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Abstract

A good choice of the proposal distribution is crucial for the rapid convergence of the Metropolis algo-

rithm. In this paper, given a family of parametric Markovian kernels, we develop an adaptive algorithm

for selecting the best kernel that maximizes the expected squared jumped distance, an objective function

that characterizes the Markov chain under its d-dimensional stationary distribution. The adaptive algo-

rithm uses the information accumulated by a single path and adapts the choice of the parametric kernel

in the direction of the local maximum of the objective function using multiple importance sampling

techniques. We demonstrate the effectiveness of our method in several examples.

Key Words. Acceptance rates; Bayesian computation; iterative simulation; Markov chain Monte Carlo;

Metropolis algorithm; multiple importance sampling

1 Introduction

1.1 Adaptive MCMC algorithms: motivation and difficulties

The algorithm of Metropolis et al. (1953) is an important tool in statistical computation, especially in

calculation of posterior distributions arising in Bayesian statistics. The Metropolis algorithm evaluates a

(typically multivariate) target distribution π(θ) by generating a Markov chain whose stationary distribution

is π. Practical implementations often suffer from slow mixing and therefore inefficient estimation, for at least

two reasons: the jumps are too short and therefore simulation moves very slowly to the target distribution;

or the jumps end up in low-target areas of the target density, causing the Markov chain to stand still most

of the time. In practice, adaptive methods have been proposed in order to tune the choice of the proposal,
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matching some criteria under the invariant distribution (e.g. Kim, Shephard, and Chib (1998), Haario,

Saksman, and Tamminen (1999), Laskey and Myers (2001), Andrieu and Robert (2001), and Atchadé and

Rosenthal (2003)). These criteria are usually defined based on theoretical optimality results, for example

for a d-dimensional normal target distribution the optimal scaling of the jumping kernel is cd = 2.4/
√

d

(Gelman, Roberts, and Gilks (1996)).

Another approach is to coerce the acceptance probability to a preset value (e.g. 44% for one-dimensional

target) or to match moments; these can be difficult to apply due to the complicated form of target distribution

which makes the optimal acceptance probability value or analytic moments difficult to compute. In practice,

problems arise for distributions (e.g., multimodal) for which the normal-theory optimal scaling results do

not apply, and for high-dimensional target distributions where initial optimization algorithms cannot find

easily the global maximum of the target distribution, yielding a proposal covariance matrix different from

the covariance matrix under the invariant distribution.

In general, the adaptive proposal Metropolis algorithms do not simulate exactly the target distribution:

the Markovian property or time-homogeneity of the transition kernel is lost, and ergodicity can be proved

only under some very restrictive conditions (see Haario, Saksman, and Tamminen (2001), Holden (1998)

and Atchadé and Rosenthal (2003)). Adaptive methods that preserve the Markovian properties by using

regeneration times have the challenge of estimation of regeneration times, which is difficult for algorithms

other than independence chain Metropolis (see Gilks, Roberts, and Sahu (1998)). We shall follow a two-stage

approach: a series of adaptive optimization steps followed by an MCMC run with fixed kernel.

1.2 Our proposed method based on expected squared jumped distance

In this paper we propose a general framework which allows for the development of new MCMC algorithms

that are able to learn automatically the best strategy among a set of proposed strategies {Jγ}γ∈Γ, where Γ

is some finite-dimensional domain, in order to explore the target distribution π. Measures of efficiency in

low dimensional Markov chains are not unique (see Gelman, Roberts, and Gilks (1995) for discussion). A

natural measure of efficiency is the asymptotic variance of the sample mean θ̄ = 1
T

∑T
t=1 θt. The asymptotic
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efficiency of Markov chain sampling for θ̄ is defined as

effθ̄(γ) =
var(π)(θ̄)

var(Jγ)(θ̄)
= [1 + 2(ρ1 + ρ2 + · · · )]−1 , γ ∈ Γ,

where var(π) denotes the variance under independent sampling, varJγ
is the limiting scale sample variance

from the MCMC output, and ρt is the autocorrelation of the Markov chain at lag t. Alternative measures

of efficiency in the MCMC literature are related to the eigenvalue structure of the transition kernel (see,

for example, Besag and Green (1993)). Fast convergence to stationarity is attained by having a low second

eigenvalue. Maximizing efficiency is a criterion proposed in Andrieu and Robert (2001), but the difficulty

lies in estimating the higher order autocorrelations ρ2, ρ3, . . . , since these involve estimation of an integral

with respect to the Dirac measure. We shall maximize the expected squared jumped distance (ESJD):

ESJD(γ)
4
= EJγ

[|θt+1 − θt|2] = 2(1 − ρ1) · varπ(θt),

for a one-dimensional target distribution π, and a similar quantity in multiple dimensions (see Section 2.4).

Clearly, varπ(θt) is a function of the stationary distribution only, thus choosing a transition rule to maximize

ESJD is equivalent to minimizing the first order autocorrelation ρ1 of the Markov chain (and thus maximizing

the efficiency if the higher order autocorrelations are monotonically increasing with respect to ρ1). However,

our method is more general and can apply to any objective function and d-dimensional target distribution

(see Section 2.4). We present here an outline of our procedure.

1. Start the Metropolis algorithm with some initial kernel; keep track of both the Markov chain θt and

proposals θ∗t .

2. After every T iterations, update the covariance matrix of the jumping kernel using the sample covari-

ance matrix, with a scale factor that is computed by optimizing an importance sampling estimate of

the ESJD.

3. After some number of the above steps, stop the adaptive updating and run the MCMC with a fixed

kernel, treating the previous iterations up to that point as a burn-in.
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Importance sampling techniques for Markov chains, unlike for independent variables, typically require the

whole path for computing the importance sampling weights, thus making them computationally expensive.

We take advantage of the properties of the Metropolis algorithm to construct importance weights that

depend only on the current state, and not of the whole history of the chain. The multiple importance

sampling techniques introduced in Geyer and Thomson (1992, reply to discussion) and Geyer (1996) help

stabilize the variance of the importance sampling estimate over a broad region, by treating observations from

different samples as observations from a mixture density. We study the convergence of our method by using

the techniques of Geyer (1994).

This paper describes our approach, in particular, the importance sampling method used to optimize

the parameters of the jumping kernel Jγ(·, ·) after a fixed number of steps, and illustrates it with several

examples. We also compare our procedure with the Robbins-Monro stochastic optimization algorithm (see,

for example, Kushner and Yin (2003)). We describe our algorithm in Section 2 in general and in Section 3

discuss implementation with Gaussian kernels. Section 4 includes several examples, and we conclude with

discussion and open problems in Section 5.

2 The adaptive optimization procedure

2.1 Notation

To define Hastings’s (1970) version of the algorithm, suppose that π is a target density absolutely continuous

with respect to Lebesgue measure and let {Jγ(·, ·)}γ∈Γ be a family of jumping (proposal) kernels. For fixed

γ ∈ Γ define

αγ(x, y) = min

{

Jγ(y, x)π(y)

π(x)Jγ(x, y)
, 1

}

.

If we define the off-diagonal density of the Markov process,

pγ(x, y) =

{

Jγ(x, y)αγ(x, y), x 6= y
0, x = y

(1)

and set

rγ(x) = 1 −
∫

pγ(x, y)dy,
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then the Metropolis transition kernel can be written as

Kγ(x, dy) =

(

1 ∧ π(y)Jγ(y, x)

π(x)Jγ(x, y)

)

Jγ(x, dy)1{x6=y} + δx(y)

(

1 −
∫
(

1 ∧ π(y)Jγ(y, x)

π(x)Jγ(x, y)

)

Jγ(x, y)dy

)

= pγ(x, y)dy + rγ(x)δx(dy).

Throughout this paper we use the notation θ∗t for the proposal generated by the Metropolis-Hastings chain

under jumping kernel Jγ(·, θt) and denote by

∆t
4
= θ∗t − θt,

the proposed jumping distance. Clearly θt+1 = θ∗t with probability α(θt, θ
∗
t ), and θt+1 = θt, with probability

1 − α(θt, θ
∗
t ).

2.2 Optimization of the jumping kernel after one set of simulations

Following Andrieu and Robert (2001), we define the objective function which we seek to maximize adaptively

as

h(γ)
4
= E [H(γ, θt, θ

∗
t )] =

∫ ∫

Rd×Rd

H(γ, x, y)π(x)Jγ(x, y)dx dy, ∀γ ∈ Γ. (2)

We start our procedure by choosing an initial jumping kernel Jγ0
(·, ·) and running the Metropolis-Hastings

algorithm for T steps. We can use the T simulation draws θt and the proposals θ∗t to construct the empirical

ratio estimator of h(γ),

ĥT (γ|γ0)
4
=

∑T
t=1 H(γ, θt, θ

∗
t ) · wγ|γ0

(θt, θ
∗
t )

∑T
t=1 wγ|γ0

(θt, θ∗t )
, ∀γ ∈ Γ, (3)

or the mean estimator

hT (γ|γ0)
4
=

1

T

T
∑

t=1

H(γ, θt, θ
∗
t )

Jγ(θt, θ
∗
t )

Jγ0
(θt, θ∗t )

, ∀γ ∈ Γ. (4)

where

wγ|γ0
(x, y)

4
=

Jγ(x, y)

Jγ0
(x, y)

, (5)
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are the importance sampling weights. On the left side of (3) the subscript T emphasizes that the estimate

comes from T simulation draws, and we explicitly condition on γ0 because the importance sampling weights

require Jγ0
.

We typically choose as objective function the expected squared jumped distance H(γ, (θ, θ∗)) = ||θ −

θ∗||2Σ−1αγ(θ, θ∗) = (θ − θ∗)tΣ−1(θ − θ∗)αγ(θ, θ∗), where Σ is the covariance matrix of the target distribution

π, because maximizing this distance is equivalent with minimizing the first order autocorrelation in covariance

norm. We return to this issue and discuss other choices of objective function in Section 2.4. We optimize

the empirical estimator (3) using a numerical optimization algorithm such as Brent’s (see, e.g., Press et al.

(2002)) as we further discuss in Section 2.6. In Section 4 we discuss the computation time needed for the

optimization.

2.3 Iterative optimization of the jumping kernel

If the starting point is not in the neighborhood of the optimum, then an effective strategy is to iterate the

optimization procedure, both to increase the amount of information used in the optimization and to use more

effective importance sampling distributions. The iteration allows us to get closer and not rely too strongly

on our starting distribution. We explore the effectiveness of the iterative optimization in several examples in

Section 4. In our algorithm, the “pilot data” used to estimate h will come from a series of different jumping

kernels. The function h can be estimated using the method of multiple importance sampling (see Hesterberg

(1995)), yielding the following algorithm based on adaptively updating the jumping kernel after steps T1,

T1 + T2, T1 + T2 + T3 + · · · . For k = 1, 2, 3, . . .,

1. Run the Metropolis algorithm for Tk steps according to jumping rule Jγk
(·, ·). Save the sample and

proposals, (θk1, θ
∗
k1), . . . , (θkTk

, θ∗kTk
).

2. Find the maximum γk+1 of the empirical estimator hT1+···+Tk
(γ|γk, . . . , γ1), defined as

ĥT1+···+Tk
(γ|γk, . . . , γ1) =

∑k
i=1

∑Ti

t=1 H(γ, θit, θ
∗
it) · wγ|γk,...,γ1

(θit, θ
∗
it)

∑k
i=1

∑Ti

t=1 wγ|γk,...,γ1
(θit, θ∗it)

, (6)
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where the multiple importance sampling weights are

wγ|γj ,...,γ1
(θ, θ∗)

4
=

Jγ(θ, θ∗)
∑j

i=1 TiJγi
(θ, θ∗)

, j = 1, . . . , k. (7)

We are treating the samples as having come from a mixture of k distributions. The weights satisfy the

condition
∑k

i=1

∑Ti

t=1 wγ|γk,...,γ1
(θit, θ

∗
it) = 1 and are derived from the individual importance sampling weights

by substituting Jγ = ωγ|γj
Jγj

in the numerator of (7). With independent multiple importance sampling,

these weights are optimal in the sense that they minimize the variance of the empirical estimator (see Veach

and Guibas (1995), Theorem 2), and our numerical experiments indicate that this greatly improves the

convergence of our method. Since step 2 is nested within a larger optimization procedure, if suffices to run

only a few steps of an optimization algorithm, there is no need to find the local optimum since it will be

altered at next step anyway. Also, it is not always necessary to keep track of the whole chain and proposals,

quantities that can become be computationally expensive for high dimensional distributions. For example,

in the case of random walk Metropolis and ESJD objective function it is enough to keep track of the jumped

distance in covariance norm and the acceptance probability to construct the adaptive empirical estimator.

We further discuss these issues in Section 3.

2.4 Choices of the objective function

We focus on optimizing the expected squared jumped distance (ESJD), which in one dimension is defined

as,

ESJD(γ) = EJγ
[|θt+1 − θt|2] = EJγ

[

EJγ
[|θt+1 − θt|2

∣

∣(θt, θ
∗
t )]
]

= E
[

|θ∗t − θt|2αγ(θt, θ
∗
t )
]

= 2(1 − ρ1) · varπ(θt)

and corresponds to the objective function H(γ, θ, θ∗) = (θ−θ∗)2αγ(θ, θ∗). Maximizing the ESJD is equivalent

to minimizing first order autocorrelation, which is a convenient approximation to maximizing efficiency, as

we have discussed in Section 1.2.

For d-dimensional targets, we scale the expected squared jumped distance by the covariance norm and
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define the ESJD as

ESJD(γ)
4
= EJγ

[||θt+1 − θt||2Σ−1 ] = E
[

||θ∗t − θt||2Σ−1αγ(θt, θ
∗
t )
]

.

This corresponds to the objective function, H(γ, θ, θ∗) = ||θ−θ∗||2Σ−1αγ(θ, θ∗) = (θ−θ∗)tΣ−1(θ−θ∗)αγ(θ, θ∗),

where Σ is the covariance matrix of the target distribution π. The adaptive estimator (6) then becomes,

ĥT1+···+Tk
(γ | γk, γk−1, . . . , γ1)

4
=

∑k
i=1

∑Ti

t=1 ||∆it||2Σ−1αγi
(θit, θ

∗
it) · wγ|γk,...,γ1

(θit, θ
∗
it)

∑k
i=1

∑Ti

t=1 wγ|γk,...,γ1
(θit, θ∗it)

. (8)

Maximizing the ESJD in covariance norm is equivalent to minimizing the lag-1 correlation of the d-dimensional

process in covariance norm,

ESJD(γ) = EJγ

[

||θt||2Σ−1

]

−EJγ
[<θt+1, θt >Σ−1 ] . (9)

When Σ is unknown, we can use a current estimate in defining the objective function at each step. We

illustrate in Sections 4.2 and 4.4.

For other choices of objective function in the MCMC literature, see Andrieu and Robert (2001). In

this paper we shall consider two optimization rules: (1) maximizing the ESJD (because of its property

of minimizing the first order autocorrelation) and (2) coercing the acceptance probability (because of its

simplicity).

2.5 Convergence properties

For fixed jumping kernel, under conditions on π and Jγ such that the Markov chain (θt, θ
∗
t ) is irreducible and

aperiodic (see Meyn and Tweedie (1993)), the ratio estimator ĥT converges to h with probability 1. In order

to prove convergence of the maximizer of ĥT to the maximizer of h, some stronger properties are required.

Proposition 1. Let {(θt, θ
∗
t )}t=1:T be the Markov chain and set of proposals generated by the Metropolis-

Hastings algorithm under transition kernel Jγ0
(·, ·). If the chain {(θt, θ

∗
t )} is irreducible, and ĥT (· |γ0) and h

are concave and twice differentiable everywhere, then ĥT (· |γ0) converges to h uniformly on compacts with

probability 1 and the maximizers of ĥT (·|γ0) converge to the unique maximizer of h.
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Proof. The proof is a consequence of well-known theorems of convex analysis stating that convergence on

a dense set implies uniform convergence and consequently convergence of the maximizers, and can be found

in Geyer and Thompson (1992).

In general, it is difficult to check the concavity assumption for the empirical ratio estimator, but we can

prove convergence for the mean estimator.

Proposition 2. Let {(θt, θ
∗
t )}t=1:T be the Markov chain and set of proposals generated by the Metropolis-

Hastings algorithm under transition kernel Jγ0
(·, ·). If the chain {(θt, θ

∗
t )} is irreducible, and the mapping

γ → H(γ, x, y)Jγ(x, y), ∀γ ∈ Γ

is continuous, and for every γ ∈ Γ there is a neighborhood B of γ such that

EJγ0

[

sup
φ∈B

H(φ, θt, θ
∗
t )

Jφ(θt, θ
∗
t )

Jγ0
(θt, θ∗t )

]

< ∞, (10)

then hT (· |γ0) converges to h uniformly on compact sets with probability 1.

Proof. See Appendix.

The convergence of the maximizer of hT to the maximizer of h is attained under the additional conditions

of Geyer (1994).

Theorem. (Geyer (1994), Theorem 4) Assume that (γT )T , γ∗ are the unique maximizers of (hT )T

and h, respectively and they are contained in a compact set. If there exist a sequence εT → 0 such that

hT (γT |γ0) ≥ supT (hT (γT |γ0)) − εT , then γT → γ∗.

Proposition 3. If the chain {(θt, θ
∗
t )} is irreducible and the objective function is the expected squared

jumped distance, H(γ, x, y) = ||y−x||2Σ−1αγ(x, y), then the mean empirical estimator hT (γ|γ0) converges uni-

formly on compact sets for the case of random walk Metropolis algorithm with jumping kernel Jγ,Σ(θ∗, θ) ≈

exp
(

− 1
2γ2 ||θ − θ∗||2Σ−1

)

.

Proof. See Appendix.

Remark. We used both the mean and the ratio estimator for our numerical experiments, but the

convergence appeared to be faster and the estimates more stable for the ratio estimator (see Remark 1 below

for more details).
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2.6 Practical optimization issues

Remark 1. The motivation for the ratio estimator (3) is that it preserves the range of the objective function,

for example constraining the acceptance probability to the range [0, 1], and has a lower variance than the

mean estimator if the correlation between the numerator and denominator is sufficiently high (see Cochran

(1977)). Other choices for the empirical estimator include the mean estimator hT and estimators that use

control variates that sum to 1 to correct for bias (see, for example, the regression and difference estimators

of Hesterberg (1995)).

Multiple importance sampling is intended to give high weights to individual jumping kernels that are

near the optimum. For more choices for the multiple importance sampling weights, see Veach and Guibas

(1995).

Remark 2. For the usual symmetric kernels (e.g., normal, t, Cauchy) and objective functions it is

straightforward to derive analytical first and second order derivatives and run a few steps of a maximization

algorithm which incorporates the knowledge of the first and second derivative (see, e.g., Press et al. (2002)

for C code or the function optim() in R). If analytic derivatives do not exist or are expensive to compute,

then pne can perform a grid maximization centered on the current estimated optimum.

Remark 3. Guidelines that ensure fast convergence of the importance sampling estimator In(h) =

∑n
i=1 h(Xi)

gγ(Xi)
gγ0

(Xi)
of I(h) = Egγ

[h(X)] based on the proposal distribution gγ0
(·) are presented in Robert and

Casella (1998): the importance sampling distribution gγ0
should have heavier tails then the true distribution;

minimizing the variance of importance weights minimizes the variance of In(h).

3 Implementation with Gaussian kernel

For the case of a random walk Metropolis algorithm with Gaussian proposal density Jγ,Σ(θ∗, θ) ≈ exp
(

− 1
2γ2 ||θ − θ∗||2Σ−1

)

,

the adaptive empirical estimator (8) of the ESJD is

ĥT1+···+Tk
(γ |γk, γk−1, . . . , γ1)

4
=

∑k
i=1

∑Ti

t=1 ||∆it||2Σ−1

i
α(θit, θ

∗
it) · wγ|γk,...,γ1

(||∆it||2Σi
−1)

∑k
i=1

∑Ti

t=1 wγ|γk,...,γ1
(||∆it||2Σ−1

i
)

, (11)

10



where

wγ|γk,...,γ1
(x) =

1
γd exp

(

− x
2γ2

)

∑k
i=1 Ti

1
γd

i

exp
(

− x
2γ2

i

) . (12)

For computational purposes, we program the Metropolis algorithm so that it gives as output the proposed

jumping distance in covariance norm ||∆it||Σ−1

i
and the acceptance probability. This reduces the memory

allocation for the optimization problem to one dimension, and the reduction is extremely important high

high dimensions where the alternative is to store d × T arrays. We give here a version of our optimization

algorithm that keeps track only of the jumped distance in covariance norm, the acceptance probability, and

the sample covariance matrix.

1. Choose a starting covariance matrix Σ0 for the Metropolis algorithm, for example a numerical estima-

tion of the covariance matrix of the target distribution.

2. Choose starting points for the simulation and some initial scaling for the jumping kernel, for example

cd = 2.4/
√

d. Run the algorithm for T1 iterations, saving the simulation draws θ1t, the proposed jump-

ing distances ||∆1t||Σ−1

0

in covariance norm, and the acceptance probabilities α(θ1t, θ
∗
1t). Optionally,

construct a vector consisting of the denominator of the multiple importance sampling weights and

discard the sample θ1t.

3. For k > 1, run the Metropolis algorithm using jumping kernel JγkΣk
. Update the covariance matrix

using the iterative procedure

Σk+1(i, j) =

(

1 − Tk

Ttotal

)

Σk(i, j)+
1

Ttotal

(

(Ttotal − Tk) θ̄k−1,iθ̄k−1,j − Ttotalθ̄kiθ̄kj +

Tk
∑

t=1

θktθjt

)

, i, j = 1, . . . , d

where Ttotal = T1 + · · ·+ Tk, and update the scaling using the adaptive algorithm. We also must keep

track of the d-dimensional mean, but this is not difficult since it satisfies a simple recursion equation.

Optionally, iteratively update the denominator of the multiple sampling weights.

4. Discard the sample θkt and repeat the above step.

The updated covariance Σk+1 might not be positive definite. In this situation we recommend using a

eigenvalue decomposition of the updated covariance, setting the minimum eigenvalue to a small positive
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value, and rounding up the smaller eigenvalues to this minimum value.

In updating the covariance matrix we can also use the greedy-start procedure using only the accepted

jumps (see Haario et al. (1999)). For random walk Metropolis, analytic first and second order derivatives

are helpful in the implementation of the optimization step (2) (e.g., using a optimization method), and can

be derived analytically. If we update the scaling jumping kernel at each step of the iteration using Newton’s

method,

γk+1 = γk − ĥ′
k(γk | γk, . . . , γ1)

ĥ′′
k(γk | γk, . . . , γ1)

,

the scaling parameter γ will converge fast in a neighborhood of the true maximum; otherwise bounds on

parameters are required in order to implement it successfully. In our examples, we have had success updating

the jumping kernel every 50 iterations of the Metropolis algorithm, until approximate convergence. At this

point the MCMC algorithm is ready for its “production” run.

4 Examples

In our first three examples we use target distributions and proposals for which optimal jumping kernels

have been proposed in the MCMC literature to demonstrate that our optimization procedure is reliable. We

then apply our method on two applications of Bayesian inference using Metropolis and Gibbs-Metropolis

updating.

4.1 Independent normal target distribution, d = 1, . . . , 100

We begin with the multivariate normal target distribution in d dimensions with identity covariance matrix,

for which the results from Gelman, Roberts and Gilks (1996) and Roberts, Gelman and Gilks (1997) apply

regarding the choice of optimal scaling. This example provides some guidelines regarding the speed of

convergence, the optimal sample size, and the effectiveness of our procedure for different dimensions. In

our experiments, our approach outperforms the stochastic Robbins-Monro algorithm, as implemented by

Atchadé and Rosenthal (2003).

Figure 1 shows the convergence of the adaptive optimization procedure for dimensions d=1, 10, 25, 50,

12



and 100 as well as the corresponding values of the multiple importance sampling estimator of ESJD and

average acceptance probability.

Insert Figure 1 here “Optimizing ESJD”

When starting from very small values, the estimated optimal scale shows some initial high upward jumps,

because the importance sampling ratio can be unbounded Convergence to the optimal scaling is achieved in

20 steps with sample size T = 50 × 20 = 1000 for dimension d less then 50. For dimension d = 100, reliable

convergence requires 30 or more steps of 50 iterations each.

In order to compare our algorithm with the stochastic Robbins-Monro algorithm, we also coerced

the acceptance probability by estimating the average acceptance probability using the objective function

H(x, y) = αγ(x, y) and then minimizing a quadratic loss function h(γ) = (
∫∫

αγ(x, y)Jγ(x, y)dx dy − α∗)
2,

where α∗ is defined as the acceptance rate corresponding to the Gaussian kernel that minimizes the first-order

autocorrelation.

Insert Figure 2 here “Coerced probability method”

The convergence of the algorithm coercing the acceptance probability is faster then when maximizing ESJD,

which we attribute to the fact that the acceptance probability is less variable then ESJD, thus easier to

estimate.

A comparison of our method with the stochastic Robbins-Monro algorithm implemented by Atchadé and

Rosenthal (2003, Graph 2), shows that our method converges faster and does not encounter the problems

of the stochastic algorithm, which always goes in the first steps to a very low value and then converges

from below to the optimal value. It is generally better to overestimate than to underestimate the optimal

scaling. Even when jumps are not accepted, our imnportance sampling estimate uses the information in the

attempted jumps via the acceptance probabilities.

To show that our method converges also in extreme cases, we apply our method with two starting values

of (0.01,50)×2.4/
√

d for d = 25. We use an optimization procedure that is a combination of golden search

and successive parabolic interpolation (see Brent (1973)) on the interval [0.01, 100].
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Insert Figure 3 here “Extreme starting points”

4.2 Correlated normal target distribution

We next illustrate adaptive scaling for a target distribution with unknown covariance matrix. We consider

a two-dimensional target distribution with covariance Σ =

(

100 9
9 1

)

. A choice for the covariance matrix

of the initial Gaussian proposal is the inverse of the Hessian, − 52 log(π), computed at the maximum of

π. Unfortunately, numerical optimization methods can perform very badly for high dimensions when the

starting point of the algorithm is not close to the maximum. Even for such a simple distribution, starting

the BFGS optimization algorithm far from the true mode might not find the global maximum, resulting in

a bad initial proposal covariance matrix Σ0. To represent this possibility, we start here with an independent

proposal Σ0 =

(

25 0
0 1

)

. Figure 4 shows the performance of our algorithm; approximate convergence is

achieved in 20 steps.

Insert Figure 4 here “Convergence vs. step number”

4.3 Mixture target distribution

We consider now a target distribution that is a mixture of Gaussians with parameters µ1 = −5.0, σ2
1 = 1.0,

µ2 = 5.0, σ2
2 = 2.0 and weights (λ = 0.2, 1 − λ). The purpose of this example is twofold: first to illustrate

that for bimodal distribution the optimal scaling is different from the Gaussian results cd = 2.4/
√

d, and

second to compare our method with the stochastic Robbins-Monro algorithm of Andrieu and Robert (2001,

Section 7.1) where the acceptance probability was coerced to 40%.

We compare the results of our method given two objective functions, coercing the acceptance probability

to 44% and maximizing the ESJD, in terms of convergence and efficiency. We also compare the speed of the

stochastic Robbins-Monro algorithm with the convergence speed of our adaptive optimization procedure.

Insert Figure 5 here “ESJD vs coerced acceptance probability method”

The convergence to the “optimal” acceptance probability for the coerced probability method is attained

14



in 1000 iterations for all starting values, an improvement over the approximately 10000 iterations required

under the stochastic optimization algorithm (see Andrieu and Robert (2001), Figure 6). Maximizing ESJD

yields an optimal scaling of γ = 9.0, and a comparison of the correlation structure ρt (the bottom two graphs

of Figure 5) at the optimal scales determined by the two objective functions shows that the autocorrelation

decreases much faster for the optimal scale which maximizes ESJD, thus making the ESJD a more appropriate

efficiency measure.

4.4 16-dimensional nonlinear model

We next consider an applied example—a model for serial dilution assays from Gelman, Chew, and Shnaidman

(2004),

yi ∼ N

(

g(xi, β),

(

g(xi, β)

A

)2α

σ2
y

)

xi = di · xinit
j (i),

where g(x, β) = β1 + β2/
(

1 + (x/β3)
−β4

)

. For each sample j, we model

log xinit
j ∼ N(log(dinit

j · θj), (σ
init)2), for the standard sample j = 0

xinit
j = θj , for the unknown samples j = 1, . . . , 10.

The constant A is arbitrary and is set to some value in the middle of the range of the data. The parameter

σinit is assumed known, and a vague prior distribution is applied to σy and β. We estimate the unknown

concentrations using data from a single plate with 16 calibration measurements and 8 measurements per

unknown sample. We know the initial concentration of standard sample θ0 and the dilutions di, and we

need to estimate the 10 unknown concentrations θj and the parameters β1, β2, β3, β4, σθ, σy , α. For faster

convergence the θi’s are reparameterized as log ηi = log θj − log β3. We use BFGS to find the maximum

likelihood and start the Metropolis with a Gaussian proposal with the covariance set to the inverse of the

Hessian of the log likelihood computed in the maximum. We keep the covariance matrix fixed and optimize

only the choice of scaling. After the algorithm converges, we verify that the sample covariance matches

the choice of our initial covariance. Despite the complex structure of the target distribution, the adaptive
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method converges to the theoretical optimal value cd ≈ 2.4/
√

16 = 0.6 in 30 steps with 50 iterations per

step.

Insert Figure 6 here “16-dimensional nonlinear model”

The computation time is 0.01 seconds per iteration in the Metropolis step, and the optimization step takes

an average of 0.04 seconds per step. We update after every 50 iterations and so the optimization adds

0.04/(50 ∗ 0.01) = 8% to the computing time.

4.5 Metropolis sampling within Gibbs

Finally, we apply our method to Metropolis-within-Gibbs sampling with a hierarchical t model applied to

the educational testing example from Gelman et al. (2003, Appendix C). The model has the form,

yj ∼ N(θj , σ
2
j ), σj known, for j=1,. . . ,8

θj |ν, µ, τ ∼ tν(µ, τ2), for j = 1, . . . , 8.

We use an improper joint uniform prior density for (µ, τ, 1/ν). To treat ν as an unknown parameter, the

Gibbs sampling simulation includes a Metropolis step for updating 1/ν. Maximizing ESJD, the adaptive

procedure converges to the optimal scale γ = 0.5 in 10 steps of 50 iterations each, the same optimal value

for the coercing the acceptance probability to 44%.

Insert Figure 7 here “Gibbs within Metropolis”

5 Discussion

The proposed adaptive method is computationally easy to implement, and maximizing ESJD greatly im-

proves the performance of the Metropolis algorithm. Our algorithm follows similar steps as recent work in

adaptive updating of the Metropolis kernel (Haario et al. (1999), Andrieu and Robert (2001), and Atchadé

and Rosenthal (2003)), but appears to converge faster, presumably because of the numerical stability of the

multiple importance sampling estimate in the context of a Gaussian parametric family of jumping kernels.
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Coercing the acceptance probability has slightly faster convergence then maximizing the ESJD but not nec-

essarily to an optimal value as we have seen in Figure 5. The proof of ergodicity of the adaptive chain which

adapts both scaling and covariance remains an open theoretical question as does the relationship between

ESJD, the eigenvalue structure of the Metropolis kernel, and convergence speed. For Gaussian and indepen-

dent distributions in high dimensions, samples of the Metropolis algorithm approach an Ornstein-Uhlenbeck

process and all reasonable optimization criteria are equivalent (Roberts, Gelman, and Gilks (1997)), but this

is not necessarily the case for finite-dimensional problems or adaptive algorithms.

Other issues that arise in setting up the algorithm are the choice of multiple sampling weights, the choice

of number of iterations per step, and when to stop the adaptation. In high-dimensional problems, we have

optimized the scale of the jumping kernel while updating the covariance matrix using empirical weighting of

posterior simulations (as in Haario et al. (1999)). We also anticipate that these methods can be generalized

to optimize over more general MCMC algorithms, for example slice sampling (Neal (2003)) and Langevin

algorithms that involve a translation parameter as well as a scale for the jumping kernel and can achieve

higher efficiencies then symmetric Metropolis algorithms (see Roberts and Rosenthal (2001)).
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Appendix

Proof of Proposition 2

The chain {(θt, θ
∗
t )} is a positive Markov chain with invariant probability π(dx)Jγ(x, dy). Given that θt

is irreducible, it satisfies the conditions of Robert and Casella (1998, Theorem 6.2.5 i), and consequently,

hT (γ|γ0) =
1

T

T
∑

t=1

H(γ, θt, θ
∗
t )wγ|γ0

(θt, θ
∗
t ) →

∫ ∫

H(γ, x, y)π(x)Jγ(x, y)dx dy, a.s., ∀γ ∈ Γ. (13)

The next part of the proof is a particular version of Geyer (1994, Theorems 1 and 2), and we reproduce

it here for completeness. Taking into account that the union of null sets is a null set, we have that (13) holds

a.s. for all γ in a countable dense set in Γ. By the weak convergence of measures,

inf
φ∈B

1

T

T
∑

t=1

H(φ, θt, θ
∗
t ) · wφ|γ0

(θt, θ
∗
t ) →

∫ ∫

inf
φ∈B

H(φ, x, y)π(x)Jφ(x, y)dx dy, a.s. (14)

holds, for all γ in a countable dense set in Γ. Convergence on compacts is a consequence of epiconvergence

and hypoconvergence (see, for example, Geyer (1994)). In order to prove epiconvergence we need to show

that

h(γ) ≤ sup
B∈N(γ)

lim inf
t→∞

inf
φ∈B

{ht(φ|γ0)} (15)

h(γ) ≥ sup
B∈N(γ)

lim sup
t→∞

inf
φ∈B

{ht(φ|γ0)}, (16)

where N(γ) are the neighborhoods of γ. By topological properties of R, there exist a countable base of open

neighborhoods Vn. By the continuity of γ → H(γ, )Jγ we can replace the infima by infima over countable

sets (e.g., rational numbers). Now construct a sequence Γc = (xn)n ∈ Γ dense in R such that, xn satisfies

h(xn) ≤ inf
x∈Vn

h(x) − 1

n
.

¿From (13) we have limt→∞ ht(γ|γ0) → h(γ), for all γ ∈ Vn ∩ Γc. Consequently, for all γ ∈ Vn ∩ Γc, and

B ∈ N(γ)

h(γ) = lim
t→∞

ht(γ|γ0) ≥ lim sup
t→∞

inf
φ∈B

ht(φ|γ0)

which implies,

inf
φ∈B∩Γc

{h(φ)} ≥ lim sup
t→∞

inf
φ∈B

ht(φ|γ),
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for any B neighborhood of γ. Take a decreasing collection Bn of neighborhoods of γ such that ∩Bn = {γ},

and we have

lim sup
n→∞

inf
φ∈Bn∩Γc

{h(φ)} ≥ lim sup
n→∞

lim sup
t→∞

inf
φ∈Bn

ht(φ|γ).

Now (16) reduces to proving that the left-hand side is less then h(γ), and follows if h is continuous. The

continuity of H(γ, ) · Jγ , assumption (10) and the dominated convergence theorem

h(γ) =

∫ ∫
[

lim
k→∞

H(γk, x, y)Jγk
(x, dy)

]

π(x)dx = lim
k→∞

∫ ∫

[H(γk, x, y)Jγk
(x, dy)] π(x)dx = lim

k→∞
h(γk)

yield that h is continuous, concluding the proof of (16).

In order to prove (15) we apply the dominated convergence theorem to get,

sup
Bk

E

[

inf
φ∈Bk

H(φ, θt, θ
∗
t )

H(γ0, θt, θ∗t )

]

→ E

[

sup
Bk

inf
φ∈Bk∩Γc

H(φ, θt, θ
∗
t )

H(γ0, θt, θ∗t )

]

= h(γ).

The hypo-continuity follows from similar arguments.

Proof of Proposition 3

We need to prove that the assumptions of Proposition 2 are verified. Clearly the continuity assumption

is satisfied, and we check now (10). For simplicity, we omit the subscript and use the notation |||| = ||||Σ−1 .

Fix γ > 0 and ε > 0 small enough,

∫ ∫

sup
φ∈(γ−ε,γ+ε)

(

||y − x||2 Jφ(||y − x||2)
Jγ0

(||y − x||2)
α(x, y)

)

Jγ0
(||y − x||2)π(x)dy dx

=

∫ ∫

sup
φ∈(γ−ε,γ+ε)

(

Jφ(||y − x||2)
)

||y − x||2α(x, y)π(x)dy dx

≤
∫

(

∫

d(γ−ε)2<||y−x||2<d(γ+ε)2
sup

φ∈(γ−ε,γ+ε)

(Jφ(||y − x||)) ||y − x||2dy

)

π(x)dx

+

∫

(

∫

||y−x||2 /∈(d(γ−ε)2, d(γ+ε)2)

sup
φ∈(γ−ε,γ+ε)

Jφ(||y − x||)||y − x||2dy

)

π(x)dx.

Taking into account that

sup
φ∈(γ−ε,γ+ε)

1

φd
exp

{

−||y − x||2
2φ2

}

=











K 1
||y−x||2

, ||y − x||2 ∈ (d(γ − ε)2, d(γ + ε)2)

Jγ−ε(||y − x||2), ||y − x||2 ≤ d(γ + ε)2

Jγ+ε(||y − x||2), ||y − x||2 ≥ d(γ − ε)2
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with K > 0, the first integral becomes

∫

(

∫

d(γ−ε)2<||y−x||2<d(γ+ε)2
sup

φ∈(γ−ε,γ+ε)

(Jφ(||y − x||)) ||y − x||2dy

)

π(x)dx

≤ K

∫

(

∫

0<||y−x||2<d(γ+ε)2

1

d(γ − ε)2
dy

)

π(x)dx

= K

∫

0<||z||2<d(γ+ε)2

1

d(γ − ε)2
dz < ∞, (17)

and the second integral can be bounded as follows:

∫

(

∫

||y−x||2 /∈(d(γ−ε)2, d(γ+ε)2)

sup
φ∈(γ−ε,γ+ε)

Jφ(||y − x||)||y − x||2dy

)

π(x)dx

=

∫

(

∫

||y−x||2≤d(γ−ε)2
sup

φ∈(γ−ε,γ+ε)

Jφ(||y − x||)||y − x||2dy

)

π(x)dx

+

∫

(

∫

||y−x||2≥d(γ+ε)2
sup

φ∈(γ−ε,γ+ε)

Jφ(||y − x||)||y − x||2dy

)

π(x)dx

=

(

∫

||y−x||2≤d(γ−ε)2
Jγ−ε(||y − x||)||y − x||2dy

)

π(x)dx

+

∫

(

∫

||y−x||2≥d(γ+ε)2
Jγ+ε(||y − x||)||y − x||2dy

)

π(x)dx < ∞. (18)

Combining (17) and (18) proves (10).
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Figure 1: Convergence to the optimal value (solid horizontal line) of the adaptive optimization procedure,
given seven equally spaced starting points points in the interval [0, 3 ∗ 2.4/

√
d], 50 iterations per step, for

dimensions d = 1, 10, 25, 50, and 100 for the random walk Metropolis algorithm with multivariate normal
target distribution. The second and third column of figures show the multiple importance sampling estimator
of ESJD and average acceptance probability, respectively.

23



 

Optimized scale of kernel

 

ESJD

 

Avg. acceptance prob.

0 5 10 15 20 25 30

0
2

4
6

8

d=1

0 5 10 15 20 25 30
0.

0
0.

4
0.

8

d=1

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=1

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

3.
0

d=10

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

d=10

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=10

0 5 10 15 20 25 30

0.
0

1.
0

d=25

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

d=25

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=25

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

1.
2

d=50

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

3.
0

d=50

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=50

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=100

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

3.
0

d=100

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

d=100

Figure 2: Convergence of the adaptive optimization procedure using as objective the coerced average accep-
tance probability (to the optimal acceptance value from Figure 1). The second and third column show the
multiple importance sampling estimator of the ESJD and average acceptance probability, respectively. Con-
vergence of the optimal scale is faster then optimizing ESJD, although not necessarily to the most efficient
jumping kernel (see Figure 5).
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Figure 3: Convergence of the adaptive optimization procedure with extreme starting points of 0.01 and 50
times the optimum, for dimension d = 25 with multivariate normal target distribution, for 50 independent
paths with 50 iterations per steps. The estimated optimal scales are plotted on the logarithmic scale.
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Figure 4: Convergence of the adaptive optimization procedure that maximizes the ESJD by scaling and
updating the covariance matrix, starting with independent proposal density with 50 iterations per step.
Convergence of the sample covariance matrix is attained in 20 steps and convergence to optimal scaling in
30 steps.
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Figure 5: Comparison of two objective functions for the 2-component mixture target of Andrieu and Robert
(2001) using our adaptive optimization algorithm: maximizing ESJD (left column of plots), and coercing the
acceptance probability to 44% (right column of plots), with 50 iterations per step. The coerced acceptance
probability method converges slightly faster but to a less efficient kernel (see ACF plot).
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Figure 6: 16-dimensional nonlinear model for a serial dilution experiment from Gelman, Chew, and Shnaid-
man (2004); convergence to optimal scaling, for seven equally spaced starting values in [0, 2.4] with 50
iterations per step and covariance matrix determined by initial optimization.
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Figure 7: Gibbs sampling with a Metropolis step for the inverse-degrees-of-freedom parameter in the hier-
archical t model for the eight schools example of Gelman et al. (2003); convergence of optimal scaling given
starting values in [0, 2] for two objective functions: maximizing ESJD (left column of plots) and coercing
average acceptance probability to 44% (right column of plots).
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