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Example 1: Stan goes to the World Cup

Team quality (estimate +/- 1 s.e.)
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| X worldcup2012.txt
Bresil 3 Croatie 1
Mexique 1 Cameroun ©
Bresil @ Mexique ©
Cameroun @ Croatie 4
Cameroun 1 Bresil 4
Croatie 1 Mexique ﬂ
Espagne 1 Pays-Bas 5
Chili 3 Australie 1
Espagne @ Chili 2
Australie 2 Pays-Bas 3
Australie © Espagne 3
Pays-Bas 2 Chili @
Colombie 3 Grece ©
Coted'Ivoire 2 Japon 1
Colombie 2 Coted'Ivoire 1
Japon © Grece @
Japon 1 Colombie 4
Grece 2 Coted'Ivoire 1
Uruguay 1 CostaRica 3
Angleterre 1 Italie 2
Uruguay 2 Angleterre 1

% soccerpowerindex.txt
Fresil
Argentine
Allemagne
Espagne
Chili
France
Colombie
Uruguay
Angleterre
Belgique
Pays-Bas
Bosnie
Equateur
Portugal

Coted'Ivoire
‘Russie
Italie
‘Suisse
Etats-Unis
'Mexique



The model

» Fit data on signed square roots:

Vi = \/score differential when team i plays team j

i 4. 2
> Model y;; ~ N(a; — a;, 0})
» a; and a; are “ability parameters”
> 0y is a scale parameter
» To allow for outliers, use t; instead of normal

» Prior info on abilities:
a; ~ N(j + b * prior.score;, 02)

» Wecanset u =0

» No further prior info in model



Stan model (part 1)

data {
int nteams;
int ngames;
vector [nteams] prior_score;
int teaml[ngames];
int team2[ngames];
vector [ngames] scorel;
vector [ngames] score2;
real df;
}
transformed data {
vector [ngames] dif;
vector [ngames] sqrt_dif;
dif <- scorel - score2;
for (i in 1:ngames)
sqrt_dif[i] <- (step(difl[il)-.5)*sqrt(fabs(difl[i]));



Stan model (part 2)

parameters {
real b;
real<lower=0> sigma_a;
real<lower=0> sigma_y;
vector [nteams] eta_a;
}
transformed parameters {
vector [nteams] a;
a <- bxprior_score + sigma_aketa_a;
}
model {
eta_a ~ normal(0,1);
for (i in 1:ngames)
sqrt_dif [i] ~ student_t(df, al[teaml[i]]-al[team2[i]],sigma_y)



Fitting the model

» Go into R

> Read in the data

» Fit the Stan model

» Check convergence

» Graph the estimated team abilities
» Re-fit without prior information

» Compare to model with prior information



Game score differentials
compared to 95% predictive interval from model
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Checking model fit

Still inside R

For each game, plot actual score differential and 95%
predictive intervals

v

v

» Not cross-validated but no big deal in this case because n is
large

The predictions don't fit the data!!

v

v

Redoing the predictive intervals

v

Re-plot, still a problem!



| found the bug!

Still inside R

Re-fit the model on the original scale

v

v

v

Display the estimated team abilities

v

Updated plot of data with predictive intervals—now it's ok!

v

Go back and find the bug in the square-root-scale model
Re-fit the debugged model

v



Game score differentials
compared to 95% predictive interval from model

5 -4 -2 0 2 4 6
| | |

Allemagne vs. Algeria
Espagne vs. Australie | -
Argentine vs. [ran T
Chili vs. Australie : .
1

Bresil vs. Cameroun

Framce vs. Honduras + -

Bresil vs. Croatie :
Argentine vs. Migeria : -
1

L ]

Balgique ve. Algerie
Pays-Bas vs. Ausiralie t -
Colombie ve. Japan
Bresil vs. Mexique
France vs. Nigeria -
Allemagne ve. Ghana
Uruguay vs. CostaRlica -
Bosnie vs. Iran
Equateuwr vs. Honduras
Angleterrs vs. CostaRica
Argentine vs. Suisse

Alsmonns o Einie | Inia -

Lo o =

=l == =




Bresil
Argentine
Allemagne
Espagne
Chili
France
Colombia
Uruguay
Angletarra
Belgique
Pays-Bas
Bosnie
Eguateur
Portugal
Coted'Ivaire
Russia
Italie
Suisse
Etats-Unis
Mexique
Ghana
Grece
Croatia
Miaera

-1.5

-1.0
l

Team quality (estimate +/- 1 s.e.)

0.8
I

0.0 0.5
|

—_——
I
I
[
1

L —
[



Bayesian data analysis: (1) Modeling

> “Generative models”
» Data are a realization from a (multivariate) probability
distribution
» Data vector y, probability model p(y|6), parameter vector 6
» Prior distributions
> In Bayes inference, the parameter vector 6 is a realization from
a prior distribution, p(6|¢)
» Vector of hyperparameters ¢ is specified or itself modeled



Bayesian data analysis: (2) Inference

> Inference is represented by a matrix of posterior simulations
» 1000 simulations of 90 parameters: a 1000 x 90 matrix
» Postprocessing

» Inference for qoi's
» Decision analysis



Bayesian data analysis: (3) Model checking/improvement

» Do the inferences make sense?

» Are the model's predictions consistent with the data?
> Not: Is the model true?

» Not: What is Pr (model is true)?

» Not: Can we “reject” the model?

» Expanding the model

» Including more data



Example 2: Toxicology

v

Central story: 4-compartment model of toxicokinetics of
perchloroethylene

v

Bayesian inference combines prior information and data

v

Unresolved questions

v

How the model all fits together



Toxicokinetics of perchloroethylene

» Goal:
» How much PERC is metabolized at low doses
» Population distribution
» Experimental data: Expose 6 healthy volunteers to PERC for
four hours, then measure concentrations in blood and air for 2
weeks
» 4-compartment model, metabolism in liver
» Qur analysis:

» Simple data-fitting did not work
» Use Bayes to combine data and prior info within model



4-compartment model
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Simple statistical ideas did not work

v

Fitting 4-compartment model directly to data
Assisted model fit

v

» 1 or 2-compartment model

Simulation from prior distribution

v



Simple statistical ideas that did not work:

Fitting 4-compartment model directly to data

» Nonlinear least squares
» Fitting to each person separately:
» Unstable: approx 30 data points, 15 param
> “8 kg liver”
» Pooling data and estimating parameters for “the standard

man
» Not useful for our goal of population inference



Simple statistical ideas that did not work:

Assisted model fit

» Set some parameters to fixed values (from the pharmacology
literature)

» Estimate the other parameters

» Results:

» Couldn't fit the data well
» Difficult to get fixed values for PERC-specific parameters such
as equilibrium concentration ratios



Simple statistical ideas that did not work:

1 or 2-compartment model

» Simpler model can be estimated easily and robustly
» Does not fit the data well
» Most of the PERC leaves in a few hours, but some stays in the
body after a week or more

> Not realistic for low-dose extrapolation



Simple statistical ideas that did not work:

Simulation from prior distribution

>

Get prior information on parameters from pharmacology
literature

v

Try to fit data within these prior constraints
Does not fit the data well

v

v

Difficult to get good prior information for PERC-specific
parameters such as equilibrium concentration ratios



Bayesian inference

> 4-compartment model

v

15 parameters for each person
Prior information

v

» Strong for some parameters (e.g., volume of liver)
» Weak for others (e.g., Michaelis-Menten coef)
» Model includes uncertainty and variation

v

Posterior simulation: random walk through parameter space

v

Inference for parameters and predictions

v

Model checking



Hierarchical prior distributions

» Prior distribution for a rate parameter in the metabolism,
t); for person j
> log 6 ~ N(u,7?)
» 1~ N(log 16, (log 10)?)
» 7~ log?2
» Large uncertainty, small variation
» Can learn about 4 using data from several people
» Can't do this without a hierarchical model

» Transformations and prior correlations (why transformations
are particularly important for Bayesians)



Hierarchical prior distributions

Population
Parameter prior
Ventilation/perfusion 1.6(x+ 1.3)
ratio (VPR) x+13
Blood flow, well- A47(x+1.17)
perfused tissues (Fwp) X+ 117
Blood flow, poorly 20(x=+ 1.22)
perfused tissues (Fpp) X+ 1.22
Blood flow, 07(x+ 1.27)
fat (Ff) X+ 1.27
Blood flow, .25(x+ 1.15)
liver (Fl) X+ 1.15
Volume, well- 27(x+ 1.36)
perfused tissues (Vwp) X+ 1.36
Volume, poorly 55(x+1.17)
perfused tissues (Vpp) x+ 117
Volume, .033(x+ 1.1)
liver (VI) x+=1.1

Partition coeff,
blood/air (Pba)

Partition coeff,
well-perfused (Pwp)

Partition coeff,
poorly perfused (Ppp)

Partition coeff,
fat (Pf)

Partition coeff,
liver (PI)

Max metabolic rate
in liver (VMI)

Km
in liver (KMI)

12(x+ 1.5)
x+ 1.3

4.8(x+ 1.5)
x+ 1.3
1.6(x=+ 1.5)
x+ 1.3
125(x+ 1.5)
x+1.3
4.8(x+ 1.5)
x+1.3
.042(x+ 10)

X+ 2

16(x+ 10)
X+ 1.5



What we did

» Set up a hierarchical prior distribution with uncertainty and
population variation for a 4-compartment model

» Fit the model to data (much computation)

» Checked inferences about parameters to see that they made
sense

» Re-ran model under hypothetical low-dose, high-dose
exposures



Fitting and using the model

v

Use Gibbs sampler and Metropolis algorithm to take a random
walk through parameter space

v

Computationally intensive
» Each step requires evaluation of the numerical differential
equation solver

v

Check inferences: Do they make sense?

Re-run the model several times to simulate what would
happen under different conditions

v



Percent Metabolized at 0.001 ppm Exposure

T

1.0

Percent Metabolized at 50 ppm Exposure



Inference for the population
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Sensitivity to priors
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Putting it all together

a) Physiological pharmacokinetic model

(

(b
(c
(
(

)

) Hierarchical population model
)
d) Experimental data
)
)
)

Prior information
e) Bayesian inference
(f) Computation

(g) Model checking

» We need all of thesel



(a) Physiological pharmacokinetic model

» Without a physiological model, there is no good way to get
prior information on the parameters

» We need physiological parameters (not just curve-fitting of the
data) to efficiently combine information across different people



(b) Hierarchical population model

» Without a population model, there generally are not enough
data to estimate the parameters separately for each individual
» And there is too much variation among bodies (even among

healthy young male volunteers) to pool all the data together
and estimate common parameters



(c) Prior information

(d) Experimental data

» We need prior information. Otherwise, our estimates don't
make sense (the 8 kg liver)

> We need experimental data to learn about perchloroethylene
in particular



(e) Bayesian inference

» Using Bayesian inference, we can find parameters that are
consistent with both prior information and data, if such
agreement is possible

» Automatically includes uncertainty and variability, so
inferences can be plugged in directly to risk assessment and
decision analysis



(f) Computation

» QOur models are big. Least squares, maximum likelihood, etc.,
are not enough

» Old-fashioned differential-equation solver is still sitting inside
the model

» Our computers are never fast enough. We want more, more,
more!



(g) Model checking

» Check inferences about parameters

» Do they make sense?
> Are they consistent with prior distributions

» Check fit to data

» Check predictions on new data



Using Bayesian ideas to improve existing analyses

» Regularization (for example, avoiding estimates on the
boundary of parameter space)

» Accounting for uncertainty (especially for decisions)
» Checking model fit

» Using models to combine different sources of information
(partial pooling)

» Better dialogue with subject-matter experts (more windows
into the model and data)



Summary of example

» Population pharmacokinetic models have many moving parts

» Complexity in one place can make it easier, not harder, to add
information in other places



“Bayesian Data Analysis”

» “Bayesian inference” is too narrow; “Bayesian statistics” is
too broad

» “Bayes” is a good brand name; “Statistics using conditional
probability” is confusing

» Everyone uses Bayesian inference when it is appropriate.
A Bayesian is a statistician who uses Bayesian inference even
when it is inappropriate.
| am a Bayesian.



What is Bayes?

v

Bayes is data + regularization

v

Bayes is data + prior information

v

Bayes is logical probabilistic reasoning

v

Bayes is different things at different times



The three steps of Bayesian data analysis

» Three steps:

1. Setting up a probability model
2. Inference
3. Model checking

» Then go back and improve the model



Example 3: Spell checking

» The typed word “Radom” is actually
Random (¢ = 1), Radon (6 = 2), or Radom (0 = 3)
» Prior distribution:
4 p(9)
random 7.60 x 107>
radon 6.05 x 107°
radom  3.12 x 10~

» Likelihood:
0 p(“radom” |0)
random 0.00193
radon 0.000143
radom  0.975




Spell checking

Prior, likelihood, posterior distributions:

4 p(6) p(y0)  p(O)p(yl6)  p(fly)
random 7.60 x 10> 0.00193 1.47 x 10~ 0.325
radon 6.05 x 1076 0.000143 8.65 x 1071 0.002
radom 3.12x 107 0.975 3.04 x 1077 0.673

Decision making

v

v

v

Model checking

v

Model improvement



Example 4: “Global climate challenge”

On Dec 7, 2015, at 11:16 AM, Tom Daula|<:***@***.com> wrote:

Interesting applied project for your students, or as a warning for
decisions under uncertainty / statistical significance. Real money on
the line so the length of time and number of entries required to get a
winner may be an interesting dataset after this is all done.

http://mww.informath.org/Contest1000.htm




Terms of the Contest

The file Series1000.txt contains 1000 simulated time series. Each
series has length 135: the same length as that of the most commonly
studied series of global temperatures (which span 1880-2014). The
1000 series were generated as follows. First, 1000 random series
were obtained (for more details, see below). Then, some of those
series were randomly selected and had a trend added to them. Each
added trend was either 1°C/century or -1°C/century. For
comparison, a trend of 1°C/century is greater than the trend that is
claimed for global temperatures.

A prize of $100 000 (one hundred thousand U.S. dollars) will be
awarded to the first person who submits an entry that correctly
identifies at least 900 series: which series were generated without a
trend and which were generated with a trend.

For instructions on how to submit an entry, see the Contest Entry
page. Each entry must be accompanied by a payment of $10; this is
being done to inhibit non-serious entries. There is a limit of one
entry per person.



Download and graph the data

series <- matrix(scan("Series1000.txt"), nrow=1000, ncol=135,
byrow=TRUE)

T <- 135

N <- 1000

pdf ("series_1.pdf", height=5, width=6)

par (mar=c(3,3,2,0), tck=-.01, mgp=c(1.5,.5,0))

plot(c(1,T), range(series), bty="1", type="n",
xlab="Time", ylab="series")

for (n in 1:N){
lines(1:T, series[n,], 1lwd=.5)

}

dev.off ()
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Fit a regression to each line and plot the estimated slopes

library("arm")
slope <- rep(NA, N)
se <- rep(NA, N)
for (n in 1:NM){
data <- series[n,]
time <- 1:T
fit <- lm(data ~ time)
slope[n] <- 100*coef (fit) [2]
se[n] <- 100*se.coef (fit) [2]
}
pdf ("series_2.pdf", height=5, width=6)
par (mar=c(3,3,2,0), tck=-.01, mgp=c(1.5,.5,0))
plot(slope, se, bty="1", xlab="Slope", ylab="SE",pch=20,cex=.5)
dev.off ()
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Program a mixture model in Stan

data {
int K;
int N;
real y[N];
real mu(K];
}
parameters {
simplex [K] theta;
real sigma;
}
model {
real psl[K];
sigma ~ cauchy(0,2.5);
mu ~ normal(0,10);
for (n in 1:N) {
for (k in 1:K) {
ps[k] <- log(thetalk]) + normal_log(y[n], mulk], sigma);
}
increment_log_prob(log_sum_exp(ps));

}



Run the model in R

y <- slope

K <- 3

mu <- c(0,-1,1)

mix <- stan("mixture.stan")
print (mix)

>

Inference for Stan model: mixture.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

theta[1] 0.54 0 0.02 0.49 0.52 0.54 0.55 0.58 2449 1
theta[2] 0.24 0 0.02 0.21 0.23 0.24 0.25 0.27 2537 1
theta[3] 0.22 0 0.02 0.19 0.21 0.22 0.23 0.26 2444 1
sigma 0.40 0 0.02 0.37 0.39 0.40 0.42 0.45 2078 1



For each series, compute probability of it being in each

component

generated quantities {
matrix[N,K] p;
for (n in 1:NM){
vector [K] p_raw;
for (k in 1:K){
p_raw[k] <- thetal[k]*exp(normal_log(y[n], mulk], sigma));
}
for (k in 1:K){
pln,k] <- p_raw[k]/sum(p_raw);
}
}
}



(.11 [,2]1 [,3]

[1,] 0.09 0.00 0.91
[2,] 0.41 0.59 0.00
[3,] 0.93 0.01 0.06
[4,] 0.83 0.17 0.00
[5,] 0.82 0.17 0.00
[6,] 0.95 0.01 0.05
[7,]1 0.74 0.00 0.26
[8,] 0.86 0.14 0.00
[9,] 0.11 0.00 0.89

[10,] 0.87 0.00 0.13

[11,] 0.94 0.01 0.06

[12,] 0.29 0.71 0.00

[13,] 0.09 0.91 0.00

[14,] 0.67 0.33 0.00

[15,] 0.93 0.01 0.06

[16,] 0.95 0.01 0.04

[17,] 0.16 0.84 0.00

[18,] 0.95 0.04 0.01

[19,] 0.77 0.23 0.00



Summaries

» Best guess for each series:

1 2 3
5569 232 209

> Expected # correct and sd:
854.1 10.3
» Probability of getting at least 900 correct:

> pnorm(expected_correct, 899.5, sd_correct)
[1] 5.421277e-06

» Unmmmm ...

> 1/pnorm(expected_correct, 899.5, sd_correct)
[1] 184458.4



Should | play the $100,000 challenge?

» From the discussion thread:
Richard Tol (@RichardTol) says:
November 20, 2015 at 8:31 pm

Why don’t you guys just pay £10 to win £100,000? You don’t need to
accept that the challenge has any bearing on climate change — it has
not — but it is a great opportunity to make £99,990.

» Expected return on $10 bet:
(5.4-107%)-10° = $0.54

» What would you do?



Bayesian data analysis in context

Different approaches to statistics:
» Traditional likelihood
» Pure nonparametric, robust

» Full Bayes modeling
» “A chicken is an egg's way of making another egg”



