Contents

1. **Some Advice on Getting Started With R**
 Page 10

2. **Getting Started with RStudio**
 Page 15

3. **Using R Early in the Course**
 Page 23

4. **Less Volume, More Creativity**
 Page 33

5. **What Students Need to Know about R**
 Page 63

6. **What Instructors Need to Know about R**
 Page 76

7. **Getting Interactive with `manipulate` and `shiny`**
 Page 120

8. **Bibliography**
 Page 126

9. **Index**
 Page 127
About These Notes

These materials were initially created for a workshop entitled *Teaching Statistics Using R* prior to the 2011 United States Conference on Teaching Statistics and revised for USCOTS 2011 and eCOTS 2014. We organized these workshops to help instructors integrate R (as well as some related technologies) into their statistics courses at all levels. We received great feedback and many wonderful ideas from the participants and those that we’ve shared this with since the workshops.

We present an approach to teaching introductory and intermediate statistics courses that is tightly coupled with computing generally and with R and RStudio in particular. These activities and examples are intended to highlight a modern approach to statistical education that focuses on modeling, resampling based inference, and multivariate graphical techniques. A secondary goal is to facilitate computing with data through use of small simulation studies and appropriate statistical analysis workflow. This follows the philosophy outlined by Nolan and Temple Lang\(^1\).

Throughout this book (and its companion volumes), we introduce multiple activities, some appropriate for an introductory course, others suitable for higher levels, that demonstrate key concepts in statistics and modeling while also supporting the core material of more traditional courses.

A Work in Progress

Consider these notes to be a work in progress. We appreciate any feedback you are willing to share as we continue to work on these materials and the accompanying mosaic package. Drop us an email at pis@mosaic.org with any comments, suggestions, corrections, etc.

Updated versions will be posted at http://mosaic-web.org.

What’s Ours Is Yours – To a Point

This material is copyrighted by the authors under a Creative Commons Attribution 3.0 Unported License. You are free to Share (to copy, distribute and transmit the work) and to Remix (to adapt the

Caution!

Despite our best efforts, you WILL find bugs both in this document and in our code. Please let us know when you encounter them so we can call in the exterminators.
Two Audiences

The primary audience for these materials is instructors of statistics at
the college or university level. A secondary audience is the students
these instructors teach. Some of the sections, examples, and exercises
are written with one or the other of these audiences more clearly at
the forefront. This means that

1. Some of the materials can be used essentially as is with students.

2. Some of the materials aim to equip instructors to develop their
own expertise in R and RStudio to develop their own teaching
materials.

Although the distinction can get blurry, and what works “as is”
in one setting may not work “as is” in another, we’ll try to indicate
which parts fit into each category as we go along.

R, RStudio and R Packages

R can be obtained from http://cran.r-project.org/. Download
and installation are quite straightforward for Mac, PC, or linux ma-
chines.

RStudio is an integrated development environment (IDE) that facili-
tates use of R for both novice and expert users. We have adopted it as
our standard teaching environment because it dramatically simplifies
the use of R for instructors and for students. There are several things
we use that can only be done in RStudio (mainly things that make use
of manipulate() or RStudio’s support for reproducible research). RStudio
is available from http://www.rstudio.org/. RStudio can be installed
as a desktop (laptop) application or as a server application that is
accessible to users via the Internet.

In addition to R and RStudio, we will make use of several packages
that need to be installed and loaded separately. The mosaic package
(and its dependencies) will be used throughout. Other packages
appear from time to time as well.
Marginal Notes

Marginal notes appear here and there. Sometimes these are side comments that we wanted to say, but we didn’t want to interrupt the flow to mention them in the main text. Others provide teaching tips or caution about traps, pitfalls and gotchas.

Document Creation

This document was created on August 22, 2014, using knitr and R version 3.1.1 Patched (2014-08-16 r66408).
Project MOSAIC

This book is a product of Project MOSAIC, a community of educators working to develop new ways to introduce mathematics, statistics, computation, and modeling to students in colleges and universities.

The goal of the MOSAIC project is to help share ideas and resources to improve teaching, and to develop a curricular and assessment infrastructure to support the dissemination and evaluation of these approaches. Our goal is to provide a broader approach to quantitative studies that provides better support for work in science and technology. The project highlights and integrates diverse aspects of quantitative work that students in science, technology, and engineering will need in their professional lives, but which are today usually taught in isolation, if at all.

In particular, we focus on:

Modeling The ability to create, manipulate and investigate useful and informative mathematical representations of a real-world situations.

Statistics The analysis of variability that draws on our ability to quantify uncertainty and to draw logical inferences from observations and experiment.

Computation The capacity to think algorithmically, to manage data on large scales, to visualize and interact with models, and to automate tasks for efficiency, accuracy, and reproducibility.

Calculus The traditional mathematical entry point for college and university students and a subject that still has the potential to provide important insights to today’s students.

Drawing on support from the US National Science Foundation (NSF DUE-0920350), Project MOSAIC supports a number of initiatives to help achieve these goals, including:

Faculty development and training opportunities, such as the USCOTS 2011, USCOTS 2013, eCOTS 2014, and ICOTS 9 workshops on

M-casts, a series of regularly scheduled webinars, delivered via the Internet, that provide a forum for instructors to share their insights and innovations and to develop collaborations to refine and develop them. Recordings of M-casts are available at the Project MOSAIC web site, http://mosaic-web.org.

The construction of syllabi and materials for courses that teach the MOSAIC topics in a better integrated way. Such courses and materials might be wholly new constructions, or they might be incremental modifications of existing resources that draw on the connections between the MOSAIC topics.

We welcome and encourage your participation in all of these initiatives.
Statistical Computation, Computational Statistics, and Data Science

There are at least two ways in which statistical software can be introduced into a statistics course. In the first approach, the course is taught essentially as it was before the introduction of statistical software, but using a computer to speed up some of the calculations and to prepare higher quality graphical displays. Perhaps the size of the data sets will also be increased. We will refer to this approach as statistical computation since the computer serves primarily as a computational tool to replace pencil-and-paper calculations and drawing plots manually.

In the second approach, more fundamental changes in the course result from the introduction of the computer. Some new topics are covered, some old topics are omitted. Some old topics are treated in very different ways, and perhaps at different points in the course. We will refer to this approach as computational statistics because the availability of computation is shaping how statistics is done and taught. This is a key capacity of data science, defined as the ability to use data to answer questions and communicate those results.

In practice, most courses will incorporate elements of both statistical computation and computational statistics, but the relative proportions may differ dramatically from course to course. Where on the spectrum a course lies will be depend on many factors including the goals of the course, the availability of technology for student use, the perspective of the text book used, and the comfort-level of the instructor with both statistics and computation.

Among the various statistical software packages available, R is becoming increasingly popular. The recent addition of RStudio has made R both more powerful and more accessible. Because R and RStudio are free, they have become widely used in research and industry. Training in R and RStudio is often seen as an important additional skill that a statistics course can develop. Furthermore, an increasing number of instructors are using R for their own statistical work, so it is natural for them to use it in their teaching as well. At
the same time, the development of R and of RStudio (an optional interface and integrated development environment for R) are making it easier and easier to get started with R.

Nevertheless, those who are unfamiliar with R or who have never used R for teaching are often cautious about using it with students. If you are in that category, then this book is for you. Our goal is to reveal some of what we have learned teaching with R and to make teaching statistics with R as rewarding and easy as possible – for both students and faculty. We will cover both technical aspects of R and RStudio (e.g., how do I get R to do thus and such?) as well as some perspectives on how to use computation to teach statistics. The latter will be illustrated in R but would be equally applicable with other statistical software.

Others have used R in their courses, but have perhaps left the course feeling like there must have been better ways to do this or that topic. If that sounds more like you, then this book is for you, too. As we have been working on this book, we have also been developing the mosaic R package (available on CRAN) to make certain aspects of statistical computation and computational statistics simpler for beginners. You will also find here some of our favorite activities, examples, and data sets, as well as answers to questions that we have heard frequently from both students and faculty colleagues. We invite you to scavenge from our materials and ideas and modify them to fit your courses and your students.
1

Some Advice on Getting Started With R

Learning R is a gradual process, and getting off to a good start goes a long way toward ensuring success. In this chapter we discuss some strategies and tactics for getting started teaching statistics with R. In subsequent chapters we provide more details about the (relatively few) R commands that students need to know and some additional information about R that is useful for instructors to know. Along the way we present some of our favorite examples that highlight the use of R, including some that can be used very early in a course.

1.1 Strategies

Each instructor will choose to start his or her course differently, but we offer the following strategies (followed by some tactics and examples) that can serve as a guide for starting the course in a way that prepares students for success with R.

1. Start right away.
 Do something with R on day 1. Do something else on day 2. Have students do something by the end of week 1 at the latest.

2. Illustrate frequently.
 Have R running every class period and use it as needed throughout the course so students can see what R does. Preview topics by showing before asking students to do things.

3. Teach R as a language. (But don’t overdo it.)
 There is a bit of syntax to learn – so teach it explicitly.
 • Emphasize that capitalization (and spelling) matter.
 • Explain carefully (and repeatedly) the syntax of functions.
 Fortunately, the syntax is very straightforward. It consists of a function name followed by an opening parenthesis, followed by a comma-separated list of arguments (which may be named), followed by a closing parenthesis.

The mosaic package includes a vignette outlining a possible minimalist set of R commands for teaching an introductory course.

Teaching Tip
RMarkdown provides a easy way to create handouts or slides for your students. See R Markdown: Integrating a Reproducible Analysis Tool into Introductory Statistics by B Baumer et al for more about integrating RMarkdown into your course. For those already familiar with \LaTeX, there is also knitr/\LaTeX integration in RStudio.
functionname(name1 = arg1, name2 = arg2, ...)

Get students to think about what a function does and what it needs to know to do its job. Generally, the function name indicates what the function does. The arguments provide the function with the necessary information to do the task at hand.

- Every object in R has a type (class). Ask frequently: *What type of thing is this?*

 Students need to understand the difference between a variable and a data frame and also that there are different kinds of variables (factor for categorical data and numeric for numerical data, for example). Instructors and more advanced students will want to know about vector and list objects.

Give more details in higher level courses.

 Upper level students should learn more about user-defined functions and language control structures such as loops and conditionals. Students in introductory courses don’t need to know as much about the language.

4. “Less volume, more creativity.” [Mike McCarthy, head coach, Green Bay Packers]

 Use a few methods frequently and students will learn how to use them well, flexibly, even creatively.

 Focus on a small number of data types: numerical vectors, character strings, factors, and data frames. Choose functions that employ a similar framework and style to increase the ability of students to transfer knowledge from one situation to another.

5. Find a way to have computers available for tests.

 It makes the test match the rest of the course and is a great motivator for students to learn R. It also changes what you can ask for and about on tests.

 One of us first did this at the request of students in an introductory statistics course who asked if there was a way to use computers during the test “since that’s how we do all the homework.” He now has students bring laptops to class for tests. Another of us has both in-class (without computer) and out-of-class (with computer) components to his assessment.

Note
This is one of the primary motivations behind our mosaic package, which seeks to make more things simpler and more similar to each other so that students can more easily become independent, creative users of R. But even if you don’t choose to do things exactly the way we do, we recommend using “Less Volume, More Creativity” as a guideline.
6. Rethink your course.

If you have taught computer-free or computer-light courses in the past, you may need to rethink some things. With ubiquitous computing, some things disappear from your course:

- Reading statistical tables.

 Does anyone still consult a table for values of sin, or log? All three of us have sworn off the use of tabulations of critical values of distributions (since none of us use them in our professional work, why would we teach this to students?)

- "Computational formulas".

 Replace them with computation. Teach only the most intuitive formulas. Focus on how they lead to intuition and understanding, not computation.

- (Almost all) hand calculations.

At the same time, other things become possible that were not before:

- Large data sets
- Beautiful plots
- Simulations and methods based on randomization and resampling
- Quick computations
- Increased focus on concepts rather than calculations

Get your students to think that using the computer is just part of how statistics is done, rather than an add-on.

7. This may change some over the course of the semester. It is important not to get too complicated too quickly. Early on, we typically use default settings and focus on the main ideas. Later, we may introduce fancier options as students become comfortable with simpler things (and often demand more). Keep the message as simple as possible and keep the commands accordingly simple. Particularly when doing graphics, beware of distracting students with the sometimes intricate details of beautifying for publication. If the default behavior is good enough, go with it.

8. Anticipate computationally challenged students, but don’t give in.

Some students pick up R very easily. In every course there will be a few students who struggle. Be prepared to help them, but don’t spend time listening to their complaints. Focus on diagnosing what they don’t know and how to help them “get it”.

In our experience, the computer is often a fall guy for other things the student does not understand. Because the computer gives immediate feedback, it reveals these misunderstandings. For
example, if students are confused about the distinctions among variables, statistics, and observational units, they will have a difficult time providing the correct information to a plotting function. The student may blame R, but that is not the primary source of the difficulty. If you can diagnose the true problem, you will improve their understanding of statistics and fix R difficulties simultaneously.

But even students with a solid understanding of the statistical concepts you are teaching will encounter R errors that they cannot eliminate. Tell students to copy and paste R code and error messages into email when they have trouble. When you reply, explain how the error message helped you diagnose their problem and help them generalize your solution to other situations. See Chapter 6 for some of the common error messages and what they might indicate.

1.2 Tactics

1. Introduce Graphics Early.

Introduce graphics very early, so that students see that they can get impressive output from simple commands. Try to break away from their prior expectation that there is a “steep learning curve.” Accept the defaults – don’t worry about the niceties (good labels, nice breaks on histograms, colors) too early. Let them become comfortable with the basic graphics commands and then play (make sure it feels like play!) with fancying things up.

Keep in mind that just because the graphs are easy to make on the computer doesn’t mean your students understand how to read the graphs. Use examples that will help students develop good habits for visualizing data.

2. Introduce Sampling and Randomization Early.

Since sampling drives much of the logic of statistics, introduce the idea of a random sample very early, and have students construct their own random samples. The phenomenon of a sampling distribution can be introduced in an intuitive way, setting it up as a topic for later discussion and analysis.

1.3 Scope of this book

In keeping with this advice, most of the examples in this book fall in the area of exploratory data analysis. The organization is chosen to develop gradually an understanding of R. See the companion volume A Compendium of Commands to Teach Statistics with R for a
tour of commands used in the primary sorts analyses used in the
first two undergraduate statistics courses. This companion volume is
organized by types of data analyses and presumes some familiarity
wit the R language.
Getting Started with RStudio

RStudio is an integrated development environment (IDE) for R that provides an alternative interface to R that has several advantages over other the default R interfaces:

- **RStudio runs on Mac, PC, and Linux machines and provides a simplified interface that looks and feels identical on all of them.**

 The default interfaces for R are quite different on the various platforms. This is a distractor for students and adds an extra layer of support responsibility for the instructor.

- **RStudio can run in a web browser.**

 In addition to stand-alone desktop versions, RStudio can be set up as a server application that is accessed via the internet. Installation is straightforward for anyone with experience administering a Linux system. Once set up at your institution, students can start using RStudio by simply opening a website from a browser and logging in. No additional installation or configuration is required.

 The web interface is nearly identical to the desktop version. As with other web services, users login to access their account. If students logout and login in again later, even on a different machine, their session is restored and they can resume their analysis right where they left off. With a little advanced set up, instructors can save the history of their classroom R use and students can load those history files into their own environment.

- **RStudio provides support for reproducible research.**

 RStudio makes it easy to include text, statistical analysis (R code and R output), and graphical displays all in the same document. The RMarkdown system provides a simple markup language and renders the results in HTML. The \texttt{knitr/LaTeX} system allows users to combine R and \LaTeX in the same document. The reward for learning this more complicated system is much finer control over

\textbf{Caution!}

The desktop and server version of RStudio are so similar that if you run them both, you will have to pay careful attention to make sure you are working in the one you intend to be working in.

\textbf{Note}

Using RStudio in a browser is like Facebook for statistics. Each time the user returns, the previous session is restored and they can resume work where they left off. Users can login from any device with internet access.
the output format. Depending on the level of the course, students can use either of these for homework and projects.

We typically introduce students to RMarkdown very early, requiring students to use it for assignments and reports. Handouts, exams, and books like this one are produced using knitr/LATeX, and it is relatively easy for interested students to migrate to knitr from RMarkdown if they are interested.

- RStudio provides an integrated support for editing and executing R code and documents.
- RStudio provides some useful functionality via a graphical user interface.

 RStudio is not a GUI for R, but it does provide a GUI that simplifies things like installing and updating packages; monitoring, saving and loading environments; importing and exporting data; browsing and exporting graphics; and browsing files and documentation.
- RStudio provides access to the manipulate package.

 The manipulate package provides a way to create simple interactive graphical applications quickly and easily.

While one can certainly use R without using RStudio, RStudio makes a number of things easier and we highly recommend using RStudio. Furthermore, since RStudio is in active development, we fully expect more useful features in the future.

2.1 Setting up R and RStudio

R can be obtained from http://cran.r-project.org/. Download and installation are pretty straightforward for Mac, PC, or Linux machines. RStudio is available from http://www.rstudio.org/. RStudio can be installed as a desktop (laptop) application or as a server application that is accessible to others via the Internet.

2.1.1 RStudio in the cloud

We primarily use an online version of RStudio. RStudio is a innovative and powerful interface to R that runs in a web browser or on your local machine. Running in the browser has the advantage that you don’t have to install or configure anything. Just login and you are good to go. Futhermore, RStudio will “remember” what you were doing so that each time you login (even on a different machine) you can pick up right where you left off. This is “R in the cloud” and works a bit like GoogleDocs or Facebook for R.
Your system administrator will likely need to set up your own installation of RStudio for your institution, but we can attest that the process is straightforward and greatly facilitates student and faculty use.

2.1.2 RStudio on your computer

There is also a stand-alone version of the RStudio environment that you can install on your desktop or laptop machine. This can be downloaded from http://www.rstudio.org/. This assumes that you have a version of R installed on your computer (see below for instructions to download this from CRAN). Even if your students are primarily or exclusively using the server version of RStudio in a browser, instructors may like to have the security blanket of a version that does not require access to the internet. But be warned, the two version look so similar that you may occasionally find yourself working in one of them when you intend to be in the other.

2.1.3 Getting R from CRAN

CRAN is the Comprehensive R Archive Network (http://cran.r-project.org/). You can download free versions of R for PC, Mac, and Linux from CRAN. (If you use the RStudio stand-alone version, you also need to install R this way first.) All the instructions for downloading and installing are on CRAN. Just follow the appropriate instructions for your platform.

2.1.4 Running RStudio the first time

Once you have launched the desktop version of RStudio or logged in to an RStudio server, you will see something like Figure 2.1.
Notice that RStudio divides its world into four panels. Several of the panels are further subdivided into multiple tabs. Which tabs appear in which panels can be customized by the user.

2.2 Using R as a Calculator in the Console

R can do much more than a simple calculator, and we will introduce additional features in due time. But performing simple calculations in R is a good way to begin learning the features of RStudio.

Commands entered in the Console tab are immediately executed by R. A good way to familiarize yourself with the console is to do some simple calculator-like computations. Most of this will work just like you would expect from a typical calculator. Try typing the following commands in the console panel.

```
5 + 3
[1] 8

15.3 * 23.4
[1] 358

sqrt(16)  # square root
[1] 4
```

This last example demonstrates how functions are called within R as well as the use of comments. Comments are prefaced with the # character. Comments can be very helpful when writing scripts with multiple commands or to annotate example code for your students.

You can save values to named variables for later reuse.

```
product = 15.3 * 23.4  # save result
product
# display the result
[1] 358

product <- 15.3 * 23.4  # <- can be used instead of =
product
[1] 358
```

Once variables are defined, they can be referenced in other operations and functions.

Teaching Tip

It’s probably best to settle on using one or the other of the right-to-left assignment operators rather than to switch back and forth. The authors have different preferences: two of us find the equal sign to be simpler for students and more intuitive, while the other prefers the arrow operator because it represents visually what is happening in an assignment, because it can also be used in a left to right manner, and because it makes a clear distinction between the assignment operator, the use of = to provide values to arguments of functions, and the use of == to test for equality.
\begin{verbatim}
0.5 * product # half of the product
[1] 179
log(product) # (natural) log of the product
[1] 5.881
log10(product) # base 10 log of the product
[1] 2.554
log2(product) # base 2 log of the product
[1] 8.484
log(product, base=2) # base 2 log of the product, another way
[1] 8.484
\end{verbatim}

The semi-colon can be used to place multiple commands on one line. One frequent use of this is to save and print a value all in one go:

\begin{verbatim}
product <- 15.3 * 23.4; product # save result and show it
[1] 358
\end{verbatim}

2.3 Working with Files

2.3.1 Working with R Script Files

As an alternative, R commands can be stored in a file. RStudio provides an integrated editor for editing these files and facilitates executing some or all of the commands. To create a file, select File, then New File, then R Script from the RStudio menu. A file editor tab will open in the Source panel. R code can be entered here, and buttons and menu items are provided to run all the code (called sourcing the file) or to run the code on a single line or in a selected section of the file.

2.3.2 Working with RMarkdown, and knitr/LATEX

A third alternative is to take advantage of RStudio’s support for reproducible research. If you already know \LaTeX, you will want to investigate the knitr/\LaTeX capabilities. For those who do not already know \LaTeX, the simpler RMarkdown system provides an easy
entry into the world of reproducible research methods. It also provides a good facility for students to create homework and reports that include text, R code, R output, and graphics.

To create a new RMarkdown file, select File, then New File, then RMarkdown. The file will be opened with a short template document that illustrates the mark up language. Click on Compile HTML to convert this to an HTML file. There is a button the provides a brief description of the mark commands supported, and the RStudio web site includes more extensive tutorials on using RMarkdown.

It is important to remember that unlike R scripts, which are executed in the console and have access to the console environment, RMarkdown and knitr/LaTeX files do not have access to the console environment. This is a good feature because it forces the files to be self-contained, which makes them transferable and respects good reproducible research practices. But beginners, especially if they adopt a strategy of trying things out in the console and copying and pasting successful code from the console to their file, will often create files that are incomplete and therefore do not compile correctly.

One good strategy for getting students to use RMarkdown is to provide them with a template that includes the boiler plate you want them to use, loads any R packages that they will need, sets any knitr or R settings they way you prefer them, and has placeholders for the work you want them to do.

2.4 The Other Panels and Tabs

2.4.1 The History Tab

As commands are entered in the console, they appear in the History tab. These histories can be saved and loaded, there is a search feature to locate previous commands, and individual lines or sections can be transferred back to the console. Keeping the History tab open will allow students to look back and see the previous several commands. This can be especially useful when commands produce a fair amount of output and so scroll off the screen rapidly. History files can be saved and distributed to students so that they can rerun the code illustrated in class. (Before saving the history, you can remove any lines that you don’t want saved to spare your students repeating all of your typing errors.)

An alternative is to produce RMarkdown files in class and make those available. This provides a better mechanism for adding additional comments or instructions.
2.4.2 Communication between tabs

RStudio provides several ways to move R code between tabs. Pressing the Run button in the editing panel for an R script or RMarkdown or other file will copy lines of code into the Console and run them.

2.4.3 The Files Tab

The Files tab provides a simple file manager. It can be navigated in familiar ways and used to open, move, rename, and delete files. In the browser version of RStudio, the Files tab also provides a file upload utility for moving files from the local machine to the server. In RMarkdown and knitr files one can also run the code in a particular chunk or in all of the chunks in a file. Each of these features makes it easy to try out code “live” while creating a document that keeps a record of the code.

In the reverse direction, code from the history can be copied either back into the console to run them again (perhaps after editing) or into one of the file editing tabs for inclusion in a file.

2.4.4 The Help Tab

The Help tab is where RStudio displays R help files. These can be searched and navigated in the Help tab. You can also open a help file using the ? operator in the console. For example

```
?log
```

Will provide the help file for the logarithm function.

2.4.5 The Environment Tab

The Environment tab shows the objects available to the console. These are subdivided into data, values (non-data frame, non-function objects) and functions. The broom icon can be used to remove all objects from the environment, and it is good to do this from time to time, especially when running in RStudio server or if you choose to save the environment when shutting down RStudio since in these cases objects can stay in the environment essentially indefinitely.

2.4.6 The Plots Tab

Plots created in the console are displayed in the Plots tab. For example,

```
# this will make lattice graphics available to the session
require(mosaic)
xyplot(births ~ dayofyear, data = Births78)
```
will display the number of births in the United States for each day in 1978. From the Plots tab, you can navigate to previous plots and also export plots in various formats after interactively resizing them.

2.4.7 The Packages Tab

Much of the functionality of \textit{R} is located in packages, many of which can be obtained from a central clearing house called CRAN (Comprehensive \textit{R} Archive Network). The Packages tab facilitates installing and loading packages. It will also allow you to search for packages that have been updated since you installed them.
3

Using R Early in the Course

This chapter includes some of our favorite activities for early in the course. These activities simultaneously provide the students with a first glimpse of R and an introduction to some major themes of the course. Used this way, it is not necessary for students to understand the details of the R code. Instead have them focus on the questions being asked on how the results presented shed light on the answers to these questions.

3.1 Coins and Cups: The Lady Tasting Tea

There is a famous story about a lady who claimed that tea with milk tasted different depending on whether the milk was added to the tea or the tea added to the milk. The story is famous because of the setting in which she made this claim. She was attending a party in Cambridge, England, in the 1920s. Also in attendance were a number of university dons and their wives. The scientists in attendance scoffed at the woman and her claim. What, after all, could be the difference?

All the scientists but one, that is. Rather than simply dismiss the woman’s claim, he proposed that they decide how one should test the claim. The tenor of the conversation changed at this suggestion, and the scientists began to discuss how the claim should be tested. Within a few minutes cups of tea with milk had been prepared and presented to the woman for tasting.

At this point, you may be wondering who the innovative scientist was and what the results of the experiment were. The scientist was R. A. Fisher, who first described this situation as a pedagogical example in his 1925 book on statistical methodology. Fisher developed statistical methods that are among the most important and widely used methods to this day, and most of his applications were biological.

You might also be curious about how the experiment came out. How many cups of tea were prepared? How many did the woman

\[R. A. Fisher. \ Statistical Methods for Research Workers. \ Oliver & Boyd, 1925 \]
correctly identify? What was the conclusion?

Fisher never says. In his book he is interested in the method, not the particular results. But we can use this setting to introduce some key ideas in statistics.

Let’s suppose we decide to test the lady with ten cups of tea. We’ll flip a coin to decide which way to prepare the cups. If we flip a head, we will pour the milk in first; if tails, we put the tea in first. Then we present the ten cups to the lady and have her state which ones she thinks were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of 10, or whatever it happens to be). It is trickier to figure out what to do with her score. Even if she is just guessing and has no idea, she could get lucky and get quite a few correct – maybe even all 10. But how likely is that?

Let’s try an experiment. I’ll flip 10 coins. You guess which are heads and which are tails, and we’ll see how you do.

Comparing with your classmates, we will undoubtedly see that some of you did better and others worse.

Now let’s suppose the lady gets 9 out of 10 correct. That’s not perfect, but it is better than we would expect for someone who was just guessing. On the other hand, it is not impossible to get 9 out of 10 just by guessing. So here is Fisher’s great idea: Let’s figure out how hard it is to get 9 out of 10 by guessing. If it’s not so hard to do, then perhaps that’s just what happened, so we won’t be too impressed with the lady’s tea tasting ability. On the other hand, if it is really unusual to get 9 out of 10 correct by guessing, then we will have some evidence that she must be able to tell something.

But how do we figure out how unusual it is to get 9 out of 10 just by guessing? We’ll learn another method later, but for now, let’s just flip a bunch of coins and keep track. If the lady is just guessing, she might as well be flipping a coin.

So here’s the plan. We’ll flip 10 coins. We’ll call the heads correct guesses and the tails incorrect guesses. Then we’ll flip 10 more coins, and 10 more, and 10 more, and That would get pretty tedious. Fortunately, computers are good at tedious things, so we’ll let the computer do the flipping for us.

The rflip() function can flip one coin

```r
require(mosaic)
rflip()
```

Flipping 1 coin [Prob(Heads) = 0.5] ...

Teaching Tip

The score is setting up the idea of a test statistic for later, but there is no need to introduce that terminology on day 1.

Have each student make a guess by writing down a sequence of 10 H’s or T’s while you flip the coin behind a barrier so that the students cannot see the results.

There is a subtle switch here. Before we were asking how many of the students H’s and T’s matched the flipped coin. Now we are using H to simulate a correct guess and T to simulate an incorrect guess. This makes simulating easier.
or a number of coins

rflip(10)

Flipping 10 coins [Prob(Heads) = 0.5] ...
H T H H T H H T H
Number of Heads: 7 [Proportion Heads: 0.7]

Typing \texttt{rflip(10)} a bunch of times is almost as tedious as flipping all those coins. But it is not too hard to tell \texttt{R} to \texttt{do()} this a bunch of times.

do(3) * rflip(10)

\textit{Loading required package: parallel}

\begin{tabular}{llll}
 n & heads & tails & prop \\
1 & 10 & 3 & 0.3 \\
2 & 10 & 5 & 0.5 \\
3 & 10 & 5 & 0.5 \\
\end{tabular}

Let’s get \texttt{R} to \texttt{do()} it for us 10,000 times and make a table of the results.

\begin{verbatim}
store the results of 10000 simulated ladies
random.ladies <- do(10000) * rflip(10)
\end{verbatim}

\begin{verbatim}
tally(~heads, data=random.ladies)
\end{verbatim}

\begin{verbatim}
We can also display table using percentages
tally(~heads, data=random.ladies, format="prop")
\end{verbatim}
We can display this table graphically using a plot called a **histogram** with bins of width 1.

\[
\text{histogram(\text{~heads, data = random.ladies, width = 1})}
\]

You might be surprised to see that the number of correct guesses is exactly 5 (half of the 10 tries) only 25% of the time. But most of the results are quite close to 5 correct. For example, 66% of the results are 4, 5, or 6, for example. About 90% of the results are between 3 and 7 (inclusive). But getting 8 correct is a bit unusual, and getting 9 or 10 correct is even more unusual.

So what do we conclude? It is possible that the lady could get 9 or 10 correct just by guessing, but it is not very likely (it only happened in about 1.1% of our simulations). So one of two things must be true:

- The lady got unusually “lucky”, or
- The lady is not just guessing.

Although Fisher did not say how the experiment came out, others have reported that the lady correctly identified all 10 cups!

A different design

Suppose instead that we prepare five cups each way (and that the woman tasting knows this). We give her five cards labeled “milk first”, and she must place them next to the cups that had the milked poured first. How does this design change things?

We could simulate this by shuffling a deck of 10 cards and dealing five of them.

\[
\]

\[
tally(\text{~deal(cards, 5)})
\]
The use of `factor()` here lets R know that the possible values are ‘M’ and ‘T’, even when only one or the other appears in a given random sample.

```r
results <- do(10000) * tally(~ deal(cards, 5))
tally(~ M, data = results)
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38</td>
<td>1030</td>
<td>3954</td>
<td>3962</td>
<td>971</td>
<td>45</td>
</tr>
</tbody>
</table>

```r
tally(~ M, data = results, format = "prop")
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0038</td>
<td>0.1030</td>
<td>0.3954</td>
<td>0.3962</td>
<td>0.0971</td>
<td>0.0045</td>
</tr>
</tbody>
</table>

```r
tally(~ M, data = results, format = "perc")
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.38</td>
<td>10.30</td>
<td>39.54</td>
<td>39.62</td>
<td>9.71</td>
<td>0.45</td>
</tr>
</tbody>
</table>

3.2 Births by Day

The `Births78` data set contains the number of births in the United States for each day of 1978. A scatter plot of births by day of year reveals some interesting patterns. Let’s see how the number of births depends on the day of the year.

```r
xyplot(births ~ dayofyear, data = Births78)
```

When shown this image, students should readily be able to describe two patterns in the data; they should notice both the rise and fall over the course of the year and the two “parallel waves”. Many

The use of the phrase “depends on” is intentional. Later we will emphasize how “depends on” can often be interpreted as “depends on”.

Teaching Tip

The plot could also be made using `date`. For general purposes, this is probably the better plot to make, but using `dayofyear` forces students to think more about what the x-axis means.

```r
xyplot(births ~ dayofyear, data = Births78)
```

When shown this image, students should readily be able to describe two patterns in the data; they should notice both the rise and fall over the course of the year and the two “parallel waves”. Many

Teaching Tip

This can make a good “think-pair-share” activity. Have students come up with possible explanations, then discuss these explanations with a partner. Finally, have some of the pairs share their explanations with the entire class.
students will be able to come up with conjectures about the peaks and valleys, but they often struggle to correctly interpret the parallel waves. Having them make conjectures about this will quickly reveal whether they are correctly interpreting the plot.

One conjecture about the parallel waves can be checked using the data at hand. If we display each day of the week with a different symbol or color, we see that there are fewer births on weekends – likely because scheduled births are less likely on weekends. There are a handful of exceptions which are readily seen to be holidays.

```r
require(mosaicData)  # load mosaic data sets
xyplot(births ~ dayofyear, data=Births78, groups=dayofyear%%7,
       auto.key=list(space="right"))
```

A discussion of this or some other data set that can be explored through graphical displays is a good way to demonstrate “statistical curiosity”, to illustrate the power of R for creating graphs, and to introduce the importance of covariates in statistical analysis.

3.3 SAT and Confounding

The SAT data set contains information about the link between SAT scores and measures of educational expenditures. Students are often surprised to see that states that spend more on education do worse on the SAT.
The problem is that expenditures are confounded with the proportion of students who take the exam, and scores are higher in states where fewer students take the exam.

It is interesting to look at the original plot if we place the states into two groups depending on whether more or fewer than 40% of students take the SAT:

```r
SAT <- mutate(SAT, fracGroup = derivedFactor(hi = (frac > 40), lo = (frac <= 40)))
xyplot(sat ~ expend | fracGroup, data = SAT, type = c("p", "r"))
xyplot(sat ~ expend, groups = fracGroup, data = SAT, type = c("p", "r"))
```
This example can be used to warn against interpreting relationships causally and to illustrate the importance of considering covariates.

3.4 Mites and Wilt Disease

This example shows how to build up to statistical inference from first principles.

Researchers suspect that attack of a plant by one organism induces resistance to subsequent attack by a different organism. Individually potted cotton plants were randomly allocated to two groups: infestation by spider mites or no infestation. After two weeks the mites were dutifully removed by a conscientious research assistant, and both groups were inoculated with Verticillium, a fungus that causes Wilt disease. The researchers were hoping the data would shed light on the following big question:

Is there a relationship between infestation and Wilt disease?

The accompanying table shows a cross tabulation the number of plants that developed symptoms of Wilt disease.

```r
Mites <- data.frame(
    mites = c(rep("Yes", 11), rep("No", 17), rep("Yes", 15), rep("No", 4)),
    wilt = c(rep("Yes", 28), rep("No", 19))
)
tally(~ wilt + mites, Mites)
```

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>

Students can begin exploring this data by answering the following questions.

1. Here, what do you think is the explanatory variable? Response variable?

2. What proportion of the plants in the study with mites developed Wilt disease?

3. What proportion of the plants in the study with no mites developed Wilt disease?

4. Relative risk is the ratio of two risk proportions. What is the relative risk of developing Wilt disease, comparing mites to no mites?
5. If there were no association between mites and Wilt disease, what would the relative risk be (in the population as a whole)? How close is the relative risk computed from the data to this value?

6. Let X be the number of plants in the no mites group that did not develop Wilt disease. What are the possible values for X?

7. Assuming a population relative risk of 1, give two possible values for X that would be more unusual than the value for these data?

Now we can set up a randomization simulation using some cards.

Physical Simulation

1. Select 47 cards from your deck: 26 red (mites!) and 21 black
2. Shuffle the cards well
3. Deal out 19 cards, these represent the 19 plants without Wilt disease.
4. Count the number of black cards among those 19. What do these represent?
5. Repeat steps 2–4, five times.

Students can pool their results by recording them in a table on the board at the front of the room. Then have students process the results by answering the following questions.

8. How many black cards would we expect (on average)? Why?

9. What did we observe?

10. How would we summarize these results? What is the big idea?

Once the simulation with cards has been completed, we can use R to do many more simulations very quickly.
Computational Simulation

```r
tally(~ wilt + mites, data=Mites)

  mites
  wilt No Yes
  No  4 15
  Yes 17 11

X <- tally(~ wilt + mites, data=Mites)["No","No"]
X
[1] 4

nullDist <- do(1000) *
  tally(~ wilt + shuffle(mites), data=Mites)["No","No"]

Loading required package: parallel

histogram(~ result, data=nullDist,
          width=1, type="density", fit="normal")
```

![Histogram with normal fit](image-url)
4
Less Volume, More Creativity

A lot of times you end up putting in a lot more volume, because you are teaching fundamentals and you are teaching concepts that you need to put in, but you may not necessarily use because they are building blocks for other concepts and variations that will come off of that ... In the offseason you have a chance to take a step back and tailor it more specifically towards your team and towards your players.

– Mike McCarthy, Head Coach, Green Bay Packers

Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.

– Antoine de Saint-Exupery, writer, poet, pioneering aviator

One key to successfully introducing R is finding a set of commands that is

• small,

• coherent, and

• powerful.

This chapter provides an extensive example of this “Less Volume, More Creativity” approach. The mosaic package (combined with the lattice package and other core R functionality) provides a simple yet powerful framework that equips students to produce all of the

• numerical summaries,

• graphical summaries, and

• linear models

needed in an introductory course. By presenting this as one master template with variations, we emphasize the similarity among these commands and reduce the cognitive load for students. In our experience, this has made R much more approachable and enjoyable for students and their instructors.
4.1 The mosaic package and the formula template

Much of the early work on the mosaic package centered on producing a minimal set of R commands that could provide students with everything need for introductory statistics without overwhelming students with too many commands. One of the mosaic package vignettes includes a document describing just such a set of commands. Much of this is built off the following template that is used repeatedly

\[
\text{goal} \left(y \sim x , \text{data} = \text{mydata} \right)
\]

The template is used by filling in the boxes. It helps to give each box a name:

\[
\text{goal} \left(y \sim x , \text{data} = \text{mydata} \right)
\]

The template has a bit more flexibility than we have indicated. Sometimes the \(y \) is not needed:

\[
\text{goal} \left(x, \text{data} = \text{mydata} \right)
\]

The formula may also include a third part

\[
\text{goal} \left(y \sim x \mid z, \text{data} = \text{mydata} \right)
\]

We can unify all of these into one form:

\[
\text{goal} \left(\text{formula}, \text{data} = \text{mydata} \right)
\]

The template can be applied to create numerical summaries, graphical summaries, or model fits by answering two questions and using the answers to fill in the slots of the template:

1. What do you want R to do?
 This is the goal.

2. What must R know to do that?
 These are the inputs to the function. For numerical summaries, graphical summaries, and model fits, we typically need to specify the variables involved and the data frame in which they are stored.

4.2 Graphical summaries of data

Graphical summaries are an important and eye-catching way to demonstrate the power and flexibility of our template. We like to

Teaching Tip
After introducing this template, you might quiz students to make sure they have learned it. This will also emphasize its importance.

Teaching Tip
We recommend showing some plots on the first day and having student generate their own graphs before the end of the first week.
introduce students to graphical summaries early in the course. This gives the students access to functionality where R really shines (and is certainly much better than a hand-held calculator). It also begins to develop their ability to interpret graphical representations of data, to think about distributions, and to pose statistical questions.

There are several ways to make graphs in R. One approach is a system called lattice graphics. Whenever the mosaic package is loaded, the lattice package is also loaded. One of the attractive aspects of lattice plots is that they make use of the same template we will use for numerical summaries and linear models.

4.2.1 Graphical summaries of two variables

A first example: Making a scatter plot

As an example, let’s create the following plot, which shows the number of births in the United States for each day in 1978.

1. What is the goal?

We want a scatter plot. The function that creates scatter plots is called xyplot(), so this will go into the goal slot of our template.

2. What does R need to know?

R needs to know which variable goes where and where to find the variables. In this case, the data are stored in the Births78 data frame:

```
head(Births78)
```

<table>
<thead>
<tr>
<th>date</th>
<th>births</th>
<th>dayofyear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978-01-01</td>
<td>7701</td>
<td>1</td>
</tr>
<tr>
<td>1978-01-02</td>
<td>7527</td>
<td>2</td>
</tr>
<tr>
<td>1978-01-03</td>
<td>8825</td>
<td>3</td>
</tr>
<tr>
<td>1978-01-04</td>
<td>8859</td>
<td>4</td>
</tr>
<tr>
<td>1978-01-05</td>
<td>9043</td>
<td>5</td>
</tr>
<tr>
<td>1978-01-06</td>
<td>9208</td>
<td>6</td>
</tr>
</tbody>
</table>

1. What is the goal?

We want a scatter plot. The function that creates scatter plots is called xyplot(), so this will go into the goal slot of our template.

2. What does R need to know?

R needs to know which variable goes where and where to find the variables. In this case, the data are stored in the Births78 data frame:

```
head(Births78)
```

<table>
<thead>
<tr>
<th>date</th>
<th>births</th>
<th>dayofyear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978-01-01</td>
<td>7701</td>
<td>1</td>
</tr>
<tr>
<td>1978-01-02</td>
<td>7527</td>
<td>2</td>
</tr>
<tr>
<td>1978-01-03</td>
<td>8825</td>
<td>3</td>
</tr>
<tr>
<td>1978-01-04</td>
<td>8859</td>
<td>4</td>
</tr>
<tr>
<td>1978-01-05</td>
<td>9043</td>
<td>5</td>
</tr>
<tr>
<td>1978-01-06</td>
<td>9208</td>
<td>6</td>
</tr>
</tbody>
</table>

More Info

We are often asked about the other graphics systems, especially ggplot2 graphics. In our experience, lattice makes it easier for beginners to create a wide variety of more or less “standard” plots – including the ability to represent multiple variables at once. ggplot2, on the other hand, makes it easier to generate custom plots or to combine plot components. Each has their place, and we use both systems. But for beginners, we typically emphasize lattice.

Coming soon is a new player in the visualization arena: ggvis. This package, by the same author as ggplot2 is already available in a developmental version and promises to add interactivity and speed to the strengths of ggplot2.

Teaching Tip

This plot can make an interested discussion starter early in a course. Ask students to conjecture explanations for the patterns they observe in the plots. Their answers will reveal whether they are interpreting the plot correctly.
We want to put the number of births (births) along the y-axis and the day of the year (date) along the x-axis.

Putting this all together, we get the following command

```
xyplot(births ~ date, data = Births78)
```

Another Example: Boxplots

Now let’s create this plot, which shows boxplots of age for each of three substances abused by participants in the *Health Evaluation and Linkage to Primary Care* randomized clinical trial.

![Boxplot](image)

The data we need are in the `HELPrct` data frame, from which we want to display variables `age` and `substance` on the y- and x-axes. According to our template, the command to create this plot has the form

```
goal(age ~ substance, data = HELPrct)
```

The only additional information we need is the name of the function that creates boxplots. That function is `bwplot()`. So we can create the plot with

```
bwplot(age ~ substance, data = HELPrct)
```

If we want the boxplots to be horizontal instead of vertical, we obtain that by reversing the roles of `age` and `substance`:

```
bwplot(substance ~ age, data = HELPrct)
```
4.2.2 Graphical summaries of one variable

If we want to make a plot that involves only one variable, we simply omit the \(y \)-part of the formula. For example, a histogram like

\[
\text{density} \quad 0.00 \quad 0.01 \quad 0.02 \quad 0.03 \quad 0.04 \quad 0.05 \quad 0.06 \\
20 \quad 30 \quad 40 \quad 50 \quad 60
\]

can be made with

```r
histogram(~age, data = HELPrct)
```

The `mosaic` package adds some extra functionality to `histogram()` to make it easier to specify the bins used. In particular, the options `width` and `center` (default is 0) can be used to define the width of the bins and the center of one of the bins. For example, to create a histogram with bins that are 5 years wide we can use `width=5`, and we can shift the bins left and right by providing a value for `center`.

\[
\text{histogram}(-\text{age}, \text{data} = \text{HELPrct}, \text{width} = 5) \\
\text{histogram}(-\text{age}, \text{data} = \text{HELPrct}, \text{width} = 5, \text{center} = 2.5)
\]
There is enough data here to use a bin for each integer if we like. Because the default value of `center` is 0, setting `width` to 1 centers the bins on the integers, avoiding potential confusion about which edge is included in the bin.

```r
histogram(~age, data = HELPrct, width = 1)
```

Additional plots of a single quantitative variable are illustrated in Section sec:paletteOfPlots.

For a single categorical variable, we can make a bar graph for a categorical variable using `bargraph()` in place of `histogram()`. Since formulas are required to have a right-hand side, horizontal bar graphs are produced using `horizontal = TRUE`.

```r
bargraph(~substance, data = HELPrct)
bargraph(~substance, data = HELPrct, horizontal = TRUE)
```

4.2.3 A palette of plots

The power of the template is that we can now make many different kinds of plots by mimicking the examples above but replacing the...
goal.

```r
histogram(~age, data=HELPrc)
densityplot(~age, data=HELPrc)
freqpolygon(~age, data=HELPrc)
dotPlot(~age, data=HELPrc, width=1)
bwplot(~age, data=HELPrc)
qqmath(~age, data=HELPrc)
```

For one categorical variable, we can use a bar graph.

```r
bargraph(~sex, data = HELPrc)  # categorical variable
```

Note

The `lattice` package does not supply a function for creating pie charts. This is no great loss since it is generally harder to make comparisons using a pie chart.
The lattice package also provides the `stripplot()` and `dotplot()` functions which can be used for one-dimensional scatter plots. These work reasonably well for small data sets but are of limited utility for larger data sets.

```
stripplot(~ length, data = KidsFeet)
dotplot(~ length, data = KidsFeet)
```

These and `xyplot()` or `plotPoints()` can also be used with one quantitative variable and one categorical variable.

```
xyplot( sex ~ length, data=KidsFeet )
plotPoints( sex ~ length, data=KidsFeet )
stripplot( sex ~ length, data=KidsFeet )
dotplot( sex ~ length, data=KidsFeet )
```

Teaching Tip
We generally don’t introduce `dotplot()` and `stripplot()` to students but simply use `xyplot()` or `plotPoints()`.

Caution!
Note that `dotplot()` produces a very different kind of plot from the plot produced by `dotPlot()`, which is what students will more commonly think of as a dot plot.
4.2.4 Groups and sub-plots

We can add additional variables to our plots either by overlaying multiple plots or by placing multiple plots next to each other in a grid. To overlay plots, we add an extra argument to our template using `groups =`, and to create sub-plots (called panels in lattice and facets in ggplot2 graphics) using a formula of the form

\[y \sim x \mid z \]

For example, we can overlay density plots of age for each substance group in separate panels for each sex as follows:

```r
densityplot(~ age | sex, data=HELPrct,
            groups=substance,
            auto.key=TRUE)
```

`auto.key=TRUE` adds a simple legend so we can tell which of the overlaid curves is which.

4.3 Numerical Summaries

Numerical summaries can be created in the same way, we simply replace the plot name with the name of the numerical summary we

Note
The important thing to notice in this section is how little there is to learn once you know how to make plots. Simply change the plot name to a summary statistic name and your done.
desire. Nothing else changes; a mean and a histogram each summarise a single variable, so exchanging `histogram()` for `mean()` gives us the numerical summary we desire.

```r
histogram(~age, data = HELPrct)
mean(~age, data = HELPrct)
```

![Histogram and mean of age](image)

The `mosaic` package includes formula-aware versions of several numerical summaries, including `mean()`, `sd()`, `var()`, `min()`, `max()`, `sum()`, `IQR()`. In addition, the `favstats()` function computes many of our favorite statistics all at once:

```r
favstats(~age, data = HELPrct)
```

```
  min  Q1  median  Q3    max    mean    sd    n missing
  19  30    35  40    60  35.65  7.71  453      0
```

And the `tally()` function can be used to tally counts.

```r
tally(~sex, data = HELPrct)
```

```
  female  male
    107   346
```

```r
tally(~substance, data = HELPrct)
```

```
  alcohol   cocaine   heroin
    177       152       124
```

Sometimes it is more convenient to display proportions or percents.

```r
tally(~substance, data = HELPrct, format = "percent")
```

```
  alcohol   cocaine   heroin
   39.07    33.55     27.37
```
Summary statistics can be computed separately for multiple subsets of a data set. This is analogous to plotting multiple variables and can be thought about in three ways. Each of these computes the same value.

```r
# age dependant on substance
sd(age ~ substance, data = HELPrct)
```

```r
alcohol cocaine heroin
7.652 6.693 7.986
```

```r
# age separately for each substance
sd(~age | substance, data = HELPrct)
```

```r
alcohol cocaine heroin
7.652 6.693 7.986
```

```r
# age grouped by substance
sd(~age, groups = substance, data = HELPrct)
```

```r
alcohol cocaine heroin
7.652 6.693 7.986
```

The `favstats()` function can compute several numerical summaries for each subset

```r
favstats(age ~ substance, data = HELPrct)
```

```r
group min Q1 median Q3 max mean sd n missing
1 alcohol 20 33 43.00 58 38.20 7.652 177 0
2 cocaine 23 30 33.5 37.25 60 34.49 6.693 152 0
3 heroin 19 27 33.0 39.00 55 33.44 7.986 124 0
```

Similarly, we can create two-way tables that display either as counts or proportions.

```r
tally(~sex + substance, data = HELPrct)
```

```r
sex alcohol cocaine heroin
female 0.2034 0.2697 0.2419
male 0.7966 0.7303 0.7581
```

```r
tally(~sex ~ substance, data = HELPrct)
```
4.4 Linear models

Although we have not mentioned linear models yet, they are an important motivation for the template approach to graphical and numerical summaries. The *lattice* graphics system already makes use of the same template as linear models, and the *mosaic* package makes it possible to do numerical summaries with the same template. By introducing students to the template for graphical and numerical summaries, there is very little new to learn when they are ready to fit a model.

For example, suppose we want to know how the width of kids’ feet depends on the length of the their feet. We could make a scatter plot and we can construct a linear model using the same template.

```
xymplot(width ~ length, data = KidsFeet)
lm(width ~ length, data = KidsFeet)
```

Call:
```
lm(formula = width ~ length, data = KidsFeet)
```

Coefficients:
```
(Intercept) length
  2.862  0.248
```
We’ll have more to say about modeling elsewhere. For now, the important point is that our use of the template for graphing and numerical summaries prepares students to ask how does \(y \) depend on \(x \) and to formalize models of two or more variables when the time comes.

4.5 A few other tests

Many introductory statistics classes introduce students to one- and two-sample tests for means and proportions. The mosaic package brings these into the template as well.

```r
\texttt{t.test( \sim \text{length, data=KidsFeet} )}
```

One Sample t-test

data: data$length
t = 117.2, df = 38, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
24.30 25.15
sample estimates:
mean of x
24.72
```

The output from these functions also includes more than we really need. The mosaic package provides \texttt{pval()} and \texttt{confint()} for extracting p-values and confidence intervals:

```r
\texttt{pval(t.test(\sim \text{length, data = KidsFeet}))}
```

\begin{verbatim}
p.value
3.064e-50
\end{verbatim}

```r
\texttt{confint(t.test(\sim \text{length, data = KidsFeet}))}
```

\begin{verbatim}
mean of x   lower   upper   level
24.72      24.30    25.15   0.95
\end{verbatim}

More Info
For a more thorough treatment of how to use R for the core topics of a traditional introductory statistics course, see A Compendium of Commands to Teach Statistics with R.

More Info
Chi-squared tests can be performed using \texttt{chisq.test()}. This function is a little different in that it operates on tabulated data of the sort produced by \texttt{tally()} rather than on the data itself. So the use of the template happens inside \texttt{tally()} rather than in \texttt{chisq.test()}. 
```r
confint(t.test(length ~ sex, data = KidsFeet))

<table>
<thead>
<tr>
<th>Mean in Group B</th>
<th>Mean in Group G</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.10500</td>
<td>24.32105</td>
<td>-0.04502</td>
</tr>
<tr>
<td>Upper Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61292</td>
<td>0.95000</td>
<td></td>
</tr>
</tbody>
</table>

Using Binomial distribution
confint(binom.test(~sex, data = HELPrct))

<table>
<thead>
<tr>
<th>Probability of Success</th>
<th>Lower</th>
<th>Upper Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2362</td>
<td>0.1978</td>
<td></td>
</tr>
<tr>
<td>Upper Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2781</td>
<td>0.9500</td>
<td></td>
</tr>
</tbody>
</table>

Using normal approximation to the binomial distribution
confint(prop.test(~sex, data = HELPrct))

<table>
<thead>
<tr>
<th>p</th>
<th>Lower</th>
<th>Upper Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2362</td>
<td>0.1984</td>
<td>0.2786</td>
</tr>
</tbody>
</table>

4.6 **lattice bells and whistles**

In the plots we have shown so far, we have focused on creating a variety of useful plots and (for the most part) accepted the default presentation of them. The `lattice` graphics system provides many bells and whistles that can be introduced once the graphics template has been mastered. Optional arguments to the graphics functions can be used to add or modify

- the viewing window
- titles,
- axis labels,
- colors, shapes, sizes, and line types,
- transparency,
- fonts

and many other features of a plot. Our advice is to hold off on such bells and whistles until students ask or an analysis demands them.
4.6.1 Example: Number of births per day

We have seen the Births78 data set in Section 3.2. The plots below take advantage of additional arguments to improve the plot. The first plot below illustrates one of the important features of this data set – there are usually fewer births on two days of the week and more on the other five. From this we can be quite certain that 1978 began on a Sunday.

```r
xyplot(births ~ date, data=Births78, 
groups=dayofyear %% 7, 
auto.key=list(columns=4), 
main="Number of US births each day in 1978", 
ylab="# of births", 
par.settings=list( 
  superpose.symbol=list(pch=16, cex=.8, alpha=.8))
)
```

Here we have used
- `auto.key` to control the layout of the legend (4 columns instead of 1)
- `main` to set the title for the plot
- `xlab` and `ylab` to set the axis labels
- `par.settings` to set the plot character (`pch`), character expansion (`cex`), and opacity (`alpha`) for overlaid plots (`superpose.symbol`).

The following plot uses lines instead of points which makes it easier to locate the handful of unusual observations.

```r
xyplot(births ~ date, data=Births78, 
groups=dayofyear %% 7, type='l', 
main="Number of US births each day in 1978", 
ylab="# of births", 
par.settings=list( 
  superpose.symbol=list(pch=16, cex=.8, alpha=.8))
```
4.6.2 Themes

Settings that are used repeatedly can be collected into a theme. The mosaic package provides such a theme called `theme.mosaic()`. The `show.settings()` function displays the settings of the currently active theme.

```
trellis.par.set(col.whitebg())
show.settings()
```
```r
trellis.par.set(theme.mosaic(bw = TRUE))
show.settings()
```
Themes can also be assigned to `par.settings` if we want them to affect only one plot:

```r
xyplot( births ~ date, data=Births78,
       groups=dayofyear %>% 7, type='l',
       main="Number of US births each day in 1978",
       auto.key=list(columns=4, lines=TRUE, points=FALSE),
       par.settings=theme.mosaic(bw=TRUE),
       xlab="day of year",
       ylab="# of births")
```

![Number of US births each day in 1978](image)

4.7 Some additional examples

4.7.1 Dot plots

Dotplots are not as commonly seen in the statistical literature as they are in statistics education, where they can serve an important role in helping students learn to interpret histograms (and frequency polygons and density plots). A dot plot represents each value of a quantitative variable with a dot. The values are rounded a bit so that the dots line up neatly, and dots are stacked up into little towers when the data values cluster near each other. Dot plots are primarily used with modestly sized data sets and can be used as a bridge to the other plots, where there is no longer a direct connection between a component of the plot and an individual observation.

Here is an example using the sepal lengths recorded in the `iris` data set.

```
dotPlot(~ Sepal.Length, data=iris,
       n=30,  # approx. 30 bins/columns
       alpha=.6)  # partially transparent
```

Teaching Tip
Using dot plots for sampling distributions and bootstrap distributions is useful for testing purposes since probabilities can be easily estimated by counting dots—especially if the total number of dots is chosen to be something simple like 1000.
We can use a conditional variable to give us separate dot plots for each of the three species in this data set.

```r
dotPlot(~ Sepal.Length | Species, data=iris, n=20,
        layout=c(3,1)) # 3 columns (x) and 1 row (y)
```

The connection between histograms and dot plots can be visualized by overlaying one on top of the other.
4.7.2 Frequency polygons: `freqpolygon()`

Frequency polygons and density plots provide alternatives to histograms that make it easier to overlay the representations of multiple subsets of the data. A frequency polygon is created from the same data summary (bins and counts) as a histogram, but instead of representing each bin with a bar, it is represented by a point (at the center of the where the top of the histogram bar would have been). These points are then connected with line segments. Here is an example that shows the distribution of Old Faithful eruptions times from a sequence of observations.

```r
require(MASS)
freqpolygon(~duration, data = geyser, n = 15)
```

Numerically, the data are being summarized and represented in exactly the same way as for histograms, but visually the horizontal and vertical line segments of the histogram are replaced by sloped line segments.

The `faithful` data set contains similar data, but the variable names in that data frame are poorly chosen. The `geyser` data set in the `MASS` package has better names and more data.

Teaching Tip
Point out that an interesting feature of this distribution is its clear bimodality. In particular, the mean and median eruption time are not a good measures of the duration of a “typical” eruption since almost none of the eruption durations are near the mean and median.
This may give a more accurate visual representation in some situations (since the distribution can “taper off” better). More importantly, it makes it much easier to overlay multiple distributions.

```r
freqpolygon(~ Sepal.Length, data=iris,
            groups=Species,
            ylim=c(0,1.5)  # manually choose the range for the y-axis)
```

4.7.3 Density plots: `densityplot()`

Density plots are similar to frequency polygons, but the piecewise linear representation is replaced by a smooth curve.
Beginners do not need to know the details of how that smooth curve is generated, but should be introduced to the `adjust` argument which controls the degree of smoothing. It is roughly equivalent to choosing wider or narrower bins for a histogram or frequency polygon. The default value is 1. Higher values smooth more heavily; lower values, less so.

```r
densityplot(~Sepal.Length, data = iris, groups = Species, adjust = 3, main = "adjust = 3")
densityplot(~Sepal.Length, data = iris, groups = Species, adjust = 1/3, main = "adjust = 1/3")
```

The Density Scale

There are three scales that can be used for the plots in the preceding section: count, percent, and density. Beginning students will be most familiar with the count scale and perhaps also the percent scale, but most will not have seen the density scale. The density scale captures the most important aspect of all of these plots:

> Area is proportional to frequency.
The density scale is chosen so that the constant of proportionality is 1, in which case we have

\[
\text{Area equals proportion.}
\]

This is the only scale available for \texttt{densityplot()} and is the most suitable scale if one is primarily interested in the shape of the distribution. The vertical scale is affected very little by the choice of bin widths or adjust multipliers. It is also the appropriate scale to use when overlaying a density function onto a histogram, something the \texttt{mosaic} package makes easy to do.

\[
\text{histogram(~ Sepal.Length | Species, data=iris, fit="normal")}
\]

The other scales are primarily of use when one wants to be able to read off bin counts or percents from the plot.

4.7.5 \textit{Groups or panels?}

The following examples using the \texttt{iris} data set provide a comparison of using groups or panels to separate subsets of the data. First we put the three species into three separate panels.

\[
\text{xypplot(Sepal.Length ~ Sepal.Width | Species, data=iris, layout=c(3,1)) \# layout controls number of columns and rows}
\]

Alternatively, we can use the \texttt{groups} argument to indicate the different species using different symbols on the same panel.
4.7.6 Dealing with long labels

Suppose we want to display the following table (based on data from the 1985 Current Population Survey) using bar graph.

```
tally(~sector, data = CPS85)
```

<table>
<thead>
<tr>
<th>sector</th>
<th>clerical</th>
<th>const</th>
<th>manag</th>
<th>manuf</th>
<th>other</th>
<th>prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>sales</td>
<td>38</td>
<td>83</td>
<td>55</td>
<td>68</td>
<td>68</td>
<td>105</td>
</tr>
<tr>
<td>service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>20</td>
<td>55</td>
<td>68</td>
<td>68</td>
<td>105</td>
</tr>
</tbody>
</table>

The mosaic function `bargraph()` can display these tables as bar graphs, but there isn’t enough room for the labels.
One solution would be to use horizontal bars

```r
# horizontal bars
bargraph(~ sector, data = CPS85, horizontal = TRUE)
```

Another is to rotate the labels.

```r
bargraph(~ sector, data = CPS85, scales = list(x = list(rot = 45)))
```

As with the other lattice plots, we can add grouping or conditioning to our plot.
4.8 Saving Your Plots

There are several ways to save plots in RStudio, but the easiest is probably the following:

1. In the Plots tab, click the “Export” button.

2. Copy the image to the clipboard using right click.

3. Go to your document (e.g. Microsoft Word) and paste in the image.

4. Resize or reposition your image as needed.

The `pdf()` function can be used to save plots as pdf files. See the documentation of this function for details and links to functions that can be used to save graphics in other file formats.

4.9 mplot()

The `mplot()` function does a number of different things, depending on what information it is provided. When `mplot()` is given a data frame in RStudio, it opens up an interactive plot with controls that allow the user to select variables and create plots of various sorts.

More Info

`mplot()` is a generic function. R includes many generic functions (like `print()` and `plot()` and `summary()`). These functions inspect the objects passed as arguments (at least the first one) and decide what to do based on the class of the argument(s).
The plots can be made using \texttt{lattice} or \texttt{ggplot2}, and there is a “Show expression” button that displays the code used to create the plot. This can be used to learn how to make the plot and can be copied and pasted into the console or documents.

The use of \texttt{mplot()} makes it easy to explore a number of plots quickly and can facilitate learning either \texttt{lattice} or \texttt{ggplot2} by showing the code used to create the plots.

\textbf{Caution!}

This feature of \texttt{mplot()} only works within RStudio because it takes advantage of the \texttt{manipulate} package which only works within RStudio. See Chapter ?? for more about \texttt{manipulate}.
4.10 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

```r
require(mosaic) # load the mosaic package
require(mosaicData) # load the mosaic data sets

# frequency table
# cross tabulation of sector by race
# mean age of HELPrct subjects
# mean age of male and female HELPrct subjects
# mean age of male and female HELPrct subjects
# more numerical summaries
# still more summaries
# compute favorite numerical summaries

histogram(~ Sepal.Length | Species, data=iris) # histograms (with extra features)
dotPlot(~ Sepal.Length | Species, data=iris) # dot plots for each species
densityplot(~ Sepal.Length, groups = Species, data=iris) # overlaid densityplots
qqmath(~ age | sex, data=CPS85) # quantile-quantile plots
bwplot(Sepal.Length ~ Species, data=iris) # side-by-side boxplots
xyplot(Sepal.Length ~ Sepal.Width | Species, data=iris) # scatter plots for each species
bargraph(~ sector, data=CPS85) # bar graph

mplot(HELPrct) # interactive plot (RStudio only)
```
4.11 Exercises

4.1 The Utilities2 data set in the mosaic package contains information about the bills for various utilities at a residence in Minnesota collected over a number of years. Since the number of days in a billing cycle varies from month to month, variables like gasbillpday (elecbillpday, etc.) contain the gas bill (electric bill, etc.) divided by the number of days in the billing cycle.

a) Use the documentation to determine what the kwh variables contains.

b) Make a scatter plot of gasbillpday vs. monthsSinceY2K using the command

```r
xyplot(gasbillpday ~ monthsSinceY2K, data=Utilities2, type='l')  # the letter l
```

What pattern(s) do you see?

c) What does type='l' do? Make your plot with and without it. Which is easier to read in this situation?

d) What happens if we replace type='l' with type='b'?

e) Make a scatter plot of gasbillpday by month. What do you notice?

f) Make side-by-side boxplots of gasbillpday by month using the Utilities2 data frame. What do you notice?

Your first try probably won’t give you what you expect. The reason is that month is coded using numbers, so R treats it as numerical data. We want to treat it as categorical data. To do this in R use factor(month) in place of month. R calls categorical data a factor.

g) Make any other plot you like using this data. Include both a copy of your plot and a discussion of what you can learn from it.

4.2 The table below is from a study of nighttime lighting in infancy and eyesight (later in life).

<table>
<thead>
<tr>
<th></th>
<th>no myopia</th>
<th>myopia</th>
<th>high myopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>darkness</td>
<td>155</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>nightlight</td>
<td>153</td>
<td>72</td>
<td>7</td>
</tr>
<tr>
<td>full light</td>
<td>34</td>
<td>36</td>
<td>3</td>
</tr>
</tbody>
</table>
a) Recreate the table in R.

b) What percent of the subjects slept with a nightlight as infants?

There are several ways to do this. You could use R as a calculator to do the arithmetic. You can save some typing if you use the function `tally()`. See `?tally` for documentation.

c) Create a graphical representation of the data. What does this plot reveal?
In Chapter 2, we give a brief orientation to the RStudio IDE and what happens in each of its tabs and panels. In Chapter 4, we show how to make use of a common template for graphical summaries, numerical summaries, and modeling. In this chapter we cover some additional things that are important for students to know about the R language.

5.1 Two Questions

When we introduced the formula template in Chapter 4, we presented two important questions to ask before constructing an R command. These questions are useful in contexts beyond the formula template, and indeed for computer systems beyond R, so we repeat them here.

1. What do you want R to do?
 This will generally determine which R function to use.

2. What must R know to do that?
 This will determine the inputs to the function.

5.2 Four Things to Know About R

As is true for most computer languages, R has to be used on its terms. R does not learn the personality and style of its users. Getting along with R is much easier if you keep in mind (and remind your students about) a few key features of the R language.

1. R is case-sensitive
 If you mis-capitalize something in R it won’t do what you want.
 Unfortunately, there is not a consistent convention about how
capitalization should be used, so you just have to pay attention when encountering new functions and data sets.

2. Functions in R use the following syntax:

\[\text{functionname}(\text{argument1, argument2, ...}) \]

- The arguments are **always surrounded by (round) parentheses** and separated by commas.

Some functions (like `data()`) have no required arguments, but you still need the parentheses.

- If you type a function name without the parentheses, you will see the code for that function (this generally isn’t what you want unless you are curious about how something is implemented).

3. TAB completion and arrows can improve typing speed and accuracy.

 If you begin a command and hit the TAB key, R and RStudio will show you a list of possible ways to complete the command. If you hit TAB after the opening parenthesis of a function, RStudio will display the list of arguments it expects.

 The up and down arrows can be used to retrieve past commands when working in the console.

4. If you see a `+` prompt, it means R is waiting for more input.

 Often this means that you have forgotten a closing parenthesis or made some other syntax error. If you have messed up and just want to get back to the normal prompt, press the escape key and start the command fresh.

5.3 Installing and Using Packages

R is open source software. Its development is supported by a team of core developers and a large community of users. One way that users support R is by providing **packages** that contain data and functions for a wide variety of tasks. As an instructor, you will want to select a few packages that support the way you want to teach your course.

If you need to install a package, most likely it will be on CRAN, the Comprehensive R Archive Network. Before a package can be used, it must be **installed** (once per computer or account) and **loaded** (once per R session). Installing downloads the package software and prepares it for use by compiling (if necessary) and putting its components in the proper location for future use. Loading makes a previously installed package available for use in an R session.

For example, to use the `mosaic` package, we must first install it:
Once the package has been installed it must be loaded to make it available in the current session or file using

\begin{verbatim}
library(mosaic) # load the package before use
library(mosaicData) # load data sets too
\end{verbatim}

or

\begin{verbatim}
require(mosaic) # alternative way to load
require(mosaicData) # load data sets too
\end{verbatim}

The Packages tab in RStudio makes installing and loading packages particularly easy and avoids the need for \texttt{install.packages()} for packages on CRAN, and makes loading packages into the console as easy as selecting a check box. The \texttt{require()} (or \texttt{library()}) function is still needed to load packages within RMarkdown, \texttt{knitr}/\LaTeX, and script files.

If you are running on a machine where you don’t have privileges to write to the default library location, you can install a personal copy of a package. If the location of your personal library is first in \texttt{R.LIBS}, this will probably happen automatically. If not, you can specify the location manually:

\begin{verbatim}
install.packages("mosaic", lib = "/home/user/R/library")
\end{verbatim}

CRAN is not the only repository of R packages. Bioconductor is another large and popular repository, especially for biological applications, and increasingly authors are making packages available via github. For example, you can also install the mosaic package using

\begin{verbatim}
if you haven't already installed this package
install.packages("devtools")
require(devtools)
install_github("mosaic", "rpruim")
\end{verbatim}

Occasionally you might find a package of interest that is not available via a repository like CRAN or Bioconductor. Typically, if you find such a package, you will also find instructions on how to install it. If not, you can usually install directly from the zipped up package file.
repos = NULL indicates to use a file, not a repository
install.packages("some-package.tar.gz", repos = NULL)

From this point on, we will assume that the mosaic package has been installed and loaded.

5.4 Getting Help

If something doesn’t go quite right, or if you can’t remember something, it’s good to know where to turn for help. In addition to asking your friends and neighbors, you can use the R help system.

5.4.1 ?

To get help on a specific function or data set, simply precede its name with a ?:

```r
?log  # help for the log function
```

```r
?HELPrct  # help on a data set in the mosaic package
```

This will give you the documentation for the object you are interested in.

5.4.2 `apropos()`

If you don’t know the exact name of a function, you can give part of the name and R will find all functions that match. Quotation marks are mandatory here.

```r
apropos("tally")  # must include quotes. single or double.
```

```
[1] "statTally"  "tally"  "tally"
```

5.4.3 `??` and `help.search()`

If that fails, you can do a broader search using ?? or help.search(), which will find matches not only in the names of functions and data sets, but also in the documentation for them. Quotation marks are optional here.
5.4.4 Examples and Demos

Many functions and data sets in \(R \) include example code demonstrating typical uses. For example,

```r
example(histogam)
```

will generate a number of example plots (and provide you with the commands used to create them). Examples such as this are intended to help you learn how specific \(R \) functions work. These examples also appear at the end of the documentation for functions and data sets.

The mosaici package (and some other packages as well) also includes demos. Demos are bits of \(R \) code that can be executed using the `demo()` command with the name of the demo. To see how demos work, give this a try:

```r
demo(lattice)
```

Demos are intended to illustrate a concept or a method and are independent of any particular function or data set.

You can get a list of available demos using

```r
demo()  # all demos
demo(package = "mosaic")  # just demos from mosaic package
```

5.5 Data

5.5.1 Data Frames

Data sets are usually stored in a special structure called a **data frame**.

Data frames have a 2-dimensional structure.

- Rows correspond to **observational units** (people, animals, plants, or other objects we are collecting data about).
- Columns correspond to **variables** (measurements collected on each observational unit).

Births78 The Births78 data frame contains three variables measured for each day in 1978. There are several ways we can get some idea about what is in the Births78 data frame.

```r
head(Births78)  # show the first few rows
```

Teaching Tip

Students who collect their own data, especially if they store it in Excel, are unlikely to put data into the correct format unless explicitly taught to do so.

Teaching Tip

To help students keep variables and data frames straight, and to make it easier to remember the names, we have adopted the convention that data frames in the mosaic package are capitalized and variables (usually) are not. This convention has worked well, and you may wish to adopt it for your data sets as well.
The output from `str()` is also available in the Environment tab. In interactive mode, you can also try

```r
?Births78
```

to access the documentation for the data set. This is also available in the Help tab. Finally, the Environment tab provides a list of data in the workspace. Clicking on one of the data sets brings up the same data viewer as

```
View(Births78)
```

We can gain access to a single variable in a data frame using the `$` operator or using the `with()` function.
For example, either of

```r
Births78$births
with(Births78, births)
```

will show the contents of the `births` variable in `Births78` data set.

Listing the entire set of values for a particular variable isn’t very useful for a large data set. We would prefer to compute numerical or graphical summaries. We’ll do that shortly.

5.5.2 The Perils of `attach()`

The `attach()` function in R can be used to make objects within data frames accessible in R with fewer keystrokes, but we strongly discourage its use, as it often leads to name conflicts and other complications. The Google R Style Guide¹ echoes this advice, stating that

> The possibilities for creating errors when using `attach()` are numerous. Avoid it.

It is far better to directly access variables using the `$` syntax or to use functions that allow you to avoid the `$` operator.

5.5.3 Data in Packages

Data sets in R packages are the easiest to deal with. In section 5.5.4, we’ll describe how to load your own data into R and RStudio, but we recommend starting with data in packages, and that is what we will do here, too. Once students know how to work with data and what data in R are supposed to look like, they will be better prepared to import their own data sets.

Many packages contain data sets. You can see a list of all data sets in all loaded packages using

```r
data()
```

You can optionally choose to restrict the list to a single package:

```r
data(package = "mosaic")
```

Typically you can use data sets by simply typing their names. But if you have already used that name for something or need to refresh the data after making some changes you no longer want, you can explicitly load the data using the `data()` function with the name of the data set you want.

As we will see, there are relatively few instances where one needs to use the `$` operator.

¹ http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

Teaching Tip

Start out using data in packages and show students how to import their own data once they understand how to work with data.

Note

This depends on the package. Most package authors set up their packages with “lazy loading” of data. If they do not, then you need to use `data()` explicitly.
There is no visible effect of this command, but the **Births78** data frame has now been reloaded from the **mosaic** package and is ready for use. Anything you may have previously stored in a variable with this same name is replaced by the version of the data set stored with in the **mosaic** package.

5.5.4 Using Your Own Data

Eventually, students will want to move from using example data sets in R packages to using data they find or collect themselves. When this happens will depend on the type of students you have and the type of course you are teaching.

R provides the functions **read.csv()** (for comma separated values files), **read.table()** (for white space delimited files) and **load()** (for loading data in R’s native format). The **mosaic** package includes a function called **read.file()** that uses slightly different default settings and infers whether it should use **read.csv()**, **read.table()**, or **load()** based on the file name.

Since most software packages can export to csv format, this has become a sort of **lingua franca** for moving data between packages. Data in excel, for example, can be exported as a csv file for subsequent reading in R. If you have python installed on your system, you can also use **read.xls()** from the **gdata** package to read read directly from Excel files without this extra step.

Each of these functions accepts a URL as well as a file name, which provides an easy way to distribute data via the Internet:

```r
births <- read.table('http://www.calvin.edu/~rpruim/data/births.txt', header=TRUE)
head(births) # live births in the US each day of 1978.
```

We can omit the **header=TRUE** if we use **read.file()**

```r
births <- read.file('http://www.calvin.edu/~rpruim/data/births.txt')
```
5.5.5 Importing Data in RStudio

The RStudio interface provides some GUI tools for loading data. If you are using the RStudio server, you will first need to upload the data to the server (in the Files tab), and then import the data into your R session (in the Workspace tab).

If you are running the desktop version, the upload step is not needed.

5.5.6 Working with Pretabulated Data

Because categorical data is so easy to summarize in a table, often the frequency or contingency tables are given instead. You can enter these tables manually using a combination of `c()`, `rbind()` and `cbind()`:

```r
myrace <- c(NW = 67, W = 467)  # c for combine or concatenate
mysave(myrace
NW W
67 467

mycrosstable <- rbind(
  NW = c(clerical=15, const=3, manag=6, manuf=11, other=5, prof=7, sales=3, service=17),
  W = c(82,17,49,57,63,98,35,66)
)

mycrosstable

<table>
<thead>
<tr>
<th>clerical</th>
<th>const</th>
<th>manag</th>
<th>manuf</th>
<th>other</th>
<th>prof</th>
<th>sales</th>
<th>service</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
| W        | 82    | 17    | 49    | 57    | 63   | 98    | 35      | 66

Replacing `rbind()` with `cbind()` will allow you to give the data column-wise instead.

This arrangement of the data would be sufficient for applying the Chi-squared test, but it is not in a format suitable for plotting with `lattice`. Our cross table is still missing a bit of information – the names of the variables being stored. We can add this information if we convert it to a table.

```r
class(mycrosstable)
[1] "matrix"

mycrosstable <- as.table(mycrosstable)
mycrosstable now has dimnames, but they are unnamed
dimnames(mycrosstable)
```

---

Teaching Tip

Remind students that the 2-step process (upload, then import) works much like images in Facebook. First you upload them to Facebook, and once they are there you can include them in posts, etc.

Even if you use RStudio GUI for interactive work, you will want to know how to use functions like `read.csv()` for working in RMarkdown, or `knitr/\LaTeX` files.

Teaching Tip

This is an important technique if you use a text book that presents categorical data in tables.

Teaching Tip

If plotting pre-tabulated categorical data is important, you probably want to provide your students with a wrapper function to simplify all this. We generally avoid this situation by provided the data in raw format or by presenting an analysing the data in tables without using graphical summaries.
We can use `barchart()` instead of `bargraph()` to plot data already tabulated in this way, but first we need yet one more transformation.
Developing Good Data Habits

However you teach students to collect and import their data, students will need to be trained to follow good data organization practices:

- Choose good variables names.
- Put variables names in the first row.
- Use each subsequent row for one observational unit.
- Give the resulting data frame a good name.

Scientists may be disappointed that R data frames don’t keep track of additional information, like the units in which the observations are recorded. This sort of information should be recorded, along with a description of the protocols used to collect the data, observations made during the data recording process, etc. This information should be maintained in a lab notebook or a codebook.
5.6 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

```r
require(mosaic) # load the mosaic package
require(mosaicData) # load the mosaic data sets
answer <- 42 # store the number 42 in a variable named answer
log(123); log10(123); sqrt(123) # some standard numerical functions
x <- c(1,2,3) # make a vector containing 1, 2, 3 (in that order)

data(iris) # (re)load the iris data set
names(iris) # see the names of the variables in the iris data
head(iris) # first few rows of the iris data set
sample(iris, 3) # 3 randomly selected rows of the iris data set
summary(iris) # summarize each variables in the iris data set
str(iris) # show the structure of the iris data set

mydata <- read.table("file.txt") # read data from a text file
mydata <- read.csv("file.csv") # read data from a csv file
mydata <- read.file("file.txt") # read data from a text or csv file
```
5.7 Exercises

5.1 Enter the following small data set in an Excel or Google spreadsheet and import the data into RStudio.

```
<table>
<thead>
<tr>
<th>number</th>
<th>letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>
```
What Instructors Need to Know about R

We recommend keeping the amount of R that students need to learn to a minimum, and choosing functions that support a formula interface whenever possible to keep the required functions syntactically similar. But there are some additional things that instructors (and some students) should know about R. We outline some of these things in this chapter.

6.1 Some Workflow Suggestions

Our workflow advice can be summarized in one short sentence:

Think like a programmer.

We don’t really think of our classroom use of R as programming since we use R in a mostly declarative rather than algorithmic way. It doesn’t take sophisticated programming skills to be good at using R. In fact, most uses of R for teaching statistics can be done working one step at a time, where each line of code does one complete and useful task. After inspecting the output (and perhaps saving it for further computation later), one can proceed to the next operation.

Nevertheless, we can borrow from the collective wisdom of the programming community and adopt some practices that will make our experience more pleasurable, more efficient, and less error-prone.

• Store your code in a file.

It can be tempting to do everything in the console. But the console is ephemeral. It is better to get into the habit of storing code in files. Get in the habit (and get your students in the habit) of working with R scripts and especially R Markdown files.

You can execute all the code in an R script file using

You may find that some of these things are useful for your students to know as well. That will depend on the goals for your course and the abilities of your students. In higher level courses, much of the material in this chapter is also appropriate for students.
RStudio has additional options for executing some or all lines in a file. See the buttons in the tab for any R script, RMarkdown or Rnw file. (You can create a new file in the main File menu.)

If you work at the console's interactive prompt and later wish you had been putting your commands into a file, you can save your past commands with

```r
savehistory("someRCommandsAlmostLost.R")
```

In RStudio, you can selectively copy portions of your history to a script file (or the console) using the History tab.

- Use meaningful names.
  
  Rarely should objects be named with a single letter.

  Adopt a personal convention regarding case of letters. This will mean you have one less thing to remember when trying to recall the name of an object. For example, in the mosaic package, all data frames begin with a capital letter. Most variables begin with a lower case letter (a few exceptions are made for some variables with names that are well-known in their capitalized form).

- Adopt reusable idioms.
  
  Computer programmers refer to the little patterns that recur throughout their code as idioms. For example, here is a “compute, save, display” idiom.

```r
compute, save, display idiom
footModel <- lm(length ~ width, data=KidsFeet); footModel
```

Call:
`lm(formula = length ~ width, data = KidsFeet)`

Coefficients:
```
(Intercept) width
9.82 1.66
```

```r
alternative that reflects the order of operations
lm(length ~ width, data=KidsFeet) -> footModel; footModel
```

Call:
`lm(formula = length ~ width, data = KidsFeet)`

Coefficients:
```
(Intercept) width
9.82 1.66
```
Often there are multiple ways to do the same thing in R, but if you adopt good programming idioms, it will be clearer to both you and your students what you are doing.

- Write reusable functions.
  Learning to write your own functions (see Section ??) will greatly increase your efficiency and also help you understand better how R works. This, in turn, will help you debug your students error messages. (More on error messages in ??.) It also makes it possible for you to simplify tasks you want your students to be able to do in R. That is how the mosaic package originated – as a collection of tools we had assembled over time to make teaching and learning easier.

- Comment your code.
  It’s amazing what you can forget. The comment character in R is #. If you are working in RMarkdown or Rnw files, you can also include nicely formatted text to describe what you are doing and why.

## 6.2 Primary R Data Structures

Everything in R is an object of a particular kind and understanding the kinds of objects R is using demystifies many of the messages R produces and unexpected behavior when commands do not work the way you (or your students) were expecting. We won’t attempt to give a comprehensive description of R’s object taxonomy here, but will instead focus on a few important features and examples.

### 6.2.1 Objects and Classes

In R, data are stored in objects. Each object has a name, contents, and a class. The class of an object tells what kind of a thing it is. The class of an object can be queried using `class()`

```r
class(KidsFeet)
[1] "data.frame"
class(KidsFeet$birthmonth)
[1] "integer"
class(KidsFeet$length)
[1] "numeric"
class(KidsFeet$sex)
```

---

More Info
Many objects also have attributes which contain additional information about the object, but unless you are doing programming with these objects, you probably don’t need to worry too much about them.
From this we see that `KidsFeet` is a data frame and that the variables are of different types (integer, numeric, and factor). These are the kinds of variables you are most likely to encounter, although you may also see variables that are logical (true or false) or character (text) as well. Factors are the most common way for categorical data to be stored in R, but sometimes the character class is better. The class of an object determines what things can be done with it and how it appears when printed, plotted, or displayed in the console.

6.2.2 Containers

The situation is actually a little bit more complicated. The `birthmonth` variable in `KidsFeet` is not a single integer but a collection of integers. So we can think of `birthmonth` as a kind of container holding a number of integers. There is more than one kind of container in R. The containers used for variables in a data frame are called vectors. The items in a vector are ordered (starting with 1) and must all be of the same type.

Vectors can be created using the `c()` function:

```
c(2, 3, 5, 7)
[1] 2 3 5 7
c("Abe", "Betty", "Chan")
[1] "Abe" "Betty" "Chan"
c(1.2, 3.2, 4.5)
[1] 1.2 3.2 4.5
```

If you attempt to put different types of objects into a vector, R will attempt to convert them all to the same type of object. If it is unable to do so, it will generate an error.
Factors can be created by wrapping a vector with `factor()`:

```
w <- factor(x); w
[1] 1 1.1 1.2
Levels: 1 1.1 1.2
class(w)
[1] "factor"
```

Notice how factors display the `levels` (possible values) as well as the values themselves. When categorical data are coded as integers, it is important to remember to convert them to factors in this way for certain statistical procedures and some plots.

Patterned integer or numeric vectors can be created using the `:` operator or the `seq()` function.

```
1:10
[1] 1 2 3 4 5 6 7 8 9 10
seq(1, 10, by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
[2] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
```

**Digging Deeper**

A factor can be ordered or unordered (which can affect how statistics tests are performed but otherwise does not matter much). The default is for factors to be unordered. Whether the factors are ordered or unordered, the levels will appear in a fixed order – alphabetical by default. The distinction between ordered and unordered factors has to do with whether this order is meaningful or arbitrary.
Individual items in a vector can be accessed or assigned using the square bracket operator:

```r
w[1]
[1] 1
Levels: 1 1.1 1.2
x[2]
[1] 1.1
y[3]
[1] 0
z[5] # this is not an error, but returns NA (missing)
[1] NA
```

Missing values are coded as NA (not available). Asking for an entry “off the end” of a vector returns NA. Assigning a value “off the end” of a vector results in the vector being lengthened so that the new value can be stored in the appropriate location.

```r
q <- 1:5
dq
[1] 1 2 3 4 5
q[10] <- 10
dq
[1] 1 2 3 4 5 NA NA NA NA 10
```

R also provides some more unusual (but very useful) features for accessing elements in a vector.

```r
letters # alphabet
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
 [15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

x <- letters[1:10]
dx # first 10 letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

x[2:4] # select items 2 through 4
[1] "b" "c" "d"

x[2:4] <- c("X", "Y", "Z")
x # change items 2 through 4
```

More Info
letters is a built-in character vector containing the lower case letters.
LETTERS contains capitals.
y <- (1:10)^2
y # first 10 squares
[1] 1 4 9 16 25 36 49 64 81 100
y[y > 20] # select the items greater than 20
[1] 25 36 49 64 81 100

The last item deserves a bit of comment. The expression inside the brackets evaluates to a vector of logical values.

y > 20
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

The logical values are then used to select (true) or deselect (false) the items in the vector, producing a new (and potentially shorter) vector. If the number of logical supplied is less than the length of the vector, the values are recycled (repeated).

y[c(TRUE, FALSE)] # every other
[1] 1 9 25 49 81
y[c(TRUE, FALSE, FALSE)] # every third
[1] 1 16 49 100

A matrix is a 2-dimensional table of values that all have the same type. As with vectors, all of the items in a matrix must be of the same type. But matrices are two-dimensional -- each item is located in a row and column. An array is a multi-dimensional version of a matrix. Matrices and arrays are important containers for statistical work, but less likely to be encountered by beginners.

M <- matrix(1:15, nrow = 3)
M # a 3 x 5 matrix
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

The dimensions of an array, matrix or data frame can be obtained using dim() or nrow() and ncol().
Another commonly used container in R is a list. We have already seen a few examples of lists used as arguments to `lattice` plotting functions. Lists are also ordered, but the items in a list can be objects of any type (they need not all be the same type). Behind the scenes, a data frame is a list of vectors with the restriction that each vector must have the same length (contain the same number of items).

Lists can be created using the `list()` function.

```r
l <- list(1, "two", 3.2, list(1, 2))
l
[[1]]
1
[[2]]
1 "two"
[[3]]
1 3.2
[[4]]
[[4]][[1]]
1 1
[[4]][[2]]
1 2
length(l) # Note: l has 4 elements, not 5
[1] 4
```

Items in a list can be accessed with the double square bracket (```[[ ]]```).

```r
dim(M)
[1] 3 5
dim(KidsFeet)
[1] 39 8
nrow(KidsFeet)
[1] 39
ncol(KidsFeet)
[1] 8
```
Using a single square bracket ([ ]) instead returns a sublist rather than an element. So l[1] is a vector, but l[1] is a list containing a vector.

Both vectors and lists can be named. The names can be created when the vector or list is created or they can be added later. Elements of vectors and lists can be accessed by name as well as by position.

```r
x <- c(one = 1, two = 2, three = 3)
x
 one two three
 1 2 3
y <- list(a = 1, b = 2, c = 3)
y
$a
[1] 1

$b
[1] 2

$c
[1] 3
x["one"]
one
 1
y["a"]
$a
[1] 1
names(x)
[1] "one" "two" "three"
names(x) <- c("A", "B", "C")
x
A B C
1 2 3```
The access operators – [] and [[]] for lists – are actually functions in R. This has some important consequences:

- Accessing elements in a vector is slower than in a language like C/C++ where access is done by pointer arithmetic.
- These functions also have named arguments, so you can see code like the following

```r
M
[1,]  1   4   7  10  13
[2,]  2   5   8  11  14
[3,]  3   6   9  12  15
M[,5]
[1]  5
M[, 2] # this is 1-d (a vector)
[1]  4  5  6
M[, 2, drop = FALSE] # this is 2-d (still a matrix)
[,1]
[1,]  4
[2,]  5
[3,]  6
```

Data frames can be constructed by supplying `data.frame()` with the variables (as vectors):

```r
ddd <- data.frame(number = 1:5, letter = letters[1:5])
```

6.2.3 Vectorized functions

Vectors are so important in R that they deserve some additional discussion. Many R functions and operations are “vectorized” and can be applied not just to an individual value but to an entire vector, in which case they are applied componentwise and return a vector of transformed values. Most of the commonly used functions from mathematics are available and work this way.
x <- 1:5; y <- seq(10, 60, by=10)
x
[1] 1 2 3 4 5

y
[1] 10 20 30 40 50

y + 1 # add 1 to each element
[1] 11 21 31 41 51 61

x * 10 # multiply each element by 10
[1] 10 20 30 40 50

x < 3 # check whether each is less than 3
[1] TRUE FALSE FALSE FALSE FALSE

x^2 # square each element
[1] 1 4 9 16 25

sqrt(x) # square root of each element
[1] 1.000 1.414 1.732 2.000 2.236

log(x) # natural log
[1] 0.0000 0.6931 1.0986 1.3863 1.6094

log10(x) # base 10 log
[1] 0.0000 0.3010 0.4771 0.6021 0.6990

Vectors can be combined into a matrix using `rbind()` or `cbind()`. This can facilitate side-by-side comparisons.

compare round() and signif() by binding row-wise into a matrix
z <- rnorm(5); z
[1] -0.56048 -0.23018 1.55871 0.07051 0.12929

rbind(round(z, digits=3), signif(z, digits=3))

[1,] -0.56 -0.23 1.56 0.07 0.13
[2,] -0.56 -0.23 1.56 0.07 0.13
6.2.4 Functions that act on vectors as vectors

Other functions, including many statistical functions, are designed to compute a single number (technically, a vector of length 1) from an entire vector.

```r
z <- rnorm(100)
# basic statistical functions; notice the use of names
c(mean=mean(z), sd=sd(z), var=var(z), median=median(z))

mean  sd   var  median
0.06073 0.90887 0.82604 -0.01139

range(z)  # range returns a vector of length 2

x <- 1:10
c(sum=sum(x), prod=prod(x))  # sums and products

sum   prod
55   3628800
```

Still other functions return vectors that are derived from the original vector, but not as a componentwise transformation.

```r
z <- rnorm(5); z

sort(z); rank(z); order(z)

[1] -1.66794 -0.78490 -0.38023  0.91900
[1] 4 2 1 3 5
[1] 3 2 4 1 5

x <- 1:10
rev(x)  # reverse x

[1] 10  9  8  7  6  5  4  3  2  1

diff(x)  # pairwise differences

[1]  1  1  1  1  1  1  1  1  1  1

ediff(x)  # pairwise differences w/out changing length

[1]  NA  1  1  1  1  1  1  1

cumsum(x)  # cumulative sum

[1]  1  3  6 10 15 21 28 36 45 55

cumprod(x)  # cumulative product

[1]  1  2  6 24 120 720 5040 40320 3628800
```
Whether a function is vectorized or treats a vector as a unit depends on its implementation. Usually, things are implemented the way you would expect. Occasionally you may discover a function that you wish were vectorized and is not. When writing your own functions, give some thought to whether they should be vectorized, and test them with vectors of length greater than 1 to make sure you get the intended behavior.

Some additional useful functions are included in Table 6.2.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cumsum()</code></td>
<td>Returns vector of cumulative sums, products, minima, or maxima.</td>
</tr>
<tr>
<td><code>cumprod()</code></td>
<td></td>
</tr>
<tr>
<td><code>cummin()</code></td>
<td></td>
</tr>
<tr>
<td><code>cummax()</code></td>
<td></td>
</tr>
<tr>
<td><code>pmin(x,y,...)</code></td>
<td>Returns vector of parallel minima or maxima where ith element is max or min of x[i], y[i], ...</td>
</tr>
<tr>
<td><code>pmax(x,y,...)</code></td>
<td></td>
</tr>
<tr>
<td><code>which(x)</code></td>
<td>Returns a vector of indices of elements of x that are true. Typical use: which(y > 5) returns the indices where elements of y are larger than 5.</td>
</tr>
<tr>
<td><code>any(x)</code></td>
<td>Returns a logical indicating whether any elements of x are true. Typical use: if (any(y > 5)) { ...}.</td>
</tr>
<tr>
<td><code>na.omit(x)</code></td>
<td>Returns a vector with missing values removed.</td>
</tr>
<tr>
<td><code>unique(x)</code></td>
<td>Returns a vector with repeated values removed.</td>
</tr>
<tr>
<td><code>table(x)</code></td>
<td>Returns a table of counts of the number of occurrences of each value in x. The table is similar to a vector with names indicating the values, but it is not a vector.</td>
</tr>
<tr>
<td><code>paste(x,y,..., sep=\" ")</code></td>
<td>Pastes x and y together componentwise (as strings) with sep between elements. Recycling applies.</td>
</tr>
</tbody>
</table>

Table 6.2: Some useful R functions.

6.3 Working with Data

In Section 5.5 we discussed using data in R packages, and in Section 5.5.4 we discussed methods for bringing your own data into R. In both of these scenarios, we have assumed that the data had been entered and cleaned in some other software and focussed primarily on data import. In this section we discuss ways to create and manipulate data within R. But first we discuss a few more details regarding importing data.
6.3.1 Finer control over data import

The `na.strings` argument can be used to specify codes for missing values. The following can be useful, for example:

```r
someData <- read.csv('file.csv',
                      na.strings=c('NA','','.','-','na'))
```

because SAS uses a period (.) to code missing data, and some csv exporters use `-'. By default R reads these as string data, which forces the entire variable to be of character type instead of numeric.

By default, R will recode character data as a factor. If you prefer to leave such variables in character format, you can use

```r
someData <- read.file('file.csv',
                      stringsAsFactors=FALSE)
```

Even finer control can be obtained by manually setting the class (type) used for each column in the file. In addition, this speeds up the reading of the file. For a csv file with four columns, we can declare them to be of class integer, numeric, character, and factor with the following command.

```r
someData <- read.file('file.csv',
                      na.strings=c('NA','','.','-','na'),
                      colClasses=c('integer','numeric','character','factor'))
```

6.3.2 Manually entering data

We have already seen that the `c()` function can be used to combine elements into a single vector.

```r
x <- c(1, 1, 2, 3, 5, 8, 13); x
```

```
[1] 1 1 2 3 5 8 13
```

The `scan()` function can speed up data entry in the console by allowing you to avoid the commas. Individual values are separated by white space or new lines. A blank line is used to signal the end of the data. By default, `scan()` is expecting numeric data, but it is possible to tell `scan()` to expect something else, like character data (i.e., text). There are other options for data types, but numerical and text data handle the most important cases. See ?scan for more information and examples.

Even if you primarily use the RStudio interface to import data, it is good to know about the command line methods since these are required to import data into scripts, RMarkdown, and knitr/\LaTeX{} files.

More Info
The function `read.file()` function in the mosaic package uses this as its default for `na.strings`.

More Info
This works with `read.csv()` and `read.table()` as well.

Caution!
Be sure when using `scan()` that you remember to save your data somewhere. Otherwise you will have to type it again.
Simulating samples from distributions

R has functions that make it simple to sample from a wide range of distributions. Each of these functions begins with the letter ‘r’ (for random) followed by the name of the distribution (often abbreviated somewhat). The arguments to the function specify the size of the sample desired and any parameter values required for the distribution. For example, to simulate selecting a sample of size 12 from a normal population with mean 100 and standard deviation 10, we would use

```r
rnorm(12, mean = 100, sd = 10)
```

```
[1] 94.25 106.08 83.82 99.44 105.19 103.01 101.06 93.59
[9] 91.50 89.76 101.18 90.53
```

Functions for sampling from other distributions include `rbinom()`, `rchisq()`, `rt()`, `rf()`, `rhyper()`, etc.

It is also easy to sample (with or without replacement) from existing data using `sample()` and `resample()`.

```r
x <- 1:10
# random sample of size 5 from x (no replacement)
sample(x, size = 5)
```

```
[1] 4 7 10 9 6
```

```r
# a different random sample of size 5 from x (no replacement)
sample(x, size = 5)
```

```
[1] 8 3 2 5 10
```

```r
# random sample of size 5 from x (with replacement)
resample(x, size = 5)
```

```
[1] 6 8 2 5 5
```

Using `resample()` makes it easy to simulate small discrete distributions. For example, to simulate rolling 20 dice, we could use

```r
resample(1:6, size = 20)
```

```
[1] 6 6 6 5 6 4 4 3 3 1 4 6 1 1 1 5 5 6 3 1
```

For working with cards, the `mosaic` package provides a vector named `Cards` and `deal()` as an alternative name for `sample()`.

```r
deal(Cards, 5)  # poker hand
```

```
[1] "9H" "AH" "8C" "8D" "QC"
```

```r
deal(Cards, 13)  # bridge, anyone?
```

```
[1] "5C" "9D" "AS" "KC" "4C" "7H" "2D" "6C" "QS" "KH" "9S"
[12] "9H" "2S"
```
If you want to sort the hands nicely, you can create a factor from `Cards` first:

```r
hand <- deal(factor(Cards, levels = Cards), 13)
sort(hand)  # sorted by suit, then by denomination
```

```
[1] 2C 7C 8C 7D 8D 10D 4H 9H QH AH 2S 10S AS
Levels: 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AC ... AS
```

Example 6.1. For teaching purposes it is sometimes nice to create a histogram that has the approximate shape of some distribution. One way to do this is to randomly sample from the desired distribution and make a histogram of the resulting sample.

```r
x1 <- rnorm(500, mean = 10, sd = 2)

histogram(~x1, width = 0.5)
```

![Histogram of Randomly Sampled Numbers](image)

This works, but the resulting plot has a fair amount of noise.

The `ppoints()` function returns evenly spaced probabilities and allows us to obtain theoretical quantiles of the normal distribution instead. The resulting plot now illustrates the idealized sample from a normal distribution.

```r
x2 <- qnorm(ppoints(500), mean = 10, sd = 2)

histogram(~x2, width = 0.5)
```

![Histogram of Theoretical Quantiles](image)
This is not what real data will look like (even if it comes from a normal population), but it can be better for illustrative purposes to remove the noise.

6.3.4 Saving Data

`write.table()` and `write.csv()` can be used to save data from R into delimited flat files.

```r
ddd <- data.frame(number = 1:5, letter = letters[1:5])
write.table(ddd, "ddd.txt")
write.csv(ddd, "ddd.csv")
```

Data can also be saved in native R format. Saving data sets (and other R objects) using `save()` has some advantages over other file formats:

- Complete information about the objects is saved, including attributes.
- Data saved this way takes less space and loads much more quickly.
- Multiple objects can be saved to and loaded from a single file.

The downside is that these files are only readable in R.

```r
abc <- "abc"
ddd <- data.frame(number = 1:5, letter = letters[1:5])
# save both objects in a single file
save(ddd, abc, file = "ddd.rda")
# load them both
load("ddd.rda")
```

For more on importing and exporting data, especially from other formats, see the R Data Import/Export manual available on CRAN.

6.4 Manipulating Data Frames with dplyr

There are several ways to manipulate data frames in R. The approach illustrated here relies heavily on the functions in the `dplyr` package. This package is loaded when the `mosaic` package is loaded. The `dplyr` package defines five primary operations on a data frame

1. `mutate()` – add or change variables
2. `select()` – choose a subset of columns
3. `filter()` – choose a subset of rows
4. `summarise()` – reduce the entire data frame to a summary row
5. `arrange()` – reorder the rows

These become especially powerful when combined with a sixth command, `group_by()`.

6. `group_by()` – split the data frame into multiple subsets

Additional functions (`inner_join()` and `left_join()`) can be used to combine data from multiple data frames.

6.4.1 Adding new variables to a data frame

The `mutate()` function can be used to add or modify variables in a data frame.

Here we show how to modify the `Births78` data frame so that it contains a new variable `day` that is an ordered factor.

```r
data(Births78)
weekdays <- c("Sun", "Mon", "Tue", "Wed", "Thr", "Fri", "Sat")
Births <- Births78 %>% mutate(day = factor(weekdays[1 + (dayofyear - 1) %% 7], ordered=TRUE, levels = weekdays))
head(Births, 3)

   date births dayofyear day
1 1978-01-01   7701        1  Sun
2 1978-01-02   7527        2  Mon
3 1978-01-03   8825        3  Tue
```

The `CPS85` data frame contains data from a Current Population Survey (current in 1985, that is). Two of the variables in this data frame are `age` and `educ`. We can estimate the number of years a worker has been in the workforce if we assume they have been in the workforce since completing their education and that their age at graduation is 6 more than the number of years of education obtained.

```r
CPS85 <- CPS85 %>% mutate(workforce.years = age - 6 - educ)
favstats(~workforce.years, data = CPS85)

   min  Q1  median     Q3     max  mean    sd   n missing
-4.0   8  15.00  26.00  55.00 17.81 12.39 534       0
```

In fact this is what was done for all but one of the cases to create the `exper` variable that is already in the `CPS85` data.
```r
tally(~(exper - workforce.years), data = CPS85)

   exper     workforce.years
0          0                4
533        1
```

With categorical variables, sometimes we want to modify the coding scheme.

```r
HELP2 <- mutate(HELPrc,
                 newsex = factor(female, labels=c('M','F')))
```

It’s a good idea to do some sort of sanity check to make sure that the recoding worked the way you intended.

```r
tally(~newsex + female, data = HELP2)

  female newsex
     female 0   1
          M 346 0
          F  0 107
```

The `derivedFactor()` function can simplify creating factors based on some logical tests.

```r
HELP3 <- mutate(HELPrc,
                 risklevel = derivedFactor(
                   low = sexrisk < 5,
                   medium = sexrisk < 10,
                   high = sexrisk >=10,
                   .method = "first"  # use first rule that applies
```
6.4.2 Dropping variables

Since we already have `educ`, there is no reason to keep our new variable `workforce.years`. Let’s drop it. Notice the clever use of the minus sign.

```r
CPS1 <- select(CPS85, -workforce.years)
head(CPS1, 1)
```

Any number of variables can be dropped or kept in this manner by supplying a vector of variables names.

```r
CPS1 <- select(CPS85, c(workforce.years, exper))
```

Columns can be specified by number as well as name (but this can be dangerous if you are wrong about where the columns are):
CPSsmall <- select(CPS85, select = 1:4)
head(CPSsmall, 2)

<table>
<thead>
<tr>
<th>select1</th>
<th>select2</th>
<th>select3</th>
<th>select4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0</td>
<td>10</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>5.5</td>
<td>12</td>
<td>W</td>
</tr>
</tbody>
</table>

The functions `matches()`, `contains()`, `starts_with()`, `ends_with()`, and `number_range()` are special functions that only work in the context of `select()` but can be useful for describing sets of variables to keep or discard.

head(select(HELPrct, contains("risk")), 2)

<table>
<thead>
<tr>
<th>drugrisk</th>
<th>sexrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

The nested functions in the previous command make the code a bit hard to read, and things would be worse if we were composing several more functions. The `magrittr` package (which loads when `dplyr` is loaded, hence when `mosaic` is loaded) provides an alternative syntax:

HELPrct %>% select(contains("risk")) %>% head(2)

<table>
<thead>
<tr>
<th>drugrisk</th>
<th>sexrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

The `%>%` operator uses the output from the left-hand side as the first input to the function on the right-hand side. This makes it easy to chain several data manipulation commands together in the order in which they are applied to the data without having to carefully nest parentheses and explicitly pass along outputs of one function as an argument to the next.

Here are a few more examples:

HELPrct %>% select(ends_with("e")) %>% head(2)

<table>
<thead>
<tr>
<th>age</th>
<th>female</th>
<th>substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>cocaine</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>alcohol</td>
</tr>
</tbody>
</table>

HELPrct %>% select(starts_with("h")) %>% head(2)

<table>
<thead>
<tr>
<th>homeless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
6.4.3 Renaming variables

Both the column (variable) names and the row names of a data frames can be changed by simple assignment using `names()` or `rownames()`.

```r
## small data frame we defined earlier

### number letter
1 1  a
2 2  b
3 3  c
4 4  d
5 5  e

row.names(ddd) <- c("Abe", "Betty", "Claire", "Don", "Ethel")

### number letter
Abe 1 a
Betty 2 b
Claire 3 c
Don 4 d
Ethel 5 e
```

It is also possible to reset just individual names with the following syntax.

```r
# misspelled a name, let's fix it
row.names(ddd)[2] <- "Bette"
row.names(ddd)

[1] "Abe"  "Bette"  "Claire"  "Don"  "Ethel"
```

The `faithful` data set (in the `datasets` package, which is always available) has very unfortunate names.

```r
names(faithful)

[1] "eruptions" "waiting"
```

The measurements are the duration of an eruption and the time until the subsequent eruption, so let’s give it some better names.
We can also rename a single variable using `names()`. For example, perhaps we want to rename `educ` (the second column) to `education`.

```r
names(CPS85)[2] <- "education"
CPS85[1, 1:4]
```

```
wage education race sex
1 9 10 W M
```

If we don’t know the column number (or generally to make our code clearer), a few more keystrokes produces

```r
names(CPS85)[names(CPS85) == "education"] <- "educ"
CPS85[1, 1:4]
```

```
wage educ race sex
1 9 10 W M
```

The `select()` function can also be used to rename variables.

```r
data(faithful)  # restore the original version
faithful2 <- faithful %>%
  select(duration = eruptions, time_til_next = waiting)
head(faithful2, 2 )
```
6.4.4 Creating subsets

We can use `filter()` to select only certain rows from a data frame.

```r
# any logical can be used to create subsets
faithfullong <- faithful2 %>% filter(duration > 3)
xyplot(time_til_next ~ duration, faithfullong)
```

If all we want to do is produce a graph and don’t need to save the subset, the plot above could also be made with one of the following

```r
xyplot( time_til_next ~ duration, data = faithful2 %>% filter( duration > 3) )
xyplot( time_til_next ~ duration, data = faithful2, subset=duration > 3 )
```

6.4.5 Summarising a data frame

The `summarise()` (or `summarize()`) function summarizes a data frame as a single row.

```r
HELPrct %>% summarise(x.bar = mean(age), s = sd(age))
x.bar  s
1 35.65 7.71
```

This is especially useful in combination with `group_by()`, which divides the data frame into subsets. The following command will
compute the mean and standard deviation for each subgroup defined by a different combination of sex and substance.

```
HELPct %>% group_by(sex, substance) %>% summarise(x.bar = mean(age),
          s = sd(age))
```

Source: local data frame [6 x 4]
Groups: sex

<table>
<thead>
<tr>
<th>sex</th>
<th>substance</th>
<th>x.bar</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female</td>
<td>39.17</td>
<td>7.980</td>
</tr>
<tr>
<td>2</td>
<td>female</td>
<td>34.85</td>
<td>6.195</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>34.67</td>
<td>8.036</td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>37.95</td>
<td>7.576</td>
</tr>
<tr>
<td>5</td>
<td>male</td>
<td>34.36</td>
<td>6.890</td>
</tr>
<tr>
<td>6</td>
<td>male</td>
<td>33.05</td>
<td>7.974</td>
</tr>
</tbody>
</table>

The formula-based numerical summary functions supplied by the `mosaic` package are probably easier for this particular task, but using `dplyr` is more general.

```
favstats(age ~ sex + substance, data = HELPrct)
```

<table>
<thead>
<tr>
<th>.group</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
<th>mean</th>
<th>sd</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>23</td>
<td>33</td>
<td>37.0</td>
<td>45</td>
<td>58</td>
<td>39.17</td>
<td>7.980</td>
<td>36</td>
</tr>
<tr>
<td>male</td>
<td>20</td>
<td>32</td>
<td>38.0</td>
<td>42</td>
<td>58</td>
<td>37.95</td>
<td>7.576</td>
<td>141</td>
</tr>
<tr>
<td>female</td>
<td>24</td>
<td>31</td>
<td>34.0</td>
<td>38</td>
<td>49</td>
<td>34.85</td>
<td>6.195</td>
<td>41</td>
</tr>
<tr>
<td>male</td>
<td>23</td>
<td>30</td>
<td>33.0</td>
<td>37</td>
<td>60</td>
<td>34.36</td>
<td>6.890</td>
<td>111</td>
</tr>
<tr>
<td>female</td>
<td>21</td>
<td>29</td>
<td>34.0</td>
<td>39</td>
<td>55</td>
<td>34.67</td>
<td>8.036</td>
<td>30</td>
</tr>
<tr>
<td>male</td>
<td>19</td>
<td>27</td>
<td>32.5</td>
<td>39</td>
<td>53</td>
<td>33.05</td>
<td>7.974</td>
<td>94</td>
</tr>
</tbody>
</table>

```
mean(age ~ sex + substance, data = HELPrct, .format = "table")
```

<table>
<thead>
<tr>
<th>sex</th>
<th>substance</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>alcohol</td>
<td>39.17</td>
</tr>
<tr>
<td>2</td>
<td>cocaine</td>
<td>34.85</td>
</tr>
<tr>
<td>3</td>
<td>heroin</td>
<td>34.67</td>
</tr>
<tr>
<td>4</td>
<td>alcohol</td>
<td>37.95</td>
</tr>
<tr>
<td>5</td>
<td>cocaine</td>
<td>34.36</td>
</tr>
<tr>
<td>6</td>
<td>heroin</td>
<td>33.05</td>
</tr>
</tbody>
</table>

```
sd(age ~ sex + substance, data = HELPrct, .format = "table")
```

<table>
<thead>
<tr>
<th>sex</th>
<th>substance</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>alcohol</td>
<td>7.98</td>
</tr>
<tr>
<td>2</td>
<td>cocaine</td>
<td>6.195</td>
</tr>
</tbody>
</table>
6.4.6 Arranging a data frame

Sometimes it is convenient to reorder a data frame. We can do this with the `arrange()` function by specifying the variable(s) on which to do the sorting.

```r
HELPrct %>% group_by(sex, substance) %>% summarise(x.bar = mean(age), s = sd(age)) %>% arrange(x.bar)
```

Source: local data frame [6 x 4]
Groups: sex

<table>
<thead>
<tr>
<th>sex</th>
<th>substance</th>
<th>x.bar</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>heroin</td>
<td>33.05</td>
<td>7.974</td>
</tr>
<tr>
<td>2</td>
<td>cocaine</td>
<td>34.36</td>
<td>6.890</td>
</tr>
<tr>
<td>3</td>
<td>heroin</td>
<td>34.67</td>
<td>8.036</td>
</tr>
<tr>
<td>4</td>
<td>cocaine</td>
<td>34.85</td>
<td>6.195</td>
</tr>
<tr>
<td>5</td>
<td>alcohol</td>
<td>37.95</td>
<td>7.576</td>
</tr>
<tr>
<td>6</td>
<td>alcohol</td>
<td>39.17</td>
<td>7.980</td>
</tr>
</tbody>
</table>

6.4.7 Merging datasets

The `fusion1` data frame in the `fastR` package contains genotype information for a SNP (single nucleotide polymorphism) in the gene TCF7L2. The `pheno` data frame contains phenotypes (including type 2 diabetes case/control status) for an intersecting set of individuals. We can merge these together to explore the association between genotypes and phenotypes using one of the join functions in `dplyr` or using the `merge()` function.

```r
require(fastR)
head(fusion1, 3)
```

<table>
<thead>
<tr>
<th>id</th>
<th>marker</th>
<th>markerID</th>
<th>allele1</th>
<th>allele2</th>
<th>genotype</th>
<th>Adose</th>
<th>Cdose</th>
<th>Gdose</th>
<th>Tdose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9735</td>
<td>RS12255372</td>
<td>1</td>
<td>3</td>
<td>GG</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10158</td>
<td>RS12255372</td>
<td>1</td>
<td>3</td>
<td>GG</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9380</td>
<td>RS12255372</td>
<td>1</td>
<td>3</td>
<td>GT</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The difference between an inner join and a left join is that the inner join only includes rows from the first data frame that have a match in the second but a left join includes all rows of the first data frame, even if they do not have a match in the second. In the example above, there are two subjects in `pheno` that do not appear in `fusion1`. `merge()` handles these distinctions with the `all.x` and `all.y` arguments. In this case, since the values are the same for each data frame, we could collapse `by.x` and `by.y` to `by` and collapse `all.x` and `all.y` arguments.
all.y to all. The first of these specifies which column(s) to use to identify matching cases. The second indicates whether cases in one data frame that do not appear in the other should be kept (TRUE) or dropped (filling in NA as needed) or dropped from the merged data frame.

Now we are ready to begin our analysis.

tally(~t2d + genotype + marker, data = fusion1m)

```
   genotype
t2d    GG  GT  TT
case  737 375 48
control 835 389 27
```

6.5 Getting data from mySQL data bases

The RMySQL package allows direct access to data in MySQL data bases and the dplyr package facilitates processing this data in the same way as for data in a data frame. This makes it easy to work with very large data sets stored in public databases. The example below queries a the UCSC genome browser to find all the known genes on chromosome 1.

```
# connect to a UCSC database
UCSCdata <- src_mysql(
  host="genome-mysql.cse.ucsc.edu",
  user="genome",
  dbname="mm9")

Loading required package: RMySQL
  Loading required package: DBI

# grab one of the many tables in the database
KnownGene <- tbl(UCSCdata, "knownGene")

# Get the gene name, chromosome, start and end sites for genes on Chromosome 1
Chrom1 <-
  KnownGene %>%
  select(name, chrom, txStart, txEnd) %>%
  filter(chrom == "chr1")
```

The resulting Chrom1 is not a data frame, but behaves much like one.
\texttt{class} (Chrom1)

\begin{verbatim}
[1] "tbl_mysql" "tbl_sql" "tbl"
\end{verbatim}

\begin{verbatim}
Chrom1l <- Chrom1 %>% \texttt{mutate} (length = (txEnd - txStart) / 1000)
\end{verbatim}

Source: mysql 5.6.10-log [genome@genome-mysql.cse.ucsc.edu:/mm9]

From: knownGene [3,056 x 5]

Filter: chrom == "chr1"

\begin{verbatim}
 name chrom txStart txEnd length
1 uc007aet.1 chr1 3195984 3205713 9.729
2 uc007aeu.1 chr1 3204562 3661579 457.017
3 uc007aev.1 chr1 3638391 3648985 10.594
4 uc007aew.1 chr1 4280926 4399322 118.396
5 uc007aex.2 chr1 4333587 4350395 16.808
6 uc007aey.1 chr1 4481008 4483816 2.808
7 uc007aez.1 chr1 4481008 4486494 5.486
8 uc007afa.1 chr1 4481008 4486494 5.486
9 uc007afb.1 chr1 4481008 4486494 5.486
10 uc007afc.1 chr1 4481008 4486494 5.486
..
\end{verbatim}

For efficiency, the full data are not pulled from the database until needed (or until we request this using \texttt{collect()}). This allows us, for example, to inspect the first few rows of a potentially large pull from the database without actually having done all of the work required to pull that data.

But certain things do not work unless we collect the results from the data based into an actual data frame. To plot the data using \texttt{lattice} or \texttt{ggplot2}, for example, we must first \texttt{collect()} it into a data frame.

\begin{verbatim}
Chrom1df <- \texttt{collect} (Chrom1l) # collect into a data frame
\end{verbatim}

\begin{verbatim}
\texttt{histogram} (~length, data=Chrom1df, xlab="gene length (kb)"
\end{verbatim}

\begin{center}
\includegraphics[width=0.5\textwidth]{histogram.png}
\end{center}

\textbf{Caution!}

The arithmetic operations in this \texttt{mutate()} command are being executed in SQL, not in R, and the palette of allowable functions is much smaller. It is not possible, for example, to compute the logarithm of the length here using \texttt{log()}. For that we must first collect the data into a real data frame.
6.6 Reshaping data

`reshape()` provides a flexible way to change the arrangement of data. It was designed for converting between long and wide versions of time series data and its arguments are named with that in mind.

A common situation is when we want to convert from a wide form to a long form because of a change in perspective about what a unit of observation is. For example, in the `traffic` data frame, each row is a year, and data for multiple states are provided.

<table>
<thead>
<tr>
<th>year</th>
<th>cn.deaths</th>
<th>ny</th>
<th>cn</th>
<th>ma</th>
<th>ri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>265</td>
<td>13.0</td>
<td>13.0</td>
<td>10.2</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>230</td>
<td>13.8</td>
<td>10.8</td>
<td>10.0</td>
<td>8.5</td>
</tr>
<tr>
<td>3</td>
<td>275</td>
<td>14.4</td>
<td>12.8</td>
<td>11.0</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
<td>13.0</td>
<td>10.8</td>
<td>10.5</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>325</td>
<td>13.5</td>
<td>14.0</td>
<td>11.8</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>280</td>
<td>13.4</td>
<td>12.1</td>
<td>11.0</td>
<td>8.2</td>
</tr>
<tr>
<td>7</td>
<td>273</td>
<td>13.3</td>
<td>11.9</td>
<td>10.2</td>
<td>9.4</td>
</tr>
<tr>
<td>8</td>
<td>248</td>
<td>13.0</td>
<td>10.1</td>
<td>11.8</td>
<td>8.6</td>
</tr>
<tr>
<td>9</td>
<td>245</td>
<td>12.9</td>
<td>10.0</td>
<td>11.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

We can reformat this so that each row contains a measurement for a single state in one year.

```r
longTraffic <- reshape(traffic[, -2], idvar = "year", ids = row.names(traffic),
                        times = names(traffic)[3:6], timevar = "state",
                        varying = list(names(traffic)[3:6]), v.names = "deathRate",
                        direction = "long")
head(longTraffic)
```

<table>
<thead>
<tr>
<th>year</th>
<th>state</th>
<th>deathRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>ny</td>
<td>13.9</td>
</tr>
<tr>
<td>1952</td>
<td>ny</td>
<td>13.8</td>
</tr>
<tr>
<td>1953</td>
<td>ny</td>
<td>14.4</td>
</tr>
<tr>
<td>1954</td>
<td>ny</td>
<td>13.0</td>
</tr>
<tr>
<td>1955</td>
<td>ny</td>
<td>13.5</td>
</tr>
<tr>
<td>1956</td>
<td>ny</td>
<td>13.4</td>
</tr>
</tbody>
</table>

And now we can reformat the other way, this time having all data for a given state form a row in the data frame.

```r
stateTraffic <-
    reshape(longTraffic, direction = 'wide',
            v.names = "deathRate", idvar = "state", timevar = "year")
stateTraffic
```
In simpler cases, `stack()` or `unstack()` may suffice. Hmisc also provides `reShape()` as an alternative to `reshape()`.

6.7 Functions in R

Functions in R have several components:

- **a name** (like `histogram`)
- an ordered list of named **arguments** that serve as inputs to the function

 These are matched first by name and then by order to the values supplied by the call to the function. This is why we don’t always include the argument name in our function calls. On the other hand, the availability of names means that we don’t have to remember the order in which arguments are listed.

 Arguments often have **default values** which are used if no value is supplied in the function call.

- **a return value**

 This is the output of the function. It can be assigned to a variable using the assignment operator (`=`, `<-`, or `->`).

- **side effects**

 A function may do other things (like make a graph or set some preferences) that are not necessarily part of the return value.

When you read the help pages for an R function, you will see that they are organized in sections related to these components. The list of arguments appears in the **Usage** section along with any default values. Details about how the arguments are used appear in the **Arguments** section. The return value is listed in the **Value** section. Any side effects are typically mentioned in the **Details** section.
Now let’s try writing our own function. Suppose you frequently wanted to compute the mean, median, and standard deviation of a distribution. You could make a function to do all three to save some typing. Let’s name our function \texttt{mystats()}. The \texttt{mystats()} will have one argument, which we are assuming will be a vector of numeric values. Here is how we could define it:

\begin{verbatim}
mystats <- function(x) {
 mean(x)
 median(x)
 sd(x)
}
mystats((1:20)^2)
\end{verbatim}

The first line says that we are defining a function called \texttt{mystats()} with one argument, named \texttt{x}. The lines surrounded by curly braces give the code to be executed when the function is called. So our function computes the mean, then the median, then the standard deviation of its argument.

But as you see, this doesn’t do exactly what we wanted. So what’s going on? The value returned by the last line of a function is (by default) returned by the function to its calling environment, where it is (by default) printed to the screen so you can see it. In our case, we computed the mean, median, and standard deviation, but only the standard deviation is being returned by the function and hence displayed. So this function is just an inefficient version of \texttt{sd()}. That isn’t really what we wanted.

We can use \texttt{print()} to print out things along the way if we like.

\begin{verbatim}
mystats <- function(x) {
 print(mean(x))
 print(median(x))
 print(sd(x))
}
mystats((1:20)^2)
\end{verbatim}

Alternatively, we could use a combination of \texttt{cat()} and \texttt{paste()}, which would give us more control over how the output is displayed.
Either of these methods will allow us to see all three values, but if we try to store them...

```r
altmystats <- function(x) {
  cat(paste(" mean: ", format(mean(x), 4), "\n"))
  cat(paste(" median: ", format(median(x), 4), "\n"))
  cat(paste(" sd: ", format(sd(x), 4), "\n"))
}
altmystats((1:20)^2)

mean: 143.5
edian: 110.5
sd: 127.9
```

A function in R can only have one return value, and by default it is the value of the last line in the function. In the preceding example we only get the standard deviation since that is the value we calculated last.

We would really like the function to return all three summary statistics. Our solution will be to store all three in a vector and return the vector.\(^2\)

```r
mystats <- function(x) {
  c(mean(x), median(x), sd(x))
}
mystats((1:20)^2)

[1] 143.5 110.5 127.9
```

Now the only problem is that we have to remember which number is which. We can fix this by giving names to the slots in our vector. While we’re at it, let’s add a few more favorites to the list. We’ll also add an explicit `return()`.

```r
mystats <- function(x) {
  result <- c(min(x), max(x), mean(x), median(x), sd(x))
  names(result) <- c("min", "max", "mean", "median", "sd")
  return(result)
}
mystats((1:20)^2)
```

\(^2\) If the values had not all been of the same mode, we could have used a list instead.
Notice how nicely this works with `aggregate()` and with the `summary()` function from the `Hmisc` package. You can, of course, define your own favorite function to use with `summary()`. The `favstats()` function in the `mosaic` package includes the quartiles, mean, standard deviation, sample size and number of missing observations.

6.8 Sharing With and Among Your Students

Instructors often have their own data sets to illustrate points of statistical interest or to make a particular connection with a class. Sometimes you may want your class as a whole to construct a data set, perhaps by filling in a survey or by contributing their own small bit of data to a class collection. Students may be working on projects in small groups; it’s nice to have tools to support such work so that all members of the group have access to the data and can contribute to a written report.
There are now many technologies that support such sharing. For the sake of simplicity, we will emphasize three that we have found particularly useful both in teaching statistics and in our professional collaborative work. These are:

- Within RStudio server.
- A web site with minimal overhead, such as provided by Dropbox.
- The services of Google Docs.
- A web-based RStudio server for R.

The first two are already widely used in university environments and are readily accessible simply by setting up accounts. Setting up an RStudio web server requires some IT support, but is well within the range of skills found in IT offices and even among some individual faculty.

6.8.1 Using RStudio server to share files

The RStudio server runs on a Linux machine. Users of RStudio have accounts on the underlying Linux file system and it is possible to set up shared directories with permissions that allow multiple users to read and/or write files stored there. This has to be done outside of RStudio, but if you are familiar with the Linux operating system or have a system administrator who is willing to help you out, this is not difficult to do.

6.8.2 Your own web site

You may already have a web site. We have in mind a place where you can place files and have them accessed directly from the Internet. For sharing data, it's best if this site is public, that is, it does not require a login. In this case, `read.file()` can read the data into R directly from the URL:

```r
Fires <- read.csv("http://www.calvin.edu/~rpruim/data/Fires.csv")
```

```
> dim(Fires)
[1] 52 3

> head(Fires)
Year Fires Acres
1 2011 74126 8711367
2 2010 71971 3422724
3 2009 78792 5921786
4 2008 78979 5292468
5 2007 85705 9328045
6 2006 96385 9873745
```
Unfortunately, most “course support” systems such as Moodle or Blackboard do not provide such easy access to data. The Dropbox service for storing files in the “cloud” provides a very convenient way to distribute files over the web. (Go to dropbox.com for information and to sign up for a free account.) Dropbox is routinely used to provide automated backup and coordinated file access on multiple computers. But the Dropbox service also provides a Public directory. Any files that you place in that directory can be accessed directly by a URL.

To illustrate, suppose you wish to share some data set with your students. You’ve constructed this data set in a spreadsheet and stored it as a csv file, let’s call it example-A.csv. Move this file into the Public directory under Dropbox — on most computers Dropbox arranges things so that its directories appear exactly like ordinary directories and you’ll use the ordinary, familiar file management techniques as in Figure 6.2.

Dropbox also makes it straightforward to construct the web-location identifying URL for any file by using mouse-based menu
commands to place the URL into the clipboard, whence it can be copied to your course-support software system or any other place for distribution to students. For a csv file, reading the contents of the file into R can be done with the \texttt{read.csv()} function, by giving it the quoted URL:

\begin{verbatim}
a <- read.file("http://dl.dropbox.com/u/5098197/USCOTS2011/ExampleA.csv")
\end{verbatim}

This technique makes it easy to distribute data with little advance preparation. It’s fast enough to do in the middle of a class: the csv file is available to your students (after a brief lag while Dropbox synchronizes). It can even be edited by you (but not by your students).

The same technique can be applied to all sorts of files like R workspaces or R scripts (files containing code). Of course, your students need to use the appropriate R command: \texttt{load()} for a workspace or \texttt{source()} for a script.

The example below will source a file that will print a welcoming message for you.

\begin{verbatim}
source("http://mosaic-web.org/go/R/hello.R")
\end{verbatim}

Hello there. You just sourced a file over the web!

But you can put any R code you like in the files you have your students source. You can install and load packages, retrieve or modify data sets, define new functions, or anything else R allows.
Many instructors will find it useful to create a file with your course-specific R scripts, adding on to it and modifying it as the course progresses. This allows you to distribute all sorts of special-purpose functions, letting you distribute new R material to your students. That brilliant new idea you had at 2 am can be programmed up and put in place for your students to use the next morning in class. Then as you identify bugs and refine the program, you can make the updated software immediately available to your students.

If privacy is a concern, for instance if you want the data available only to your students, you can effectively accomplish this by giving files names known only to your students, e.g., Example-A78r423.csv.

6.8.3 GoogleDocs

The Dropbox technique (or any other system of posting files to the Internet) is excellent for broadcasting: taking files you create and distributing them in a read-only fashion to your students. But when you want two-way or multi-way sharing of files, other techniques are called for, such as provided by the GoogleDocs service.

GoogleDocs allows students and instructors to create various forms of documents, including reports, presentations, and spreadsheets. (In addition to creating documents de novo, Google will also convert existing documents in a variety of formats.)

Once on the GoogleDocs system, the documents can be edited simultaneously by multiple users in different locations. They can be shared with individuals or groups and published for unrestricted viewing and even editing.

For teaching, this has a variety of uses:

- Students working on group projects can all simultaneously have access to the report as it is being written and to data that is being assembled by the group.

- The entire class can be given access to a data set, both for reading and for writing.

- The Google Forms system can be used to construct surveys, the responses to which can populate a spreadsheet that can be read back into RStudio by the survey creators.

- Students can “hand in” reports and data sets by copying a link into a course support system such as Moodle or Blackboard, or emailing the link.

- The instructor can insert comments and/or corrections directly into the document.

Caution!

Security through Obscurity of this sort will not generally satisfy institutional data protection regulations nor professional ethical requirements, so nothing truly sensitive or confidential should be “protected” in this manner.
An effective technique for organizing student work and ensuring that the instructor (and other graders) have access to it, is to create a separate Google directory for each student in your class (Dropbox can also be used in this manner). Set the permission on this directory to share it with the student. Anything she or he drops into the directory is automatically available to the instructor. The student can also share with specific other students (e.g., members of a project group).

We will illustrate the entire process in the context of the following example.

Example 6.2. One exercise for students starting out in a statistics course is to collect data to find out whether the “close door” button on an elevator has any effect. This is an opportunity to introduce simple ideas of experimental design. But it’s also a chance to teach about the organization of data.

Have your students, as individuals or small groups, study a particular elevator, organize their data into a spreadsheet, and hand in their individual spreadsheet. Then review the spreadsheets in class. You will likely find that many groups did not understand clearly the distinction between cases and variables, or coded their data in ambiguous or inconsistent ways.

Work with the class to establish a consistent scheme for the variables and their coding, e.g., a variable `ButtonPress` with levels “Yes” and “No”, a variable `Time` with the time in seconds from a fiducial time (e.g. when the button was pressed or would have been pressed) with time measured in seconds, and variables `ElevatorLocation` and `GroupName`. Create a spreadsheet with these variables and a few cases filled in. Share it with the class.

Have each of your students add their own data to the class data set. Although this is a trivial task, having to translate their individual data into a common format strongly reinforces the importance of a consistent measurement and coding system for recording data.

Once you have a spreadsheet file in GoogleDocs, you will want to open it in R. This can be exported as a csv file, then open it using the csv tools in R, such as `read.csv()`.

Direct communication with GoogleDocs requires facilities that are not present in the base version of R, but are available through the `RCurl` package. In order to make these readily available to students, the `mosaic` package contains a function that takes the quoted (and cumbersome) string with the Google-published URL and reads the corresponding file into a data frame. `RCurl` needs to be installed for this to work, and will be loaded if it is not already loaded when `fetchGoogle()` is called.

```r
elev <- fetchGoogle("https://spreadsheets.google.com/spreadsheet/pub?
hl=en&hl=en&key=0Am13enSal074dEvzMGJSMU5TbTc2eWlWakppQlpjcGc&
```
Teaching Tip
Another option is to get shorter URLs using a service like tinyurl.com or bitly.com.

Of course, you’d never want your students to type that URL by hand; you should provide it in a copy-able form on a web site or within a course support system.

6.9 Additional Notes on R Syntax

6.9.1 Text and Quotation Marks

For the most part, text in R must be enclosed in either single or double quotations. It usually doesn’t matter which you use, unless you want one or the other type of quotation mark inside your text. Then you should use the other type of quotation mark to mark the beginning and the end.

```r
# apostrophe inside requires double quotes around text
text1 <- "Mary didn't come"
# this time we flip things around
text2 <- "Do you use "scare quotes\"?"
```

6.10 Common Error Messages and What Causes Them

6.10.1 Error: Object not found

R reports that an object is not found when it cannot locate an object with the name you have used. One common reason for this is a
typing error. This is easily corrected by retyping the name with the correct spelling.

```r
histogram(~aeg, data = HELPrct)
```

Error: object 'aeg' not found

Another reason for an object-not-found error is using unquoted text where quotation marks were required.

```r
text3 <- hello
```

Error: object 'hello' not found

In this case, R is looking for some object named `hello`, but we meant to store a string:

```r
text3 <- "hello"
```

6.10.2 *Error: unexpected* ...

If while R is parsing a statement it encounters something that does not make sense it reports that something is “unexpected”. Often this is the result of a typing error – like omitting a comma.

```r
c(1,2 3) # missing a comma
```

*Error: unexpected numeric constant in "c(1,2 3)"

6.10.3 *Error: object of type ‘closure’ is not subsettable*

The following produces an error if `time` has not been defined.

```r
time[3]
```

Error: object of type 'closure' is not subsettable

There is a function called `time()` in R, so if you haven’t defined a vector by that name, R will try to subset the `time()` function, which doesn’t make sense.

Typically when you see this error, you have a function in a place you don’t mean to have a function. The message can be cryptic to new users because of the reference to a closure.
6.10.4 Other Errors

If you encounter other errors and cannot decipher them, often pasting the error message into a google search will find a discussion of that error in a context where it stumped someone else.
6.11 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

```r
source( "file.R" )                 # execute commands in a file
x <- 1:10                          # create vector with numbers 1 through 10
M <- matrix( 1:12, nrow=3 )        # create a 3 x 4 matrix
data.frame( number = 1:26, letter=letters[1:26] ) # create a data frame

mode(x)                           # returns mode of object x
length(x)                         # returns length of vector or list
dim(HELPrct)                      # dimension of a matrix, array, or data frame
nrow(HELPrct)                     # number of rows
ncol(HELPrct)                     # number of columns
names(HELPrct)                    # variable names in data frame
row.names(HELPrct)                # row names in a data frame
attributes(x)                     # returns attributes of x

toupper(x)                        # capitalize
as.character(x)                   # convert to a character vector
as.logical(x)                     # convert to a logical (TRUE or FALSE)
as.numeric(x)                     # convert to numbers
as.integer(x)                     # convert to integers
factor(x)                         # convert to a factor [categorical data]
class(x)                          # returns class of x

smallPrimes <- c(2,3,5,7,11)      # create a (numeric) vector
rep(1, 10)                        # ten 1's
seq(2, 10, by=2)                   # evens less than or equal to 10
rank(x)                           # ranks of items in x
sort(x)                           # returns elements of x in sorted order
order(x)                          # x[ order(x) ] is x in sorted order
rev(x)                            # returns elements of x in reverse order
diff(x)                            # returns differences between consecutive elements
paste("Group", 1:3, sep="" )       # same as c("Group1", "Group2", "Group3")

write.table(HELPrct, file="myHELP.txt") # write data to a file
write.csv(HELPrct, file="myHELP.csv")  # write data to a csv file
save(HELPrct, file="myHELP.Rda")      # save object(s) in R's native format

modData <- mutate( HELPrct, old = age > 50 ) # add a new variable to data frame
women <- subset( HELPrct, sex=='female' )  # select only specified cases
favs <- subset( HELPrct, select=c('age','sex','substance') )  # keep only 3 columns

trellis.par.set(theme=col.mosaic())    # choose theme for lattcie graphics
show.settings()                        # insert lattice theme
fetchGoogle( ... )                    # get data from google URL
```
6.12 Exercises

6.1 Using `faithful` data frame, make a scatter plot of eruption duration times vs. the time since the previous eruption.

6.2 The `fusion2` data set in the `fastR` package contains genotypes for another SNP. Merge `fusion1`, `fusion2`, and `pheno` into a single data frame.

Note that `fusion1` and `fusion2` have the same columns.

```r	names(fusion1)
[1] "id" "marker" "markerID" "allele1" "allele2"
[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"
	names(fusion2)
[1] "id" "marker" "markerID" "allele1" "allele2"
[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"
```

You may want to use the `suffixes` argument to `merge()` or rename the variables after you are done merging to make the resulting data frame easier to navigate.

Tidy up your data frame by dropping any columns that are redundant or that you just don’t want to have in your final data frame.
7
Getting Interactive with manipulate and shiny

One very attractive feature of RStudio is the manipulate() function (in the manipulate package, which is only available within RStudio). This function makes it easy to create a set of controls (such as sliders, checkboxes, drop down selections, etc.) that can be used to dynamically change values within an expression. When a value is changed using these controls, the expression is automatically re-executed and any plots created as a result are redrawn. This can be used to quickly prototype a number of activities and demos as part of a statistics lecture.

shiny is a new web development system for R being designed by the RStudio team. shiny uses a reactive programming model to make it relatively easy for an R programmer to create highly interactive, well designed web applications using R without needing to know much about web programming. Programming in shiny is more involved than using manipulate, but it offers the designer more flexibility. One of the goals in creating shiny was to support corporate environments, where a small number of statisticians and programmers can create web applications that can be used by others within the company without requiring them to know any R. This same framework offers many possibilities for educational purposes as well. Some have even suggested implementing fairly extensive GUI interfaces to commonly used R functionality using shiny.

7.1 Getting Started with manipulate

The manipulate() function and the various control functions that are used with it are only available after loading the manipulate package, which is only available in RStudio.

```r
require(manipulate)
```
7.1.1 Sliders

```r
manipulate(
    histogram(~ eruptions, data=faithful, n=N),
    N = slider(5,40)
)
```

This generates a plot along with a slider ranging from 5 bins to 40.

We find it useful to capitalize the inputs to the manipulated expression that are hooked up to `manipulate` controls. This helps avoid naming collisions and signals how the main manipulated expression is being used.

When the slider is changed, we see a clearer view of the eruptions of Old Faithful.

7.1.2 Check Boxes

```r
manipulate(
    histogram(~ age, data=HELPrct, n=N, density=DENSITY),
    N = slider(5,40),
    DENSITY = checkbox()
)
```

We find it useful to capitalize the inputs to the manipulated expression that are hooked up to `manipulate` controls. This helps avoid naming collisions and signals how the main manipulated expression is being used.
7.1.3 Drop-down Menus

Drop-down menus can be added using the `picker()` function.

```r
manipulate(
  histogram(~ age, data=HELPrct, n=N,
    fit=DISTRIBUTION, dlwd=4),
  N = slider(5,40),
  DISTRIBUTION =
    picker('normal', 'gamma', 'exponential', 'lognormal',
    label="distribution")
)
```

7.1.4 Visualizing Normal Distributions

In this section we will gradually build up a small `manipulate` example that shows the added flexibility that comes from writing a function that returns a `manipulate` object. Such functions can be distributed to students to allow them to explore interactively in a more flexible way.

We begin by creating an illustration of tail probabilities in a normal distribution.

```r
manipulate(
  xpnorm(X, 500, 100, verbose=FALSE, invisible=TRUE ),
  X = slider(200,800) )
```

The version below can be used to investigate central probabilities and tail probabilities.
These examples work with a fixed distribution. Here is a fancier version in which a function returns a manipulate object. This allows us to easily create illustrations like the ones above for any normal distribution.

```r
mNorm <- function( mean=0, sd=1 ) {
  lo <- mean - 5*sd
  hi <- mean + 5*sd
  manipulate(
    xpnorm( c(A,B), mean, sd, verbose=FALSE, invisible=TRUE ),
    A = slider(lo, hi, initial=mean-sd),
    B = slider(lo, hi, initial=mean+sd)
  )
}
mNorm( mean=100, sd=10 )
```

7.2 mPlot()

The mosaic package provides the `mPlot()` function which allows users to create a wide variety of plots using either lattice or ggplot2. Furthermore, the code used to generate these plots can be displayed upon request. This facilitates learning these commands, allows users to make further modifications that are not possible in the manipulate interface, and provides an easy copy-and-paste mechanism for dropping these plots into other documents.

The available plots come in two clusters, depending on whether the underlying plot is essentially two-variable or one-variable. Additional variables can be represented using color, size, and sub-plots (facets).

```r
# These are essentially 2-variable plots
mPlot(HELPrct, "scatter")  # start with a scatter plot
mPlot(HELPrct, "boxplot")  # start with boxplots
mPlot(HELPrct, "violin")   # start with violin plots

# These are essentially 1-variables plots
mPlot(HELPrct, "histogram") # start with a histogram
mPlot(HELPrct, "density")  # start with a density plot
mPlot(HELPrct, "frequency polygon")  # start with a frequency polygon
```
7.3 Shiny

shiny is a package created by the RStudio team to, in their words,

[make] it incredibly easy to build interactive web applications with R. Automatic “reactive” binding between inputs and outputs and extensive pre-built widgets make it possible to build beautiful, responsive, and powerful applications with minimal effort.

These web applications can, of course, run R code to do computations and produce graphics that appear in the web page.

The level of coding skill required to create this is beyond the scope of this book, but those with a little more programming background can easily learn the necessary toolkit to make beautiful interactive web pages. More information about shiny and some example applications are available at http://www.rstudio.com/shiny/.

Exercises

7.1 The following code makes a scatterplot with separate symbols for each sex.

```r
xyplot(cesd ~ age, data = HELPrct, groups = sex)
```

Build a manipulate example that allows you to turn the grouping on and off with a checkbox.

7.2 Build a manipulate example that uses a picker to select from a number of variables to make a plot for. Here’s an example with a histogram:
7.3 Design your own interactive demonstration idea and implement it using RStudio manipulate tools.
Bibliography

9

Index

->, 106
<-, 106
=, 106
?, 66
??, 66
[], 78, 80
[[]], 78, 84
#, 78
$, 68
lattice settings, 48

alpha, 47
any(), 88
apropos(), 66
argument of an R function, 106
array, 82
as.data.frame(), 72
attach()
 avoid, 69
auto.key, 47, 55

barchart(), 38, 72
bargraph(), 38, 56, 60, 72
binom.test(), 46
Biocoductor, 65
Births78, 35, 69
boxplot, see bwplot()
bwplot(), 36, 60

c(), 71, 74, 79, 89
Cards, 90
cat(), 107
cbind(), 71, 86
cex, 47
class, 78
class(), 78
collect(), 104
collect() comment character in R (#), 78
conditional plots, 41, 51, 55
coint(), 45
contains(), 96
CPS85, 56
CRAN (Comprehensive R Archive
 Network, 64
cummax(), 88
cummin(), 88
cumprod(), 87, 88
cumsum(), 60, 87, 88
Current Population Survey, see CPS85
data
 importing, 89
 importing into RStudio, 71
 pretabulated, 71
data frame, 67
data(), 60, 74
data.frame(), 85
deal(), 90
demo(), 67
density scale, 54
densityplot(), 39, 53, 60
devtools, 65
diff(), 87, 88
dim(), 82
dotPlot(), 39, 50, 60
dotplot(), 40
Dropbox, 111
ediff(), 87
ends.with(), 96
environments
 R, 68

example(), 67
Excel, 70
facets, see conditional plots
factor(), 80, 91
favstats(), 42, 60, 109
Fisher, R. A., 23
freqpolygon(), 39, 52, 60
frequency polygon, see freqpolygon()
function(), 107
functions in R, 106
gdata, 70
generic functions, 58
geyer, 52
ggplot2, 59
ggvis, 35
github, 65
Google, 69
gplot2, 35

head(), 67, 70, 72, 74
help.search(), 66
HELPrect, 36
histogram(), 37, 51, 60
install.packages(), 64
install_github(), 65
IQR(), 42
iris, 55

KidsFeet, 79

labels
 axis, 47
 ladd(), 52
lattice, 35, 59
legends, 41
length(), 83
LETTERS[], 81
letters[], 81
library(), 64
linear models, see also lm()
list, 83
list(), 84
lm(), 44
load(), 70
log(), 74, 85
log10(), 74
main, 47
manipulate, 59
MASS, 52
matches(), 96
matrix, 82
matrix(), 82
max(), 42
mean(), 42, 60, 85
median(), 42, 60, 85
min(), 42
mosaic plot, 37
mplot(), 58, 60
mutate(), 104
mystats(), 107
na.omit(), 88
na.strings, 89
names(), 74, 84
ncol(), 82
nrow(), 82
number_range(), 96
object, 78
observational unit, 67
opacity, see alpha
order(), 87, 88
package
installing, see also
install.packages(), see also
install.github(), 64
loading, see also library(), see also
require(), 64
par.settings, 47
paste(), 88, 107
pch, 47
pdf(), 58
plot symbol
shape, see pch
size, see cex
plot(), 58
plotPoints(), 39
pmax(), 88
pmin(), 88
print(), 58
prod(), 88
prop.test(), 46
pval(), 45
qqmath(), 39, 60
quantile(), 60
quantile-quantile plots, see qqmath
questions
two, 34, 63
rank(), 87, 88
rbind(), 71, 86
read.csv(), 70, 74, 89
read.file(), 70, 74, 89
read.table(), 70, 74, 89
read.xls(), 70
require(), 64, 74
resample(), 70, 90
reshape(), 105
return(), 108
rev(), 88
RMySQL, 103
rnorm(), 90
round(), 86
sample(), 67, 68, 74
savehistory(), 77
scan(), 89
scatter plot, see xyplot()
sd(), 42, 60, 85
select(), 95
seq(), 80
show.settings(), 48
signif(), 86
sort(), 87, 88, 91
source(), 76
SQL, 103
sqrt(), 74
src_mysql, 103
stack(), 106
starts_with(), 96
str, 68
str(), 74
stringsAsFactors, 89
stripplot(), 40
sum(), 42, 60, 88
summary(), 58, 67, 68, 74
t.test(), 45
table(), 88
tally(), 42, 56, 60
tbl, 103
template
the, 63
trellis.mosaic(), 48
themes
lattice, see trellis.par.set()
titles (plots), 47
transparency, see alpha
trellis.par.set(), 48
unique(), 88
unstack(), 106
Utilities2, 61
var(), 42, 60, 85
variable, 67
vcd, 37
vector, 79
vectorized functions, 85
View(), 68
which(), 88
with(), 68
xlab, 47
xplot, 55
xyplot(), 35, 60
ylab, 47