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» Multilevel models are necessary
» Tools needed to build, fit, check, and understand mlms
» Analogy to linear regression

» MIm as regression with categorical inputs
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» Some of my experiences with multilevel models
» Some challenges and solutions

» Lots of time for questions
» Collaborators:
» lain Pardoe, Dept of Decision Sciences, University of Oregon
» David Park, Joseph Bafumi, Boris Shor, Dept of Political
Science, Columbia University
» Samantha Cook, Zaiying Huang, Jouni Kerman, Shouhao
Zhao, Dept of Statistics, Columbia University
» Phillip Price, Energy and Environment Division, Lawrence
Berkeley National Laboratory
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» Hierarchical logistic regression:
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NYC Dept of Health study

» Survey of 16000 apts in 9000 bldgs in 55 neighborhoods in
NYC

» Do you have rodents?

» Hierarchical logistic regression:

Pr()/i = 1) = |Ogit_1((Xﬁ) + Cpldg(i) + Yneighborhood(i ))

» Try to fit in WinBUGS, but too slow! Solutions:

» Fit to subset of the data (900 apts in 500 bldgs)
» Fit to all the data, separate model for each neighborhood
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Goal: estimating time series within each state
One poll at a time: small-area estimation
It works! Validated for pre-election polls

Combining surveys: model for parallel time series
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State-level opinion trends

Goal: estimating time series within each state
One poll at a time: small-area estimation

It works! Validated for pre-election polls
Combining surveys: model for parallel time series

Multilevel modeling + poststratification

vV v v v v Y

Poststratification cells: sex x ethnicity x age x education x
state
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Multilevel modeling of opinions

Logistic regression: Pr(y; = 1) = logit 1 ((X3);)

X includes demographic and geographic predictors

>
>
» Group-level model for the 16 age x education predictors
» Group-level model for the 50 state predictors

>

Bayesian inference, summarize by posterior simulations of 3:

Simulation 67 --- 675
1 *k . %%
10.00 o .- o
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>
>
» Group-level model for the 16 age x education predictors
» Group-level model for the 50 state predictors

>

Crossed (nonnested) structure of age, education, state

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

Interlude: why “multilevel” ## “hierarchical”

Logistic regression: Pr(y; = 1) = logit™*((X3);)
X includes demographic and geographic predictors

Group-level model for the 50 state predictors

>
>

» Group-level model for the 16 age x education predictors
>

» Crossed (nonnested) structure of age, education, state
>

Several overlapping “hierarchies”
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(e.g., black female, age 18-29, college graduate, Georgia)
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Poststratification to estimate state opinions

> Implied inference for 6; = logit *(X3) in each of 3264 cells j
(e.g., black female, age 18-29, college graduate, Georgia)
» Poststratification
» Within each state s, average over 64 cells:
Zjes Njej/ Ejes NJ
» N; = population in cell j (from Census)
» 1000 simulation draws propagate to uncertainty for each 6;

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results

» Competing estimates:

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results

» Competing estimates:
» No pooling: separate estimate within each state

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results
» Competing estimates:

» No pooling: separate estimate within each state
» Complete pooling: no state predictors

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results
» Competing estimates:
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CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results

» Competing estimates:

» No pooling: separate estimate within each state
» Complete pooling: no state predictors
» Hierarchical model and poststratify

» Mean absolute state errors:
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CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results
» Competing estimates:

» No pooling: separate estimate within each state
» Complete pooling: no state predictors
» Hierarchical model and poststratify

» Mean absolute state errors:
» No pooling: 10.4%
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CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results
» Competing estimates:
» No pooling: separate estimate within each state
» Complete pooling: no state predictors
» Hierarchical model and poststratify
» Mean absolute state errors:
» No pooling: 10.4%
» Complete pooling: 5.4%
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CBS/New York Times pre-election polls from 1988

» Validation study: fit model on poll data and compare to
election results
» Competing estimates:

» No pooling: separate estimate within each state
» Complete pooling: no state predictors
» Hierarchical model and poststratify
» Mean absolute state errors:
» No pooling: 10.4%
» Complete pooling: 5.4%
» Hierarchical model with poststratification: 4.5%
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Validation study: comparison of state errors

1988 election outcome vs. poll estimate

no pooling of state effects complete pooling (no state effects) multilevel model
o o o
- - -
£ | £ | g |
[s]=] [sl=} [s)=)
e e e
> e} = [e) 3
o9 | o o2, ° o9 | co |
co © co co
5 58 ° o S 8 8 o
8 | 000 5 8= | 8 |
o e o
© o ©
2N 2N 2N
£° o I° 0 <° o
o o o
c - - - - - S - - - - - c 1\ - - - - -
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Estimated Bush support Estimated Bush support Estimated Bush support

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok
» But why do mIm with only 4 categories?

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok
» But why do mIm with only 4 categories?
> Age 18-29, 3044, 45-64, 65+

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok
» But why do mIm with only 4 categories?

> Age 18-29, 30—44, 45-64, 65+
» Education less than HS, HS, some college, college grad

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok

» But why do mIm with only 4 categories?
» Age 18-29, 30-44, 45-64, 65+
» Education less than HS, HS, some college, college grad

» Simple to set up as mim

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

» 9000 bldgs, 55 neighborhoods, 50 states: that's ok
» But why do mIm with only 4 categories?

> Age 18-29, 30—44, 45-64, 65+
» Education less than HS, HS, some college, college grad

» Simple to set up as mim

» No need to choose a “baseline” category”

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

How many groups do you need to fit a mim?

v

9000 bldgs, 55 neighborhoods, 50 states: that's ok
But why do mIm with only 4 categories?

> Age 18-29, 30—44, 45-64, 65+
» Education less than HS, HS, some college, college grad

v

v

Simple to set up as mlm

v

No need to choose a “baseline” category”

v

Extends to interactions (16 age x education categories)
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» Consider the 4 coefficients, 575, ..., 3,5
» Finite-population centering:
B?ge = ﬁfge _Bage’ forj=1,....4
Bo = Bo+ B

» Adjusted parameters are more precisely estimated
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» Consider the 4 coefficients, 575, ..., 3,5

» Finite-population centering:

Ié?ge = ﬁfge_Bage7 for.j:17"'74
Bo = Bo+ B

» Adjusted parameters are more precisely estimated

» Especially when # of groups is small

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

Finite-population and superpopulation estimands

» Consider the 4 coefficients, 575, ..., 3,5

» Finite-population centering:
B?ge = ﬁj’f‘ge_Bage’ forj=1,....4
Bo = Bo+ B

» Adjusted parameters are more precisely estimated

» Especially when # of groups is small
» Sd of group effects
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Finite-population and superpopulation estimands

» Consider the 4 coefficients, 575, ..., 3,5

» Finite-population centering:

B = g o1
Bo = Bo+ B

» Adjusted parameters are more precisely estimated

» Especially when # of groups is small
» Sd of group effects
> 315~ N(0,0

2e), forj=1....4
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Finite-population and superpopulation estimands

» Consider the 4 coefficients, 575, ..., 3,5

» Finite-population centering:
B = g =1,
Bo = Bo+ B

» Adjusted parameters are more precisely estimated
» Especially when # of groups is small
» Sd of group effects

> 375 ~ N(0, 0240), forj=1,....4
> Superpopulatlon sd: Oage
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Finite-population and superpopulation estimands

» Consider the 4 coefficients, 575, ..., 3,5

» Finite-population centering:

B = g o1
Bo = Bo+ B

» Adjusted parameters are more precisely estimated
» Especially when # of groups is small
» Sd of group effects

> 375 ~ N(0, 0240), forj=1,....4

> Superpopulatlon sd: Oage

» Finite-population sd: \/3 Zf l(ﬂage [Bage)?2
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Example of finite-pop and superpop ests

zero—centered parameters, Efk‘d' uncentered parameters, &

bt
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&
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-0.5
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airport, k airport, k
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Redundant parameterization

> Data model: Pr(y; = 1) = logit (ﬁo + Boeey SEZES(i))
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» Data model: Pr(y; = 1) = logit ™ (ﬁo + Bogeti) T SEZ‘ES@))

» Usual model for the coefficients:
ﬁ?ge ~ N(O, Uage) forj=1,...,4

B~ N(0,0%44), forj=1,...,50
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Redundant parameterization

» Data model: Pr(y; = 1) = logit ™ (ﬁo + Bogeti) T SEZ‘ES@))

» Usual model for the coefficients:
ﬁ?ge ~ N(O, Uage) forj=1,...,4
B~ N(0,0%44), forj=1,...,50
» Additively redundant model:

ﬁfge ~ N(uage,agge), forj=1,...,4

gt~ N(pstates 0oate), for j=1,...,50
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MLM with few groups

Redundant parameterization

» Data model: Pr(y; = 1) = logit ™ (ﬁo + Bogeti) T SEZ‘ES@))

» Usual model for the coefficients:
ﬁ?ge ~ N(O, Uage) forj=1,...,4
B~ N(0,0%44), forj=1,...,50
» Additively redundant model:
ﬁfge ~ N(uage,agge), forj=1,...,4
ﬁ?tate ~ N(Mstatey Js2tate)7 for.j = 17 e 750

» Why add the redundant piage, tstate?

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions
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Redundant parameterization

» Data model: Pr(y; = 1) = logit ™ (ﬁo + Bogeti) T SEZ‘ES@))

» Usual model for the coefficients:
ﬁ?ge ~ N(O, Uage) forj=1,...,4
B~ N(0,0%44), forj=1,...,50
» Additively redundant model:
ﬁfge ~ N(uage,agge), forj=1,...,4
ﬁ@b&mte

~ N(MStﬂte7Js2tate)7 forj=1,...,50

» Why add the redundant piage, tstate?
> [terative algorithm moves more smoothly
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Motivation for redundant parameterization

Bugs model at "C:/research/radon/radon.anova.1.txt", 3 chains, each with 100 iterations

80% interval for each chain R-hat
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medians and 80% intervals
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» Model
Pr(yi=1) = logit™ (8 + 25, + iaic) )
ﬂfge ~ N(uage,agge), forj=1,...,4
B3~ N(state; Oate)s for j=1,...,50
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» Model
Pr(yi=1) = logit™ (8 + 25, + iaic) )
ﬂfge ~ N(uage,agge), forj=1,...,4
B3~ N(state; Oate)s for j=1,...,50

» ldentify using centered parameters:

ﬁ”?ge _ ﬁage ﬁage7 forj=1,...,4
Bftate = ﬁftate — ﬁState, forj=1,...,50

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

Redundant additive parameterization

» Model
Pr(yi=1) = logit™ (8 + 25, + iaic) )
ﬂfge ~ N(uage,agge), forj=1,...,4
B3~ N(state; Oate)s for j=1,...,50

» ldentify using centered parameters:

ﬁ”?ge _ ﬁage ﬁage7 forj=1,...,4
Bftate = ﬁftate — ﬁState, forj=1,...,50

» Redefine the constant term:

5"0 — 60 + Bage + Bage
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Redundant multiplicative parameterization

» New model

Priyi=1) = logit™" (50 + 5 By T :E:Eg(i))
G5~ N(ptage; 05ge); forj=1,....4
/Bstate ~ N(,U'statey state) forj=1,. 50
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Redundant multiplicative parameterization
» New model
Priyi=1) = logit™" (50 + 5 By T :E:Eg(i))
B~ N(ftage, Oage), forj=1,...,4
ﬂjgtate ~ N(,U'statey Usztate)7 fOI’j = l, ey 50

» Identify using centered and scaled parameters:

GiEe = g - 30), forj=1,...,4
Bjstate — £state (ﬁ;tate o Bstahe) ’ forj =1,...,50
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Redundant multiplicative parameterization

» New model

Priyi=1) = logit™" (50 + 5 By T :E:Eg(i))
G5~ N(ptage; 05ge); forj=1,....4
/Bstate ~ N(,U'statey state) forj=1,. 50

» Identify using centered and scaled parameters:

Bj,"ge — fagc(ﬁage (?8°), forj=1,...,4
Bjstate — £state (ﬁ;tate o Bstahe) ’ forj =1,...,50

» Faster convergence
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MLM with few groups

Redundant multiplicative parameterization

» New model

Priyi=1) = logit™" (50 + 5 By T :E:Eg(i))
G5~ N(ptage; 05ge); forj=1,....4
/Bstate ~ N(,U'statey state) forj=1,. 50

» Identify using centered and scaled parameters:
Bj,"ge — fagc(ﬁage (?8°), forj=1,...,4
Bjstate — £state (ﬁ;tate o Bstahe) ’ forj =1,...,50

» Faster convergence

» More general model, connections to factor analysis
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» Goal is to more accurately estimate coefficients that are
grouped
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» Goal is to more accurately estimate coefficients that are
grouped

» A reparameterization can change a model
(even if it leaves the likelihood unchanged)

» Redundant additive parameterization

Andrew Gelman Q’s and A’s on multilevel models



Structured data and multilevel models Rodents
Opinions

MLM with few groups

MLM and partial pooling
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grouped

» A reparameterization can change a model
(even if it leaves the likelihood unchanged)

» Redundant additive parameterization

» Redundant multiplicative parameterization
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MLM and partial pooling

v

Goal is to more accurately estimate coefficients that are
grouped

v

A reparameterization can change a model
(even if it leaves the likelihood unchanged)

v

Redundant additive parameterization

v

Redundant multiplicative parameterization

v

Weakly-informative prior distribution for group-level variance
parameters
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Displaying and summarizing inferences

» Displaying parameters in groups rather than as a long list
» Analysis of variance
> Average predictive effects

» R? and partial pooling factors
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Raw display of inference

mean sd 2.5% 257, 50% 75% 97.5), Rhat n.eff
B.O 0.402 0.147 0.044 0.326 0.413 0.499 0.652 1.024 110
b.female -0.094 0.102 -0.283 -0.162 -0.095 -0.034 0.107 1.001 1000
b.black -1.701 0.305 -2.323 -1.910 -1.691 -1.486 -1.152 1.014 500
b.female.black -0.143 0.393 -0.834 -0.383 -0.155 0.104 0.620 1.007 1000
B.age[1] 0.084 0.088 -0.053 0.012 0.075 0.140 0.277 1.062 45
B.age[2] -0.072 0.087 -0.260 -0.121 -0.054 -0.006 0.052 1.017 190
B.age[3] 0.044 0.077 -0.105 -0.007 0.038 0.095 0.203 1.029 130
B.age[4] -0.057 0.096 -0.265 -0.115 -0.052 0.001 0.133 1.076 32
B.edu[1] -0.148 0.131 -0.436 -0.241 -0.137 -0.044 0.053 1.074 31
B.edu[2] -0.022 0.082 -0.182 -0.069 -0.021 0.025 0.152 1.028 160
B.edu[3] 0.148 0.112 -0.032 0.065 0.142 0.228 0.370 1.049 45
B.edu[4] 0.023 0.090 -0.170 -0.030 0.015 0.074 0.224 1.061 37
B.age.edul1,1] -0.044 0.133 -0.363 -0.104 -0.019 0.025 0.170 1.018 1000
B.age.edul1,2] 0.059 0.123 -0.163 -0.011 0.032 0.118 0.353 1.016 580
B.age.edul1,3] 0.049 0.124 -0.146 -0.023 0.022 0.104 0.349 1.015 280
B.age.edu[1,4] 0.001 0.116 -0.237 -0.061 0.000 0.052 0.280 1.010 1000
B.age.edu[2,1] 0.066 0.152 -0.208 -0.008 0.032 0.124 0.449 1.022 140
B.age.edu[2,2] -0.081 0.127 -0.407 -0.137 -0.055 0.001 0.094 1.057 120
B.age.edu[2,3] -0.004 0.102 -0.226 -0.048 0.000 0.041 0.215 1.008 940
B.age.edu[2,4] -0.042 0.108 -0.282 -0.100 -0.026 0.014 0.157 1.017 170
B.age.edu[3,1] 0.034 0.135 -0.215 -0.030 0.009 0.091 0.361 1.021 230
B.age.edu[3,2] 0.007 0.102 -0.213 -0.039 0.003 0.052 0.220 1.019 610
B.age.edu[3,3] 0.033 0.130 -0.215 -0.029 0.009 0.076 0.410 1.080 61
B.age.edu[3,4] -0.009 0.109 -0.236 -0.064 -0.005 0.043 0.214 1.024 150
B.age.edul4,1] -0.141 0.190 -0.672 -0.224 -0.086 -0.003 0.100 1.036 270
B.age.edul4,2] -0.014 0.119 -0.280 -0.059 -0.008 0.033 0.239 1.017 240
B.age.edul4,3] 0.046 0.132 -0.192 -0.024 0.019 0.108 0332 1.010 210
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Bugs model at "C. i .bug", 3 chains, each with 2001 iterations
80% interval for each chain R-hat medians and 80% intervals
-4 -2 0 2 1 15 2+
B.0
B.0 - .
b.female = .
b.black —_ . b.female
b.female.black — .
B.age[1] = . b.black {
[2] = .
[3] = .
4] = .
Bedu(1) J . b.female. black_o
[2] = .
3] | .
4] : . B.age byry
+B.age.edu[1,1] = . 1234
[L2] - .
Hg} - . B.edu gt
21] = . 1234
2,2 - .
{2‘3} = . B.age.edu tddbebycriedigeds
[2.4] = .
[3.1] - N f2saf2aalzaatsan
32 < .  Bstate
*B.Slale%} - . 121‘5513»1012ulsmznuuzﬁzxmaz:uaﬁzxm
- .
{i} =; : B.region .
[s] - . 1234 s
[6] = .
{g} - ; Sigma.age ‘
[9] .
[10] - .
- . Sigma.edu 5 A

B.region[1]
2

.

Andrew Gelman Q’s and A’s on multilevel models



Graphical display of a fitted mim

. . . Analysis of variance
Understanding multilevel models and variance components Y

Average predictive effects
R and pooling factors

Better graphical display 1: demographics
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Better graphical display 3: between states
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» Each row of the Anova table is a variance component
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» Each row of the Anova table is a variance component
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Anova and multilevel models

» Each row of the Anova table is a variance component
» Goal
» How important is each source of variation?
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Anova and multilevel models

» Each row of the Anova table is a variance component
» Goal

» How important is each source of variation?
» Estimating and comparing variance components
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Anova and multilevel models

» Each row of the Anova table is a variance component
» Goal

» How important is each source of variation?
» Estimating and comparing variance components
» Not testing if a variance component equals 0
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Anova and multilevel models

» Each row of the Anova table is a variance component
» Goal

» How important is each source of variation?
» Estimating and comparing variance components
» Not testing if a variance component equals 0

» Multilevel regression solves classical Anova problems
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Raw display of inference
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. Source df Est. sd of effects
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» What are “fixed” and “random” effects?
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» What are “fixed” and “random” effects?

» Five incompatible definitions:
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Fixed and random effects?

» What are “fixed” and “random” effects?
» Five incompatible definitions:

1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)
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Fixed and random effects?

» What are “fixed” and “random” effects?

» Five incompatible definitions:
1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)
2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)
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Fixed and random effects?

» What are “fixed” and “random” effects?

» Five incompatible definitions:
1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)
2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)
3. Fixed effects are the entire population, random are a
small sample from a larger population (Tukey, 1960)
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Fixed and random effects?

» What are “fixed” and “random” effects?
» Five incompatible definitions:
1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)
2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)
3. Fixed effects are the entire population, random are a
small sample from a larger population (Tukey, 1960)
4. Random effects are realized values of a random variable
(LaMotte, 1983)
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Understanding multilevel models and variance components

Fixed and random effects?

» What are “fixed” and “random” effects?
» Five incompatible definitions:
1. Fixed effects are constant across individuals; random
effects vary (Leeuw, 1998)
2. Effects are fixed if they are interesting in themselves,
random if you care about the population (Searle, 1992)
3. Fixed effects are the entire population, random are a
small sample from a larger population (Tukey, 1960)
4. Random effects are realized values of a random variable
(LaMotte, 1983)
5. Fixed effects are estimated using least squares, random
effects are esitmated using shrinkage (Snijders, 1999)
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How to think about fixed and random effects

» ldeally, allow all coefficients to vary by group
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» At each level of the model:
> Ok = (XB)i + ek
» A =0 if no pooling of €'s
» X\ =0 if complete pooling of €¢'s to 0
» Multilevel generalization of Bayesian pooling factor
» Can't simply compare to the “complete pooling” and “no
pooling” estimates
» “No pooling” estimate doesn't always exist!
» At each level, our pooling factor is defined based on the mean
and variance of the ¢;'s
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» Forget about “fixed and random effects”; think about
“finite-pop and superpop estimands” instead

» Always use the multilevel model, but estimand of interest
depends on context

» For small # groups: use the new half-t prior dist for variance
parameters
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» Multivariate models (for example, varying-intercept,
varying-slope models)
» Models with deep interaction structures
» Automatic graphical display
» Model building

Andrew Gelman Q’s and A’s on multilevel models



	Structured data and multilevel models
	Rodents
	Opinions
	MLM with few groups

	Understanding multilevel models and variance components
	Graphical display of a fitted mlm
	Analysis of variance
	Average predictive effects
	R2 and pooling factors

	Conclusions
	Understanding sources of variation
	Multilevel models even when # groups is small


