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Birthdays!



The published graphs show data from 30 days in the year
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The blessing of dimensionality

I We learned by looking at 366 questions at once!

I Consider the alternative . . .





Choices!

1. Exclusion criteria based on cycle length (3 options)
2. Exclusion criteria based on “How sure are you?” response (2)
3. Cycle day assessment (3)
4. Fertility assessment (4)
5. Relationship status assessment (3)

168 possibilities (after excluding some contradictory combinations)



Living in the multiverse





This is what "power = 0.06" looks like.
Get used to it.

Estimated effect size
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True
effect
size
(assumed)Type S error probability:

If the estimate is
statistically significant,
it has a 24% chance of
having the wrong sign.

Exaggeration ratio:
If the estimate is
statistically significant,
it must be at least 9
times higher than the
          true effect size.





Coefs predicting change in attitude,
given entrance into the penumbra
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I Small but nonzero effects
I No effects with cross-predictions, reverse-time predictions



Policy!



My new favorite example

I Model:

I y |θ ∼ N(θ, 1)
I p(θ) ∝ 1

I Data:

I y = 1

I Inference:

I θ|y ∼ N(y , 1)
I Pr(θ>0|y) = .84

I Wanna bet??
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Where to go next?

I Scale-free modeling
I Weakly informative priors
I Prior information wipes out the multiple comparisons problem
I Computational stability and inferential stability; the folk

theorem of statistical computing
I Implications for “big data”


