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The (abridged) model in Stan

parameters {

real b;

real<lower=0> sigma_a;

real<lower=0> sigma_y;

vector[nteams] eta_a;

}

transformed parameters {

vector[nteams] a;

a = b*prior_score + sigma_a*eta_a;

}

model {

eta_a ~ normal(0,1);

sqrt_dif ~ student_t(df, a[team1] - a[team2], sigma_y);

}



Load Stan and data into R

library("rstan")

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

teams <- as.vector(unlist(read.table("soccerpowerindex.txt",

header=FALSE)))

nteams <- length(teams)

prior_score <- rev(1:nteams)

prior_score <- (prior_score - mean(prior_score))/

(2*sd(prior_score))

data2014 <- read.table("worldcup2014.txt", header=FALSE)

ngames <- nrow (data2014)

team1 <- match (as.vector(data2014[[1]]), teams)

score1 <- as.vector(data2014[[2]])

team2 <- match (as.vector(data2014[[3]]), teams)

score2 <- as.vector(data2014[[4]])

df <- 7



Fit the model

fit <- stan("worldcup_first_try.stan")

print(fit)



Check convergence

Inference for Stan model: worldcup_first_try.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 25% 50% 75% n_eff Rhat

b 0.46 0.00 0.09 0.40 0.46 0.52 1369 1

sigma_a 0.13 0.00 0.07 0.08 0.13 0.18 653 1

sigma_y 0.42 0.00 0.05 0.39 0.42 0.45 1560 1

eta_a[1] -0.18 0.02 0.84 -0.74 -0.18 0.38 2506 1

eta_a[2] 0.18 0.01 0.82 -0.35 0.18 0.73 3219 1

eta_a[3] 0.58 0.02 0.91 0.00 0.60 1.20 1864 1

eta_a[4] -0.59 0.02 1.00 -1.28 -0.62 0.10 2284 1

eta_a[5] 0.03 0.02 0.88 -0.54 0.00 0.58 3163 1

. . .



Graph the estimates



Compare to model fit without prior rankings



Compare model to predictions



After finding and fixing a bug
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Geometry-based model
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Stan code

data {

int J;

int n[J];

real x[J];

int y[J];

real r;

real R;

}

parameters {

real<lower=0> sigma;

}

model {

real p[J];

p = 2*Phi(asin((R-r)/x) / sigma) - 1;

y ~ binomial(n, p);

}



Fit the model

golf <- read.table("golf.txt", header=TRUE, skip=2)

x <- golf$x

y <- golf$y

n <- golf$n

J <- length(y)

r <- (1.68/2)/12

R <- (4.25/2)/12

fit1 <- stan("golf1.stan")



Check convergence

> print(fit1)

Inference for Stan model: golf1.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 25% 50% 75% n_eff Rhat

sigma 0.03 0.00 0.00 0.03 0.03 0.03 1692 1

sigma_degrees 1.53 0.00 0.02 1.51 1.53 1.54 1692 1
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Birthdays!



The published graphs show data from 30 days in the year
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A surprisingly tricky model

I Sum of declining exponentials: y = a1e
−b1x + a2e

−b2x

I Statistical version: yi = (a1e
−b1xi + a2e

−b2xi ) · εi
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Stan code

data {

int N;

vector[N] x;

vector[N] y;}

parameters {

vector[2] a;

positive_ordered[2] b;

}

model {

vector[N] ypred;

ypred = a[1]*exp(-b[1]*x) + a[2]*exp(-b[2]*x);

y ~ lognormal(log(ypred), sigma);

}



Simulate fake data in R

a <- c(1, 0.8)

b <- c(0.1, 2)

sigma <- 0.2

x <- (1:1000)/100

N <- length(x)

ypred <- a[1]*exp(-b[1]*x) + a[2]*exp(-b[2]*x)

y <- ypred*exp(rnorm(N, 0, sigma))
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Fit the model in Stan

I Remember true values:

a <- c(1, 0.8)

b <- c(0.1, 2)

sigma <- .2

Inference for Stan model: exponentials.

4 chains, each with iter=1000; warmup=500; thin=1;

post-warmup draws per chain=500, total post-warmup draws=2000.

mean se_mean sd 25% 50% 75% n_eff Rhat

a[1] 1.00 0.00 0.03 0.99 1.00 1.02 494 1

a[2] 0.70 0.00 0.08 0.65 0.69 0.75 620 1

b[1] 0.10 0.00 0.00 0.10 0.10 0.10 532 1

b[2] 1.71 0.02 0.34 1.48 1.67 1.90 498 1

sigma 0.19 0.00 0.00 0.19 0.19 0.20 952 1



Try again with new parameter values

I Simulate new data using these new parameter values:

a <- c(1, 0.8)

b <- c(0.1, 0.2)

I Then fit the model:

mean se_mean sd 25% 50% 75% n_eff Rhat

a[1] 1.33e+00 0.54 0.77 1.28 1.77e+00 1.79e+00 2 44.2

a[2] 2.46e+294 Inf Inf 0.00 0.00e+00 1.77e+00 2000 NaN

b[1] 1.00e-01 0.04 0.06 0.10 1.30e-01 1.30e-01 2 33.6

b[2] 3.09e+305 Inf Inf 0.50 1.15e+109 4.77e+212 2000 NaN

sigma 2.00e-01 0.00 0.00 0.19 2.00e-01 2.00e-01 65 1.0



What went wrong?
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What went wrong?
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Informative prior distribution

log_a ~ normal(0, 1);

log_b ~ normal(0, 1);



Happy ending

a <- c(1, 0.8)

b <- c(0.1, 0.2)

sigma <- 0.2

mean se_mean sd 25% 50% 75% n_eff Rhat

a[1] 1.56 0.09 0.32 1.52 1.72 1.75 13 1.25

a[2] 0.32 0.08 0.28 0.14 0.22 0.37 13 1.20

b[1] 0.13 0.00 0.01 0.12 0.13 0.13 22 1.14

b[2] 1.94 0.20 2.29 0.22 1.26 3.00 127 1.05

sigma 0.20 0.00 0.00 0.19 0.20 0.20 656 1.00



Skewed posterior distribution
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Some ideas in Bayesian workflow

I Putting parameters on unit scale

I Weakly informative priors

I Predictive model checking

I Predictive model evaluation

I Predictive model averaging

I Fake-data checking

I The network of models



Let us have
the serenity to embrace the variation that we cannot reduce,

the courage to reduce the variation we cannot embrace,
and the wisdom to distinguish one from the other.


