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Summary. In a serial dilution assay, the concentration of a compound is estimated by combining mea-
surements of several different dilutions of an unknown sample. The relation between concentration and
measurement is nonlinear and heteroscedastic, and so it is not appropriate to weight these measurements
equally. In the standard existing approach for analysis of these data, a large proportion of the measurements
are discarded as being above or below detection limits. We present a Bayesian method for jointly estimating
the calibration curve and the unknown concentrations using all the data. Compared to the existing method,
our estimates have much lower standard errors and give estimates even when all the measurements are
outside the “detection limits.” We evaluate our method empirically using laboratory data on cockroach
allergens measured in house dust samples. Our estimates are much more accurate than those obtained using
the usual approach. In addition, we develop a method for determining the “effective weight” attached to
each measurement, based on a local linearization of the estimated model. The effective weight can give
insight into the information conveyed by each data point and suggests potential improvements in design of
serial dilution experiments.

Key words: Assay; Bayesian inference; Detection limit; Elisa; Measurement error models; Serial dilution;
Weighted average.

1. Introduction
1.1 Serial Dilution Assays
A common design for estimating the concentrations of com-
pounds in biological samples is the serial dilution assay, in
which measurements are taken at several different dilutions
of a sample, giving several opportunities for an accurate mea-
surement. Currently, serial dilution is a standard tool in the
fields of toxicology and immunology. Our experience is in
enzyme-linked immunosorbent assays (Elisa) of allergens in
house dust samples.

Assays are performed using microtiter plates (for exam-
ple, see Table 1) that contain two sorts of data: unknowns,
which are the samples to be measured and their dilutions;
and standards, which are dilutions of a known compound,
used to calibrate the measurements. Figure 1 shows data of
measurements versus dilutions from a single plate (assays of
the cockroach allergen Bla g1), for the standards and each
of 10 unknown samples (which in this case were house dust
collected from inner-city apartments). The estimation of the
curves relating dilutions to measurements is described in Sec-
tion 3 of the article. The 10 unknown concentrations are esti-
mated so that the measurements line up with the calibration
curve.

Recent formulations of dilution assays appear in Finney
(1976), Hamilton and Rinaldi (1988), Racine-Poon, Weihs,
and Smith (1991), Higgins et al. (1998), and Lee and
Whitmore (1999). Giltinan and Davidian (1994) and Davidian

and Giltinan (1995) present a simulation study suggest-
ing potential improvements using Bayesian methods, and
Dellaportas and Stephens (1995) describe Bayesian compu-
tations for a model with a single unknown concentration. We
continue these ideas here, setting up a hierarchical model in-
cluding variation among compounds and plates and validating
with two sets of experimental data.

This article develops a Bayesian method for estimating con-
centrations of unknown samples in serial dilution assays. In
Section 1.2 we describe a problem with the currently used esti-
mation method, which is used in numerous laboratories across
the country and worldwide. Section 2 presents our model,
which is based on those of Racine-Poon et al. (1991), Giltinan
and Davidian (1994), and Higgins et al. (1998). Section 3 ex-
plains how to use Bayesian inference to obtain estimates and
uncertainties for the different sources of variation and for the
unknown concentrations in the assay, illustrating with a re-
analysis of existing data. Having developed the new method,
in Section 4 we test it against the existing approach using a
laboratory experiment in which different samples are diluted
by known amounts, and then we see which method performs
better at estimating the true dilutions. Section 5 presents a
statistical method, based on linearization of the calibration
curve, to estimate the amount of information provided by
each measurement in our estimate. We conclude in Section
6 with suggestions about implementation of the new method
and the implications for assay designs.
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Table 1
Typical setup of a plate with 96 wells for a serial dilution assay. The first two columns are dilutions of “standards” with

known concentrations, and the other columns are 10 different “unknowns.” The goal of the assay is to estimate the
concentrations of the unknowns, using the standards as calibration.

Std Std Unk 1 Unk 2 Unk 3 Unk 4 Unk 5 Unk 6 Unk 7 Unk 8 Unk 9 Unk 10

1 1 1 1 1 1 1 1 1 1 1 1
1/2 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
1/4 1/4 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
1/8 1/8 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27
1/16 1/16 1 1 1 1 1 1 1 1 1 1
1/32 1/32 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
1/64 1/64 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
0 0 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27 1/27

1.2 Difficulties with the Current Method of Estimation
The usual approach to analysis of dilution assays, as im-
plemented in widely used commercial software (Molecular
Devices, 2002) follows two steps. First, the standards data
are used to estimate the curve relating concentrations to
measurements—typically assumed to be a four-parameter lo-
gistic function—using least squares. Second, this estimated
curve is used to read off the concentration that corresponds
to each of the measurements of the unknowns. Estimates of di-
luted samples are scaled back to the original scale, and these
are averaged to obtain an estimated concentration for each
unknown sample.

The first step is not a problem; the four parameters of
the curve can generally be estimated accurately using least
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Figure 1. Data from a single plate of a serial dilution assay. The large graph shows the calibration data, and the 10 small
graphs show the data for the unknown compounds. The goal of the analysis is to figure out how to scale the x-axes of the
unknowns so they will line up with the curve estimated from the standards. (The curves shown on these graphs are estimated
from the model as described in Section 3.2.)

squares, given the amount of standards data typically sup-
plied on an assay plate. It is possible to estimate from multiple
plates together and pool information, but the usual approach,
estimating from one plate at a time, works reasonably well.

Unfortunately, the second step—estimating the unknown
concentrations—presents serious difficulties. In reading con-
centrations directly off a curve, the standard method ignores
measurement error, which is particularly serious for very high
measurements, where the curve is flat. Furthermore, the equal
averaging of estimates is inefficient since measurements of
highly diluted samples will have greater variance (e.g., the
estimated concentration of a 1/27 dilution is multiplied by
27, which scales up its estimation error accordingly). The
usual way these problems are handled is by simply discarding
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Table 2
Example of some measurements y from a plate as analyzed by
the standard software used for dilution assays. The standards
data are used to estimate the calibration curve, which is then

used to estimate the unknown concentrations. The
measurements indicated by asterisks are labeled as “below

detection limit.” However, information is present in these low
observations, as can be seen by noting the decreasing pattern

of the measurements from dilutions 1 to 1/3 to 1/9.

Standards data Some of the unknowns data

Conc. Dilution y Sample Dilution y Est. conc.

0.64 1 101.8 Unknown 8 1 19.2 *
0.64 1 121.4 1 19.5 *
0.32 1/2 105.2 1/3 16.1 *
0.32 1/2 114.1 1/3 15.8 *
0.16 1/4 92.7 1/9 14.9 *
0.16 1/4 93.3 1/9 14.8 *
0.08 1/8 72.4 1/27 14.3 *
0.08 1/8 61.1 1/27 16.0 *
0.04 1/16 57.6 Unknown 9 1 49.6 0.040
0.04 1/16 50.0 1 43.8 0.031
0.02 1/32 38.5 1/3 24.0 0.005
0.02 1/32 35.1 1/3 24.1 0.005
0.01 1/64 26.6 1/9 17.3 *
0.01 1/64 25.0 1/9 17.6 *
0 0 14.7 1/27 15.6 *
0 0 14.2 1/27 17.1 *

measurements that are above or below detection limits, which
are defined based on the measurements of the standards.

Table 2 illustrates the difficulties with the current method
of estimating unknown concentrations. The left part of the
figure shows standards data (corresponding to the first graph
in Figure 1): The two initial samples have known concentra-
tions of 0.64, with each followed by several dilutions and a
zero measurement. The right part of Table 2 shows, for 2 of
the 10 unknowns on the plate, the measurements y, and corre-
sponding concentration estimates as estimated from the fitted
curve.

All the estimates for unknown 8 are shown by asterisks, in-
dicating that they were recorded as “below detection limit,”
and the standard computer program for analyzing these data
gives no estimate at all. A casual glance at the data (see the
plot of unknown 8 in Figure 1) might suggest that these data
are indeed all noise, but a careful look at the numbers reveals
that the measurements decline consistently from concentra-
tions of 1 to 1/3 to 1/9, with only the final dilutions appar-
ently lost in the noise (in that the measurements at 1/27 are
no lower than at 1/9). A clear signal is present for the first
six measurements.

Unknown 9 shows a better outcome, in which four of the
eight measurements are within detection limits. Once again,
however, information seems to be present in the lower mea-
surements, which decline consistently with dilution. As can
be seen in Figure 1, unknowns 8 and 9 are not extreme cases
but rather are somewhat typical of the data from this plate.
In measurements of allergens, even low concentrations can be
important (e.g., for asthma sufferers) and we need to be able
to distinguish between zero concentrations and values that
are merely low.

Bayesian inference has the potential to make better use of
this information, for two reasons. First, the likelihood func-
tion (and thus the posterior distribution) automatically ac-
counts for the greater uncertainty at very low and very high
concentrations, without requiring that the extreme data be
completely discarded as below or above detection limits. We
explore this issue further in Section 5. The second advan-
tage of the Bayesian approach is that it can incorporate sev-
eral sources of variation without requiring point estimation
or linearization, either of which can cause uncertainties to
be underestimated in this nonlinear errors-in-variables model
(Davidian and Giltinan, 1995; Dellaportas and Stephens,
1995).

2. The Model
2.1 Curve of Expected Measurements Given Concentration
We use the notation xi for concentrations and yi for observed
color intensities. The expected value of the measurement y
is an increasing function of the concentration x, and a four-
parameter model is typically used (see, e.g., Higgins et al.,
1988):

E(y |x, β) = g(x, β) = β1 +
β2

1 + (x/β3)−β4
, (1)

where β1 is the color intensity at zero concentration, β2 is the
increase to saturation, β3 is the concentration at which the
curve turns, and β4 is the rate at which saturation occurs.
This model is equivalent to a logistic function of log(x). All
four of the β parameters must be positive, and so we model
them on the logarithmic scale.

2.2 Measurement Error
We follow Higgins et al. (1998) and model the measurement
errors as normally distributed with unequal variances:

yi ∼ N

[
g(xi, β),

(
g(xi, β)

A

)2α

σ2
y

]
, (2)

where the parameter α > 0 models the pattern that variances
are higher for larger measurements (e.g., see Figure 1). The
constant A in (2) is arbitrary and is set to some value in the
middle of the range of the data. It is included in the model
so that the parameter σy has a more direct interpretation
as the error standard deviation for a “typical” measurement.
We assign a uniform prior distribution to σy in the Bayesian
analysis.

The model (2) reduces to an equal-variance normal model
if α = 0 and approximately corresponds to the equal-variance
model on the log scale if α = 1. In fitting the model, we as-
sign α a uniform prior distribution in the range [0, 2], thus
allowing variance relations in a fairly wide range centered at
proportionality. Getting the variance relation correct is im-
portant here because many of our data are at very low con-
centrations, and we do not want our model to overstate the
precision of these measurements.

2.3 Dilution Errors
The dilution process introduces errors in two places: the ini-
tial dilution, in which a measured amount of a sample is mixed
with a measured amount of an inert liquid; and serial dilu-
tions, in which a sample is diluted by a fixed factor such as 2
or 3. Higgins et al. (1998) found the initial dilution error to be
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detectable but the serial dilution error to be essentially zero
(i.e., there was no noticeable autocorrelation in the errors).
We found the same, and so we include initial dilution error
but not serial dilution error in our model.

We use a normal model on the log scale for the initial di-
lution error. (Initial dilutions are an issue only for the stan-
dards, not for the unknowns, which are typically measured at
full strength with no initial dilution.) For any sample that is
subject to an initial dilution, we label θ as the true concen-
tration of the undiluted sample, d init as the (known) initial
dilution, and x init as the (unknown) concentration of the ini-
tial dilution, with

log(xinit) ∼ N [log(dinit · θ), (σinit)2]. (3)

For the 12 samples on a plate such as shown in Table 1, we
define θ0 as the (known) concentration of the standards (corre-
sponding to the first two columns of the plate) and θ1, . . . , θ10

to be the unknown concentrations that are the estimands of
interest.

For the further dilutions, we simply set

xi = di · xinit, (4)

where di is the dilution of observation i relative to the initial
dilution. (The di ’s are the numbers displayed in Table 1.)

2.4 Hierarchical Model for Unknown Concentrations
When using the model to estimate unknown concentrations
θ1, . . . , θJ , we fit a hierarchical model of the form,

log θj ∼ N
(
µθ, σ

2
θ

)
, for j = 1, . . . , J.

The purpose of this distribution is to bound the estimates of
log θj using a proper prior distribution. This is particularly
useful when estimating extremely low or high concentrations,
for which there would otherwise be no way of bounding θj

away from 0 or ∞. We assign a diffuse hyperprior density
(i.e., µ ∼ N(0, 1002), σ ∼ U(0, 100)), so that the hyperpa-
rameters are estimated from the data. In cases of extremely
poor data (i.e., if all the dilutions for all the unknowns are far
above or far below detection limit), the posterior distribution
would remain diffuse (with substantial posterior probability
associated with extremely high or extremely low concentra-
tions), appropriately indicating the lack of information in the
data.

2.5 Diffuse Prior Distribution for the β’s for Analyzing Data
from One Plate

Serial dilution data are most commonly analyzed a single
plate at a time. The parameters β of the calibration curve
can be estimated using maximum likelihood (weighted least
squares); however, for our goal of estimating concentrations
beyond the usual detection limits, we use Bayesian inference
(as described in Section 3) to more precisely capture the un-
certainties in estimation. We assign diffuse prior distributions
for the β’s; for example, βk ∼ N(0, 1002), k = 1, 2, 3, 4.
Given the amount of unknowns data on a typical plate (see
Table 1), the posterior distribution of the β’s is well identified
by the data. If standards data were sparser on each plate, it
would be necessary to include substantive prior information

on the ranges and correlations of the βk ’s in the population,
or to analyze data from several plates together, as we discuss
next.

2.6 Multilevel Model for Variation of the β’s among Plates
The parameters β1, β2, β3, β4 themselves vary, which is why
there are standards data on each plate—the unknowns must
be calibrated with respect to the plate on which they are
measured. In addition, experimental conditions vary from
day to day (from factors including lot-to-lot variation among
reagents, differences in room temperature, and differences in
pipetting techniques among technicians), and these are re-
flected in changes in the calibration curve. For these reasons,
we set up a model allowing the parameters of the calibration
curve to vary.

All four parameters βk, k = 1, 2, 3, 4, in model (1) must
be positive, and we model them with normal distributions on
the logarithmic scale. For each plate p, processed at day t(p),
we model logβp = (logβp1, . . . , logβp4) as,

log βp ∼ N
[
log bt(p),Σ

plate
β

)]
for each plate p.

We similarly apply a multivariate normal model to the varia-
tion across days t:

log bt ∼ N
[
log b0,Σ

day
β

]
for each day t.

We assign diffuse hyperprior distributions; e.g., log b0,k ∼
N (0, 1002) for k = 1, 2, 3, 4, and Σplate

β ∼ Inv-Wishart4(I),

Σday
β ∼ Inv-Wishart4(I). The degrees of freedom for the

inverse-Wishart are set as low as possible to maintain a proper
distribution (see, e.g., Johnson and Kotz, 1972).

3. Estimation of the Model
3.1 Estimating the Model Using Standards Data

from Several Plates
Before using our model to estimate unknown concentrations,
we fit it to standards data in order to check its fit and estimate
its hyperparameters with precision. In order to simultaneously
identify initial dilution errors in x and variation of parameters
β across plates and days, it is necessary to fit the model to
data from several plates, measured at several days with more
than one plate per day, and with different initial dilutions.

We estimated the model using standards data from 24
plates, 23 of which were from existing experiments with two
columns of unknowns each (as in Table 1) and one of which
was a special plate prepared with 10 different initial dilutions
of the standard (to allow accurate estimation of the scale σ init

in the model [3] of initial dilution error).
We fit the model (and also the model for a single plate,

described in Section 3.2) using the Bugs software for Bayesian
inference (Spiegelhalter et al., 1994, 2003), as linked from R
(R Project, 2000; Gelman, 2002). We obtained approximate
convergence (the potential scale reduction factors of Gelman
and Rubin, 1992, were below 1.1 for all parameters) after
150,000 iterations of four parallel chains of the Gibbs sampler.
To save memory and computation time, we save every 40th
iteration of each chain.

Figure 2 displays a subset of the data used to fit the
model, along with the estimated curves and their posterior
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Figure 2. Standards data yi and fitted curves E(yi |xi ) ver-
sus dilutions for each of three plates selected from the 24 used
in the estimation of the hierarchical model. Variation between
days is much larger than between plates within a day. (The
several curves on each graph represent different random sim-
ulation draws of the parameters from the estimated posterior
distribution.)

uncertainty. The data, and the curves, vary slightly between
plates but much more dramatically between days.

3.2 Estimating Unknowns Using Data from a Single Plate
The hierarchical model in Section 3.1 makes sense, but it is
usual and convenient to fit the serial dilution model to data
from a single plate at a time using a single initial dilution
of the standard compound. With only one plate, we simply
estimate the parameters β1, β2, β3, β4 without a hierarchi-
cal structure, simultaneously with the set of the unknown
concentrations.

The model for a single plate can be constructed from (2)–
(4). For data points i from samples j(i),

yi ∼ N

[
g(xi, β),

(
g(xi, β)

A

)2α

σ2
y

]

xi = di · xinit
j(i),

and for each sample j,

log xinit
j ∼ N

[
log

(
dinit
j · θj

)
, (σinit)2

]
for the standard sample, j = 0

xinit
j = θj for the unknown samples, j = 1, . . . , 10.

There is initial dilution of the standards, but the unknowns
are started at full strength. The concentration θ0 and initial
dilution dinit

0 for the standard are known, and the 10 unknown
concentrations θj must be estimated.

A design such as displayed in Table 1 with replications of
the standards data at a wide range of dilutions allows us to
estimate all the model parameters fairly accurately. When fit-
ting the model in Bugs, it is helpful to use reasonable starting
points (which can be obtained using crude estimates from the
data) and to parameterize in terms of the logarithms of the
parameters βj and the unknown concentrations θj .

We illustrate with inference for the data displayed in
Figure 1. The posterior median estimates of the parame-
ters of the calibration curve are β̂1 = 14.8 (with a poste-
rior 50% interval of [14.7, 15.0]), β̂2 = 94.3[89.8, 99.0], β̂3 =
0.048[0.044, 0.052], and β̂4 = 1.41[1.37, 1.46]. The median es-
timates define a curve g(x, β̂), which is displayed in the upper-
left plot of Figure 1. As expected, the curve goes through the
data used to estimate it.

The variance parameters σy and α are estimated at 2.3
and 1.4 (with 50% intervals of [2.2, 2.4] and [1.3, 1.5], respec-
tively). The parameter σ init was fixed at 0.02, and the scaling
factor A was set to the geometric mean of the standards data
from the plate.

The inferences for the unknown concentrations θj , along
with the estimated calibration curve, were used to draw scaled
curves for each of the 10 unknowns displayed in Figure 1.

3.3 Comparison to the Existing Approach
We can compare our inferences to those obtained from the
standard approach of estimating the calibration curve and
then transforming each measurement directly to an estimated
concentration. For each unknown sample, each estimated con-
centration is divided by its dilutions, and then the estimates
are averaged to obtain a single estimate. For example, for the
data displayed in Table 2, the estimated concentration for un-
known 9 is 1

4 (0.040 + 0.031 + 3 × 0.005 + 3 × 0.005) = 0.025.
The data from dilutions 1/9 and 1/27 are not used in the esti-
mate since those measurements are below detection limit for
this sample.

Figure 3 compares the classical and Bayesian estimates in
several ways for the data shown in Figure 1. The leftmost plots
in Figure 3 display the estimated concentrations for each of
the 10 unknowns. The estimates are generally similar (except
that there is no classical estimate for unknown 8 since all its
measurements are “below detection limit”).

The middle plots show estimates from each of the two
halves of the data (in the setup of Table 1, using only the top
four or the bottom four wells for each unknown). For each
method, the two estimates are similar, but the consistency is
much stronger for our estimate.

Finally, the plots on the right side of Figure 3 compare the
two estimates directly. The top plot shows that the two ap-
proaches give similar estimates, but ours has lower standard
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Figure 3. Comparison of classical estimates with our Bayesian procedure for the model fit to data from a single plate. The
estimated concentrations are similar under the two methods, but our approach gives smaller standard errors. Our estimates
also perform much better in cross-validation: The two estimates using just the first or second set of dilutions for each unknown
are much closer under our method than with the classical approach.

errors. The bottom plot displays the absolute difference be-
tween the first-half and second-half estimates under each
method, and shows that our procedure is consistently more
reliable than the classical approach.

This analysis illustrates the potential effectiveness of our
approach, but we do not want to make too strong a claim
based on data from a single plate. Section 4 describes an
experiment specially designed to compare the old and new
methods.

4. A Laboratory Experiment Validating the Method
4.1 Design of the Study
Having developed the inferential method on existing data,
we perform a new experiment to check the validity of the
Bayesian inferences and compare them to the classical ap-
proach. Our validation study involves 10 unknown samples,
starting with a sample of very high concentration (extracted
from cockroach feces) and then successively diluting it by fac-
tors of 4. The unknowns θ1, . . . , θ10 are thus constrained by
design to be in the ratio 1 : 1

4 : 1
16 : · · · : 1

49 . Each of the 10 sam-
ples is measured at dilutions of 1, 1/3, 1/9, and 1/27, and the
entire experiment is replicated on a second plate (with the
same unknown samples used for both plates). Each plate is
aligned as pictured in Table 1, with 2 columns of standards
and 10 columns of unknowns. However, for this study we are
only using the top half of each column of unknowns. (The bot-
tom half of each plate was used for a different study involving
assays of contaminated samples.)

4.2 Results of the Model Fit
We perform our evaluation on each of the two plates sepa-
rately. For each plate, we use the classical method to esti-

mate the calibration curve and each of the 10 unknown θj ’s,
and then we fit the model using Bayesian inference. Figure 4
shows the data and estimated curve for one of the plates. The
data from the second plate look similar.

4.3 Evaluating and Comparing the Classical
and Bayes Estimates

Our experiment was designed to allow simple evaluation of the
inferences. If an estimation method is performing perfectly,
it should obtain estimates for all 10 unknowns θj , and the
estimates should be in the ratio 1, 1/4, 1/16, etc. That is, a
plot of log θ̂j versus j should have a slope of −log(4).

Figure 5 displays the results for the two plates in the val-
idation study. In each graph, the dotted line indicates where
we would expect the estimates should be—the line has a slope
of −log(4), and its intercept is set by fitting it to the classi-
cal estimates for unknown samples 3–5 (chosen because their
data are in the middle of the calibration curve). We use the
classical estimates to set the baseline as a form of conser-
vatism in our comparison: We find the Bayesian inferences
to fall closer to the dotted line, even with that line defined
based on the classical procedure. To summarize, the slope of
the dotted line, indicating the true concentrations of the 10
samples, is known from the design of the experiment but not
“known” to the estimation procedures.

Comparing the estimates to the lines, we see that the
Bayesian inference does better in each plate. In plate 1, the
classical procedure gives no estimate (“below detection limit”)
for the last two samples, whereas the Bayesian inferences are
reasonable (and, appropriately, have large uncertainties). In
plate 2, the classical estimates make no sense for the last four
plates (also essentially a detection limit problem), whereas the
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Figure 4. Data and estimated curve (based on posterior medians of the parameters) from one of the two plates of the valida-
tion study. The 10 unknowns start with data that are mostly “above detection limit” and gradually decrease in concentration
until all measurements are “below detection limit.”
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Figure 5. Classical estimates and Bayesian posterior medians for the 10 unknown concentrations from each of the two
plates of the validation study. The Bayesian estimates also show 50% error bars. The graph is on a logarithmic scale, and the
dotted lines, with slope −log(4), display the pattern that the true concentrations are in the ratio 1 : 1

4 :
1
16 : · · · : 1

49 . The Bayesian
estimates are closer to the line for a much wider range of concentrations for both plates, with the classical method failing by
giving no estimate (as in the last two samples of plate 1) or a highly inaccurate estimate (as in the first and last four samples
of plate 2).
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Bayesian posterior medians again do a good job of tracking
the dotted line.

In addition, plate 2 shows a problem with both methods of
estimation, in that points fall systematically off the dotted
line with slope −log(4), even for the middle samples where
the data are strong. We suspect this to be a problem with the
model itself, but it is not directly relevant to our goal here of
comparing the Bayesian and classical inferences. Related to
this problem, the Bayesian 50% intervals for the first seven
samples are clearly too narrow.

4.4 Estimating Ratios of Unknowns
Another way to compare the two estimates is to examine their
accuracy at estimating the ratio of two concentrations, which
is automatically known from the design of the experiment
to be a given power of 4. The most challenging assignment
is to compare the concentrations of samples 1 and 10, which
have a ratio of 49. For convenience we examine the logarithms
base 4 of the estimated ratio, which should thus equal 9. The
classical estimate is undefined from plate 1 (where all four
measurements of unknown 10 are below detection limit) and
3.3 from plate 2. The Bayesian posterior medians are 9.1 (with
a 50% posterior interval of [7.8, 11.3]) from plate 1 and 7.7
[6.7, 9.2] from plate 2. These intervals are wide (e.g., on the
unlogged scale, the two ends of 50% interval estimated from
plate 1 differ by a factor of 130) but are still preferable to
estimates that are nonexistent or off by more than a factor of
2000.

To look more systematically, the 10 unknowns allow 45
comparisons for each plate, all of which can be compared to
the appropriate power of 4. Of this total of 90 comparisons
for the two plates, 17 cannot be made because one or both of
the classical estimates are undefined, in 47 cases the Bayesian
estimate is better (in the sense of the posterior median be-
ing closer to the true value on the logarithmic scale), and in
26 cases the classical estimate is better. In those cases where
the Bayes estimate was closer, it was by an average of 2.2 on
the log scale. In those cases where the classical estimate was
closer, the difference was 0.2 on the log scale. This is con-
sistent with the pattern in the lower right of Figure 3, that
the Bayesian estimates typically are more reliable than the
classical when compared head to head.

4.5 Summary
In the two plates of the validation study, we found the
Bayesian posterior medians to be nearly identical to the clas-
sical estimates in the range at which the data are strongest (in
this particular experiment, samples 2–6 on each plate). When
the two estimates differ, the Bayesian estimate is almost al-
ways better, sometimes far better. This includes a setting such
as in plate 2 where the model is imperfect. Finally, when the
classical procedure gives no estimate at all, the Bayesian es-
timates have wide posterior uncertainties but are still reason-
able. This is potentially important for public health studies
of allergens and childhood asthma, for which even very low
exposures can be dangerous.

5. Information Provided by Each Data Point
An intriguing feature of the Bayesian approach is that it uses
all the data, including those previously discarded as “outside

detection limits.” However, all data are not equally informa-
tive. Here we describe a method for quantifying this informa-
tion, which should be helpful for data analysis, comparison of
methods, and design of future assays.

5.1 Weighted Averages
The key idea here is the weighted average. Consider several
independent measurements y1, . . . , yn of a parameter θ, of the
form,

yi ∼ N
(
ai + biθ, σ

2
i

)
.

These can be linearly transformed to be direct estimates of θ:

θ̂i =
yi − ai

bi
∼ N

(
θ, σ2

i

/
b2
i

)
.

The least squares estimate of y (or the Bayes estimate under
a uniform prior distribution; see, e.g., Gelman et al., 1995) is
then a weighted average of the direct estimates, θ̂i, where the
observations have weights,

wi ∝
b2
i

σ2
i

.

5.2 Equivalent Weights for Nonlinear Models
With a nonlinear model, yi ∼ N [fi (θ), σ

2
i ], we can apply the

same idea by linearizing f at the estimated value of θ, thus
writing fi (θ) = ai + bi (θ), where bi = f ′

i(θ). The weight for
data point i is then,

wi ∝
(f ′

i)
2

σ2
i

.

5.3 Application to Serial Dilution
For the data from a dilution di of an unknown sample θ, we
can express model (2) as,

yi ∼ N
[
g(xi, β), σ2

i

]
,

= N
[
g(di · θ, β), σ2

i

]
. (5)

From (5), we can linearize g as a function of θ to obtain
weights,

wi ∝
[di · g′(xi)]

2

σ2
i

, (6)

where g′(xi ) is the derivative of g(x, β) with respect to x,
evaluated at the current estimate of xi (i.e., di multiplied by
the estimated θ) and the current estimate of β.

We can express the weights in (6) in a slightly more usable
form by expanding the variance σ2

i from (2). Also, we can
ignore factors that are the same for all measurements for a
given sample and thus can be absorbed into the proportional-
ity constant. The weights for measurements i on dilutions di

of a single sample with estimated concentration θ are then,

wi ∝
[
di · g′(xi)

g(xi)α

]2

, (7)

where the differentiation of g is taken with respect to x, and
the entire expression is evaluated at the estimated parameter
values.
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Expression (7) makes sense:

� Smaller dilutions have smaller weights (because the vari-
ance is magnified when the low-dilution estimates are
scaled back up).

� Measurements at the steeper part of the curve (where g ′

is higher) have higher weights.
� Weights are lower for measurements with higher

variance.

The weights depend on the unknown parameters θ, β, α,
and so when we are fitting the model, we compute the set of
weights for each of the unknown samples and normalize each
set to sum to 1, for each posterior simulation draw. When
the simulation is done, we report the set of weights for each
sample, averaging over the simulation draws.

5.4 Using the Weights to Understand the Information
in Existing Data

For any given unknown sample, we now have a weight for
each measurement, and these can be normalized to sum to
1. The weights depend only on xi , not on the measurement
yi , and so multiple measurements at the same dilution have
identical weights. Thus, the measurement array in Table 1
yields four weights for each unknown, corresponding to the
dilutions 1, 1/3, 1/9, 1/27. The weights give a sense of the
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Figure 6. Top row: Equivalent weights for the data at each dilution, for two of the unknown samples with data displayed
in Figure 1 and Table 2. For each of these two samples, about 70% of the information is supplied by the initial dilution, with
most of the rest given by the 1/3 dilution. In comparison, the classical method gives equal weight for all data within detection
limits; it thus gives no estimate for sample 8 and weights of 0, 0, 0.5, 0.5, for the four dilutions of sample 9 (see the right
column of data in Table 2). Bottom row: Equivalent weights for the data at each dilution for unknowns 8 and 9, under the
hypothetical scenario that the initial concentration for each sample had been 10 times as strong.

relative importance of the data at each dilution, and can be
compared to the classical procedure, which implicitly assigns
equal weights to all measurements within detection limits and
zero weights to the others.

The top row in Figure 6 shows the weights for the four di-
lutions of each of the two unknown samples in Figure 1 whose
raw data are given in the right panel of Table 2. For each of
these, the initial dilutions have the dominant weighting be-
cause the later dilutions are near the low end of the curve.
Thus, there is some sense to the classical claim that the lower
dilutions of these data are “below detection limit.” However,
there is no need to make a yes/no declaration on detection,
since the Bayesian method automatically downweights these
low-end observations. In comparison, the classical approach
inefficiently assigns equal weights to all measurements within
detection limits.

5.5 Using the Weights to Consider Alternative Designs
We can use the weights as a tool to understand the model
and consider alternative designs. For example, suppose that
the original samples 8 and 9 had been 10 times as concen-
trated. In that case, the data would have come further up on
the calibration curve, and the data at lower dilutions would
become more informative. The bottom row in Figure 6 shows
the new weights that would apply for these more concentrated
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samples. In any case, the weights are for helping us under-
stand the estimate, not for the actual estimation of the con-
centration θ, which is obtained using Bayesian inference as
described in Section 3.2.

6. Discussion
6.1 Performance of Bayesian Inference Compared

to the Existing Estimation Method
We have demonstrated that, for the purpose of estimating
unknown concentrations with serial dilution, a Bayesian for-
mulation of the standard four-parameter logistic model out-
performs the currently standard approach based on inverting
an estimated curve. The Bayesian estimates can be performed
using the free software packages R and Bugs. We have also
programmed the inference using the Metropolis algorithm
(see, e.g., Gilks, Richardson, and Spiegelhalter, 1996) directly
in R.

Section 3.2 shows how Bayesian methods allow estima-
tion of unknown concentrations with reasonable accuracy us-
ing much less data than needed by conventional methods,
even with measurements that at first appear to be outside
“detection limits.” In Section 4, we show that it is possible
to obtain accurate estimates of concentrations varying by a
factor of 46 or 47 (that is, ranging from sample 1 to sample
7 or 8 in Figure 5) and reasonable estimates over the entire
range of 49, or 260,000.

It is hardly surprising that a Bayesian or likelihood ap-
proach works better than an inversion procedure that ignores
estimation uncertainty. However, previous statistical treat-
ments of serial dilution assay (see Hamilton and Rinaldi,
1988; Racine-Poon et al., 1991; Higgins et al., 1998; Lee and
Whitmore, 1999) have focused on the estimation of the cal-
ibration curve or inference from discrete data rather than
the problem considered here, of inference for several un-
known concentrations from continuous assays. Dellaportas
and Stephens (1995) consider a fully Bayesian approach but
with a slightly simpler model in a nonhierarchical setting.

6.2 Information Provided by Each Data Point
In a serial dilution assay, the amount of information given
by each measurement depends upon its position along the
calibration curve and on its dilution (see [6]), as derived in
Section 5. Figure 6 shows how the weights for a given set of
measurements can be displayed to give insight into the esti-
mation of each unknown sample, and how these weights can
inform considerations of alternative designs. By comparison,
the existing procedure gives zero weights to observations out-
side “detection limits” and equal weights to the remaining
measurements.

Displays of the Bayesian weights, as in Figure 6, may help
users in understanding the information present in serial dilu-
tion data and deciding what dilutions to use in successive as-
says of similar items (e.g., dust samples from several different
homes).

6.3 Further Work
The model can potentially be improved in various ways, most
notably by generalizing the function (1) of expected measure-
ments. It is perhaps most important that the model be accu-
rate at the extremes of very low measurements, in order to

get reasonable estimates for samples “below detection limit.”
Inferences for these low measurements are sensitive to the as-
sumed power-law variance relation in (2).

A more serious problem occurs if the function relating mea-
surements to concentration is different for standards and un-
knowns. We have seen some of this in the systematically bi-
ased estimates for the unknown concentrations in plate 2 in
the validation study (see Figure 5). Unfortunately, impurities
in the sample can affect the assay so that the curve estimated
from the standards is not appropriate for the unknowns, which
calls into question the whole structure of the calibration pro-
cess. This represents a problem with both classical and Bayes
estimates, and we suspect it is the reason why estimates from
dilution assays are in practice much more variable than would
be suggested by even the classical estimates in Figure 3. An
important direction of future research is to study which as-
pects of the curves vary between samples and which are stable,
to allow the possibility of more accurate calibration.

Another research direction is in the design of the assays,
improving from the existing design shown in Table 1, with
standards diluted from 1 to 1/64 and unknowns from 1 to
1/27. Would it be better to have the two sets of standards at
slightly different values (e.g., with initial dilutions of 1/2 and
1/3, rather than both 1/2) instead of pure replications? Would
it be better to have standards below 1/64 to better capture
the behavior at very low levels? Should the initial dilution be
set at a higher concentration so that the upper limit of the
curve is estimated more accurately? Similarly, how many di-
lutions are recommended for each unknown sample, and how
many samples per plate, balancing the goals of efficiency in
estimation with that of measuring more items?

By yielding more accurate estimates and quantifying infer-
ential uncertainties (especially in the cases previously deemed
outside detection limits), the Bayesian approach sets the stage
for more systematic studies of model and design innovations,
which we hope will lead to an even broader extension of the
range of concentrations to which assays can be applied. This is
very much in the original spirit of serial dilution assays, which
can generically be considered as an approach to extending the
useful dynamic range of a measurement process.
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Résumé

Dans les essais de dilution en cascade la concentration d’un
composé est estimée en combinant des mesures faites sur
plusieurs dilutions d’une solution mère de titre inconnu. La
relation entre le titre et les mesures est non linéaire et
hétéroscédastique, on ne doit donc pas accorder des poids
égaux aux différentes mesures. Pour analyser de telles données
on rejette, dans l’approche standard actuelle, une proportion
élevée d’observations car au dessus ou au dessous des limites
de détection. Nous présentons une méthode bayésienne pour
estimer conjointement une courbe de réponse et le titre in-
connu en utilisant la totalité des données. Nos estimateurs
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ont des erreurs standards beaucoup plus faibles que ceux
de la méthode existante et nous obtenons des estimations
même quand toutes les observations sont à l’extérieur des
“limites de détection.” Nous évaluons empiriquement les per-
formances de notre méthode sur des données d’allergènes de
blatte mesurés dans des échantillons de poussière de mai-
son. Nos estimations sont bien plus précises que celles de la
méthode usuelle. De plus nous développons une méthode pour
déterminer le poids “effectif” attaché à chaque observation, à
l’aide d’une linéarisation locale du modèle estimé. Les poids
effectifs donnent une indication sur l’information apportée par
chaque observation et suggèrent d’éventuelles améliorations
du dispositif de l’essai.
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