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Example 1: Stan goes to the World Cup





The model

I Fit data on signed square roots:

yij =
√

score differential when team i plays team j

I Model yij ∼ N(ai − aj , σ
2
y )

I ai and aj are “ability parameters”

I σy is a scale parameter

I To allow for outliers, use t7 instead of normal

I Prior info on abilities:

ai ∼ N(µ+ b ∗ prior.scorei , σ
2
a)

I We can set µ = 0

I No further prior info in model



Stan model (part 1)

data {

int nteams;

int ngames;

vector[nteams] prior_score;

int team1[ngames];

int team2[ngames];

vector[ngames] score1;

vector[ngames] score2;

real df;

}

transformed data {

vector[ngames] dif;

vector[ngames] sqrt_dif;

dif <- score1 - score2;

for (i in 1:ngames)

sqrt_dif[i] <- (step(dif[i])-.5)*sqrt(fabs(dif[i]));

}



Stan model (part 2)

parameters {

real b;

real<lower=0> sigma_a;

real<lower=0> sigma_y;

vector[nteams] eta_a;

}

transformed parameters {

vector[nteams] a;

a <- b*prior_score + sigma_a*eta_a;

}

model {

eta_a ~ normal(0,1);

for (i in 1:ngames)

sqrt_dif[i] ~ student_t(df, a[team1[i]]-a[team2[i]],sigma_y);

}



Fitting the model

I Go into R

I Read in the data

I Fit the Stan model

I Check convergence

I Graph the estimated team abilities

I Re-fit without prior information

I Compare to model with prior information





Checking model fit

I Still inside R
I For each game, plot actual score differential and 95%

predictive intervals
I Not cross-validated but no big deal in this case because n is

large

I The predictions don’t fit the data!!

I Redoing the predictive intervals

I Re-plot, still a problem!



I found the bug!

I Still inside R

I Re-fit the model on the original scale

I Display the estimated team abilities

I Updated plot of data with predictive intervals—now it’s ok!

I Go back and find the bug in the square-root-scale model

I Re-fit the debugged model







Bayesian data analysis: (1) Modeling

I “Generative models”
I Data are a realization from a (multivariate) probability

distribution
I Data vector y , probability model p(y |θ), parameter vector θ

I Prior distributions
I In Bayes inference, the parameter vector θ is a realization from

a prior distribution, p(θ|φ)
I Vector of hyperparameters φ is specified or itself modeled



Bayesian data analysis: (2) Inference

I Inference is represented by a matrix of posterior simulations
I 1000 simulations of 90 parameters: a 1000× 90 matrix

I Postprocessing
I Inference for qoi’s
I Decision analysis



Bayesian data analysis: (3) Model checking/improvement

I Do the inferences make sense?

I Are the model’s predictions consistent with the data?

I Not: Is the model true?

I Not: What is Pr (model is true)?

I Not: Can we “reject” the model?

I Expanding the model

I Including more data



Example 2: Toxicology

I Central story: 4-compartment model of toxicokinetics of
perchloroethylene

I Bayesian inference combines prior information and data

I Unresolved questions

I How the model all fits together



Toxicokinetics of perchloroethylene

I Goal:
I How much PERC is metabolized at low doses
I Population distribution

I Experimental data: Expose 6 healthy volunteers to PERC for
four hours, then measure concentrations in blood and air for 2
weeks

I 4-compartment model, metabolism in liver
I Our analysis:

I Simple data-fitting did not work
I Use Bayes to combine data and prior info within model



4-compartment model



Some data



Simple statistical ideas did not work

I Fitting 4-compartment model directly to data

I Assisted model fit

I 1 or 2-compartment model

I Simulation from prior distribution



Simple statistical ideas that did not work:
Fitting 4-compartment model directly to data

I Nonlinear least squares
I Fitting to each person separately:

I Unstable: approx 30 data points, 15 param
I “8 kg liver”

I Pooling data and estimating parameters for “the standard
man”

I Not useful for our goal of population inference



Simple statistical ideas that did not work:
Assisted model fit

I Set some parameters to fixed values (from the pharmacology
literature)

I Estimate the other parameters
I Results:

I Couldn’t fit the data well
I Difficult to get fixed values for PERC-specific parameters such

as equilibrium concentration ratios



Simple statistical ideas that did not work:
1 or 2-compartment model

I Simpler model can be estimated easily and robustly
I Does not fit the data well

I Most of the PERC leaves in a few hours, but some stays in the
body after a week or more

I Not realistic for low-dose extrapolation



Simple statistical ideas that did not work:
Simulation from prior distribution

I Get prior information on parameters from pharmacology
literature

I Try to fit data within these prior constraints

I Does not fit the data well

I Difficult to get good prior information for PERC-specific
parameters such as equilibrium concentration ratios



Bayesian inference

I 4-compartment model

I 15 parameters for each person
I Prior information

I Strong for some parameters (e.g., volume of liver)
I Weak for others (e.g., Michaelis-Menten coef)
I Model includes uncertainty and variation

I Posterior simulation: random walk through parameter space

I Inference for parameters and predictions

I Model checking



Hierarchical prior distributions

I Prior distribution for a rate parameter in the metabolism,
θj for person j

I log θj ∼ N(µ, τ 2)
I µ ∼ N(log 16, (log 10)2)
I τ ≈ log 2

I Large uncertainty, small variation

I Can learn about µ using data from several people

I Can’t do this without a hierarchical model

I Transformations and prior correlations (why transformations
are particularly important for Bayesians)



Hierarchical prior distributions



What we did

I Set up a hierarchical prior distribution with uncertainty and
population variation for a 4-compartment model

I Fit the model to data (much computation)

I Checked inferences about parameters to see that they made
sense

I Re-ran model under hypothetical low-dose, high-dose
exposures



Fitting and using the model

I Use Gibbs sampler and Metropolis algorithm to take a random
walk through parameter space

I Computationally intensive
I Each step requires evaluation of the numerical differential

equation solver

I Check inferences: Do they make sense?

I Re-run the model several times to simulate what would
happen under different conditions



Inference for 6 individuals



Inference for the population



Prediction of data from a new study



Sensitivity to priors



Putting it all together

(a) Physiological pharmacokinetic model

(b) Hierarchical population model

(c) Prior information

(d) Experimental data

(e) Bayesian inference

(f) Computation

(g) Model checking

I We need all of these!



(a) Physiological pharmacokinetic model

I Without a physiological model, there is no good way to get
prior information on the parameters

I We need physiological parameters (not just curve-fitting of the
data) to efficiently combine information across different people



(b) Hierarchical population model

I Without a population model, there generally are not enough
data to estimate the parameters separately for each individual

I And there is too much variation among bodies (even among
healthy young male volunteers) to pool all the data together
and estimate common parameters



(c) Prior information
(d) Experimental data

I We need prior information. Otherwise, our estimates don’t
make sense (the 8 kg liver)

I We need experimental data to learn about perchloroethylene
in particular



(e) Bayesian inference

I Using Bayesian inference, we can find parameters that are
consistent with both prior information and data, if such
agreement is possible

I Automatically includes uncertainty and variability, so
inferences can be plugged in directly to risk assessment and
decision analysis



(f) Computation

I Our models are big. Least squares, maximum likelihood, etc.,
are not enough

I Old-fashioned differential-equation solver is still sitting inside
the model

I Our computers are never fast enough. We want more, more,
more!



(g) Model checking

I Check inferences about parameters
I Do they make sense?
I Are they consistent with prior distributions

I Check fit to data

I Check predictions on new data



Using Bayesian ideas to improve existing analyses

I Regularization (for example, avoiding estimates on the
boundary of parameter space)

I Accounting for uncertainty (especially for decisions)

I Checking model fit

I Using models to combine different sources of information
(partial pooling)

I Better dialogue with subject-matter experts (more windows
into the model and data)



Summary of example

I Population pharmacokinetic models have many moving parts

I Complexity in one place can make it easier, not harder, to add
information in other places



“Bayesian Data Analysis”

I “Bayesian inference” is too narrow; “Bayesian statistics” is
too broad

I “Bayes” is a good brand name; “Statistics using conditional
probability” is confusing

I Everyone uses Bayesian inference when it is appropriate.
A Bayesian is a statistician who uses Bayesian inference even
when it is inappropriate.
I am a Bayesian.



What is Bayes?

I Bayes is data + regularization

I Bayes is data + prior information

I Bayes is logical probabilistic reasoning

I Bayes is different things at different times



The three steps of Bayesian data analysis

I Three steps:

1. Setting up a probability model
2. Inference
3. Model checking

I Then go back and improve the model



Example 3: Spell checking

I The typed word “Radom” is actually
Random (θ = 1), Radon (θ = 2), or Radom (θ = 3)

I Prior distribution:
θ p(θ)

random 7.60× 10−5

radon 6.05× 10−6

radom 3.12× 10−7

I Likelihood:
θ p(“radom”|θ)

random 0.00193
radon 0.000143
radom 0.975



Spell checking

I Prior, likelihood, posterior distributions:

θ p(θ) p(y |θ) p(θ)p(y |θ) p(θ|y)
random 7.60× 10−5 0.00193 1.47× 10−7 0.325
radon 6.05× 10−6 0.000143 8.65× 10−10 0.002
radom 3.12× 10−7 0.975 3.04× 10−7 0.673

I Decision making

I Model checking

I Model improvement



Example 4: “Global climate challenge”





Download and graph the data

series <- matrix(scan("Series1000.txt"), nrow=1000, ncol=135,

byrow=TRUE)

T <- 135

N <- 1000

pdf("series_1.pdf", height=5, width=6)

par(mar=c(3,3,2,0), tck=-.01, mgp=c(1.5,.5,0))

plot(c(1,T), range(series), bty="l", type="n",

xlab="Time", ylab="series")

for (n in 1:N){

lines(1:T, series[n,], lwd=.5)

}

dev.off()
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Fit a regression to each line and plot the estimated slopes

library("arm")

slope <- rep(NA, N)

se <- rep(NA, N)

for (n in 1:N){

data <- series[n,]

time <- 1:T

fit <- lm(data ~ time)

slope[n] <- 100*coef(fit)[2]

se[n] <- 100*se.coef(fit)[2]

}

pdf("series_2.pdf", height=5, width=6)

par(mar=c(3,3,2,0), tck=-.01, mgp=c(1.5,.5,0))

plot(slope, se, bty="l", xlab="Slope", ylab="SE",pch=20,cex=.5)

dev.off()
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Program a mixture model in Stan

data {

int K;

int N;

real y[N];

real mu[K];

}

parameters {

simplex[K] theta;

real sigma;

}

model {

real ps[K];

sigma ~ cauchy(0,2.5);

mu ~ normal(0,10);

for (n in 1:N) {

for (k in 1:K) {

ps[k] <- log(theta[k]) + normal_log(y[n], mu[k], sigma);

}

increment_log_prob(log_sum_exp(ps));

}

}



Run the model in R

y <- slope

K <- 3

mu <- c(0,-1,1)

mix <- stan("mixture.stan")

print(mix)

>

Inference for Stan model: mixture.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

theta[1] 0.54 0 0.02 0.49 0.52 0.54 0.55 0.58 2449 1

theta[2] 0.24 0 0.02 0.21 0.23 0.24 0.25 0.27 2537 1

theta[3] 0.22 0 0.02 0.19 0.21 0.22 0.23 0.26 2444 1

sigma 0.40 0 0.02 0.37 0.39 0.40 0.42 0.45 2078 1



For each series, compute probability of it being in each
component

generated quantities {

matrix[N,K] p;

for (n in 1:N){

vector[K] p_raw;

for (k in 1:K){

p_raw[k] <- theta[k]*exp(normal_log(y[n], mu[k], sigma));

}

for (k in 1:K){

p[n,k] <- p_raw[k]/sum(p_raw);

}

}

}



Results

[,1] [,2] [,3]

[1,] 0.09 0.00 0.91

[2,] 0.41 0.59 0.00

[3,] 0.93 0.01 0.06

[4,] 0.83 0.17 0.00

[5,] 0.82 0.17 0.00

[6,] 0.95 0.01 0.05

[7,] 0.74 0.00 0.26

[8,] 0.86 0.14 0.00

[9,] 0.11 0.00 0.89

[10,] 0.87 0.00 0.13

[11,] 0.94 0.01 0.06

[12,] 0.29 0.71 0.00

[13,] 0.09 0.91 0.00

[14,] 0.67 0.33 0.00

[15,] 0.93 0.01 0.06

[16,] 0.95 0.01 0.04

[17,] 0.16 0.84 0.00

[18,] 0.95 0.04 0.01

[19,] 0.77 0.23 0.00

[20,] 0.01 0.99 0.00



Summaries

I Best guess for each series:

1 2 3

559 232 209

I Expected # correct and sd:

854.1 10.3

I Probability of getting at least 900 correct:

> pnorm(expected_correct, 899.5, sd_correct)

[1] 5.421277e-06

I Ummmmm . . .

> 1/pnorm(expected_correct, 899.5, sd_correct)

[1] 184458.4



Should I play the $100,000 challenge?

I From the discussion thread:

I Expected return on $10 bet:

(5.4 · 10−6) · 105 = $0.54

I What would you do?



Bayesian data analysis in context

Different approaches to statistics:

I Traditional likelihood

I Pure nonparametric, robust
I Full Bayes modeling

I “A chicken is an egg’s way of making another egg”


