Bayesian workflow

Andrew Gelman
Dept of Statistics and Dept of Political Science Columbia University, New York

Department of Biostatistics University of Washington, Seattle
26 Oct 2017

Team quality (estimate $+/-1$ s.e.)

Bresil 3 Croatie 1
Mexique 1 Cameroun 0
Bresil 0 Mexique 0
Cameroun 0 Croatie 4
Cameroun 1 Bresil 4
Croatie 1 Mexique $3 \mid$
Espagne 1 Pays-Bas 5
Chili 3 Australie 1
Espagne 0 Chili 2
Australie 2 Pays-Bas 3
Australie 0 Espagne 3
Pays-Bas 2 Chili 0
Colombie 3 Grece 0
Coted'Ivoire 2 Japon 1
Colombie 2 Coted'Ivoire 1
Japon 0 Grece 0
Japon 1 Colombie 4
Grece 2 Coted'Ivoire 1
Uruguay 1 CostaRica 3
Angletere 1 Italie 2
Uruguay 2 Angleterre 1

The (abridged) model in Stan

```
parameters {
    real b;
    real<lower=0> sigma_a;
    real<lower=0> sigma_y;
    vector[nteams] eta_a;
}
transformed parameters {
    vector[nteams] a;
    a = b*prior_score + sigma_a*eta_a;
}
model {
    eta_a ~ normal(0,1);
    sqrt_dif ~ student_t(df, a[team1] - a[team2], sigma_y);
}
```


Load Stan and data into R

```
library("rstan")
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
teams <- as.vector(unlist(read.table("soccerpowerindex.txt",
    header=FALSE)))
nteams <- length(teams)
prior_score <- rev(1:nteams)
prior_score <- (prior_score - mean(prior_score))/
    (2*sd(prior_score))
data2014 <- read.table("worldcup2014.txt", header=FALSE)
ngames <- nrow (data2014)
team1 <- match (as.vector(data2014[[1]]), teams)
score1 <- as.vector(data2014[[2]])
team2 <- match (as.vector(data2014[[3]]), teams)
score2 <- as.vector(data2014[[4]])
df <- 7
```


Fit the model

fit <- stan("worldcup_first_try.stan") print(fit)

Check convergence

Inference for Stan model: worldcup_first_try. 4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	25%	50%	75%	n_eff	Rhat
b	0.46	0.00	0.09	0.40	0.46	0.52	1369	1
sigma_a	0.13	0.00	0.07	0.08	0.13	0.18	653	1
sigma_y	0.42	0.00	0.05	0.39	0.42	0.45	1560	1
eta_a[1]	-0.18	0.02	0.84	-0.74	-0.18	0.38	2506	1
eta_a[2]	0.18	0.01	0.82	-0.35	0.18	0.73	3219	1
eta_a[3]	0.58	0.02	0.91	0.00	0.60	1.20	1864	1
eta_a[4]	-0.59	0.02	1.00	-1.28	-0.62	0.10	2284	1
eta_a[5]	0.03	0.02	0.88	-0.54	0.00	0.58	3163	1

Graph the estimates

Team quality (estimate +/-1 s.e.)

Bresil
Argentine Allemagne
Espagne Chili
France Colombie Uruguay
Angleterre
Belgique
Pays-Bas
Bosnie
Equateur
Portugal
Coted'Ivoire
Russie Italie
Suisse
Etats-Unis
Mexique

Compare to model fit without prior rankings

Team quality (estimate +/-1 s.e.)

Bresil
Argentine Allemagne

Espagne Chili
France
Colombie
Uruguay
Angleterre
Belgique
Pays-Bas
Bosnie
Equateur
Portugal
Coted'Ivoire
Russie
Italie
Suisse
Etats-Unis
Mexique

Compare model to predictions

Game score differentials compared to 95% predictive interval from model

Bresil vs. Croatie
Mexique vs. Cameroun
Bresil vs. Mexique
Cameroun vs. Croatie
Cameroun vs. Bresil
Croatie vs. Mexique
Espagne vs. Pays-Bas Chili vs. Australie Espagne vs. Chili
Australie vs. Pays-Bas
Australie vs. Espagne
Pays-Bas vs. Chili
Colombie vs. Grece
Coted'Ivoire vs. Japon
Colombie vs. Coted'lvoire
Japon vs. Grece
Japon vs. Colombie

After finding and fixing a bug

Allemagne vs. Algerie
Espagne vs. Australie
Argentine vs. Iran
Chili vs. Australie
Bresil vs. Cameroun
France vs. Honduras
Bresil vs. Croatie
Argentine vs. Nigeria
Belgique vs. Algerie
Pays-Bas vs. Australie
Colombie vs. Japon
Bresil vs. Mexique
France vs. Nigeria
Allemagne vs. Ghana
Uruguay vs. CostaRica
Bosnie vs. Iran
Equateur vs. Honduras

Game score differentials compared to $\mathbf{9 5 \%}$ predictive interval from model

Data on putts in pro golf

What's the probability of making a golf putt?

Geometry-based model

Stan code

```
data {
    int J;
    int n[J];
    real x[J];
    int y[J];
    real r;
    real R;
}
parameters {
    real<lower=0> sigma;
}
model {
    real p[J];
    p = 2*Phi(asin((R-r)/x) / sigma) - 1;
    y ~ binomial(n, p);
}
```


Fit the model

```
golf <- read.table("golf.txt", header=TRUE, skip=2)
x <- golf$x
y <- golf$y
n <- golf$n
J <- length(y)
r <- (1.68/2)/12
R <- (4.25/2)/12
fit1 <- stan("golf1.stan")
```


Check convergence

> print(fit1)

Inference for Stan model: golf1.
4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

sigma	0.03	0.00	0.00	0.03	0.03	0.03	1692	1
sigma_degrees	1.53	0.00	0.02	1.51	1.53	1.54	1692	1

What's the probability of making a golf putt?

Two models fit to the golf putting data

Birthdays!

Short report

Influence of Valentine's Day and Halloween on Birth Timing

Becca R. Levy*, Pil H. Chung, Martin D. Slade
Yale University, School of Public Health, Division of Social \& Behavioral Sciences, 60 College Street, New Haven, CT 06520-8034, United States

ARTICLEINFO

Article history:

Available online 28 July 2011

Keywords:

United States
Culture
Birth timing
Holidays
Pregnancy
Biocultural
Birth

Abstract

It is known that cultural representations, in the form of stereotypes, can influence functional health. We predicted that the influence of cultural representations, in the form of salient holidays, would extend to birth timing. On Valentine's Day, which conveys positive symbolism, there was a 3.6% increase in spontaneous births and a 12.1% increase in cesarean births. Whereas, on Halloween, which conveys negative symbolism, there was a 5.3% decrease in spontaneous births and a 16.9% decrease in cesarean births. These effects reached significance at $p<.0001$, after adjusting for year and day of the week. The sample was based on birth-certificate information for all births in the United States within one week on either side of each holiday across 11 years. The Valentine's-Day window included $1,676,217$ births and the Halloween window included $1,809,304$ births. Our findings raise the possibility that pregnant women may be able to control the timing of spontaneous births, in contrast to the traditional assumption, and that scheduled births are also influenced by the cultural representations of the two holidays.

© 2011 Elsevier Ltd. All rights reserved.

The published graphs show data from 30 days in the year

Births by Day of Year

Which Birth Dates Are Most Common?

Relative Number of Births

A surprisingly tricky model

- Sum of declining exponentials: $y=a_{1} e^{-b_{1} x}+a_{2} e^{-b_{2} x}$
- Statistical version: $y_{i}=\left(a_{1} e^{-b_{1} x_{i}}+a_{2} e^{-b_{2} x_{i}}\right) \cdot \epsilon_{i}$

Stan code

```
data {
        int N;
        vector[N] x;
        vector[N] y;}
parameters {
        vector[2] a;
        positive_ordered[2] b;
}
model {
        vector[N] ypred;
        ypred = a[1]*exp(-b[1]*x) + a[2]*exp(-b[2]*x);
        y ~ lognormal(log(ypred), sigma);
}
```


Simulate fake data in R

$\mathrm{a}<-\mathrm{c}(1,0.8)$
$\mathrm{b}<-\mathrm{c}(0.1,2)$
sigma <- 0.2
$\mathrm{x}<-(1: 1000) / 100$
N <- length (x)
ypred <- $\mathrm{a}[1] * \exp (-\mathrm{b}[1] * \mathrm{x})+\mathrm{a}[2] * \exp (-\mathrm{b}[2] * \mathrm{x})$
y <- ypred*exp(rnorm(N, 0, sigma))

Fit the model in Stan

- Remember true values:

$$
\begin{aligned}
& \mathrm{a}<-\mathrm{c}(1,0.8) \\
& \mathrm{b}<-\mathrm{c}(0.1,2) \\
& \text { sigma <-. } 2
\end{aligned}
$$

Inference for Stan model: exponentials.
4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000.
mean se_mean sd 25% 50\% 75% n_eff Rhat

$\mathrm{a}[1]$	1.00	0.00	0.03	0.99	1.00	1.02	494	1
$\mathrm{a}[2]$	0.70	0.00	0.08	0.65	0.69	0.75	620	1
$\mathrm{~b}[1]$	0.10	0.00	0.00	0.10	0.10	0.10	532	1
$\mathrm{~b}[2]$	1.71	0.02	0.34	1.48	1.67	1.90	498	1
sigma	0.19	0.00	0.00	0.19	0.19	0.20	952	1

Try again with new parameter values

- Simulate new data using these new parameter values:

```
a <- c(1, 0.8)
b <- c(0.1, 0.2)
```

- Then fit the model:

	mean	se_mean	sd	25%	50%	75%	n_eff	Rhat
$\mathrm{a}[1]$	$1.33 \mathrm{e}+00$	0.54	0.77	1.28	$1.77 \mathrm{e}+00$	$1.79 \mathrm{e}+00$	2	44.2
$\mathrm{a}[2]$	$2.46 \mathrm{e}+294$	Inf	Inf	0.00	$0.00 \mathrm{e}+00$	$1.77 \mathrm{e}+00$	2000	NaN
$\mathrm{b}[1]$	$1.00 \mathrm{e}-01$	0.04	0.06	0.10	$1.30 \mathrm{e}-01$	$1.30 \mathrm{e}-01$	2	33.6
$\mathrm{~b}[2]$	$3.09 \mathrm{e}+305$	Inf	Inf	0.50	$1.15 \mathrm{e}+109$	$4.77 \mathrm{e}+212$	2000	NaN
sigma	$2.00 \mathrm{e}-01$	0.00	0.00	0.19	$2.00 \mathrm{e}-01$	$2.00 \mathrm{e}-01$	65	1.0

What went wrong?

What went wrong?

Informative prior distribution

$$
\begin{aligned}
& \log _{-} \mathrm{a} \sim \operatorname{normal}(0,1) ; \\
& \log _{\mathrm{b}} \mathrm{~b} \sim \operatorname{normal}(0,1) ;
\end{aligned}
$$

Happy ending

```
a <- c(1, 0.8)
b <- c(0.1, 0.2)
sigma <- 0.2
```

 mean se_mean sd \(25 \%\) 50\% \(75 \%\) n_eff Rhat
 $\begin{array}{lllllllll}a[1] & 1.56 & 0.09 & 0.32 & 1.52 & 1.72 & 1.75 & 13 & 1.25\end{array}$
$\begin{array}{lllllllll}\mathrm{a}[2] & 0.32 & 0.08 & 0.28 & 0.14 & 0.22 & 0.37 & 13 & 1.20\end{array}$
$\begin{array}{lllllllll}b[1] & 0.13 & 0.00 & 0.01 & 0.12 & 0.13 & 0.13 & 22 & 1.14\end{array}$
$\begin{array}{llllllllll}\text { b [2] } & 1.94 & 0.20 & 2.29 & 0.22 & 1.26 & 3.00 & 127 & 1.05\end{array}$
sigma $0.20 \quad 0.00 \quad 0.00 \quad 0.19 \quad 0.20 \quad 0.20 \quad 6561.00$

Skewed posterior distribution

Some ideas in Bayesian workflow

- Putting parameters on unit scale
- Weakly informative priors
- Predictive model checking
- Predictive model evaluation
- Predictive model averaging
- Fake-data checking
- The network of models

Let us have

the serenity to embrace the variation that we cannot reduce, the courage to reduce the variation we cannot embrace, and the wisdom to distinguish one from the other.

