δu(u
(1)→u(2), v , θ) = E(y |u(2),v ,θ)−E(y |u(1),v ,θ)

u(2)−u(1)

I Continuous inputs

I Unordered discrete inputs

I Variance components

I Interactions

I Inputs that are not always active
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R2 for multilevel models

I How much of the variance is “explained” by the model?

I Separate R2 for each level

I Classical R2 = 1− variance of the residuals
variance of the data

I Multilevel model:
at each level, k units: θk = (Xβ)k + εk

I At each level: R2 = 1− variance among the (Xβ)k ’s
variance among the εk ’s
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Bayesian R2

I At each level
I θk = (Xβ)k + εk

I R2 = 1− variance among the (Xβ)k ’s
variance among the εk ’s

I Numerator and denominator estimated by their posterior
means

I Posterior distribution automatically accounts for uncertainty

I Bayesian generalization of classical “adjusted R2”
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Example of partial pooling
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Partial pooling factors

I At each level of the model:
I θk = (Xβ)k + εk

I λ = 0 if no pooling of ε’s
I λ = 0 if complete pooling of ε’s to 0

I Multilevel generalization of Bayesian pooling factor
I Can’t simply compare to the “complete pooling” and “no

pooling” estimates
I “No pooling” estimate doesn’t always exist!

I At each level, our pooling factor is defined based on the mean
and variance of the εk ’s
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Understanding sources of variation
Multilevel models even when # groups is small

Understanding sources of variation

I Graphs, not tables, of parameter estimates

I In display, use the grouping info
I Analysis of variance

I Summarize the scale of each batch of predictors
I Go beyond classical null-hypothesis-testing framework

I Average predictive effects for models with nonlinearity and
interactions

I Generalization of R2 (explained variance), defined at each
level of the model

I Partial pooling factor, defined at each level
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I Forget about “fixed and random effects”; think about
“finite-pop and superpop estimands” instead

I Always use the multilevel model, but estimand of interest
depends on context

I For small # groups: use the new half-t prior dist for variance
parameters

I Challenges:
I Multivariate models (for example, varying-intercept,

varying-slope models)
I Models with deep interaction structures
I Automatic graphical display
I Model building
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