
Appendix C

Computation in R and Stan

We illustrate some practical issues of simulation by fitting a single example—the hierarchical
normal model for the eight schools described in Section 5.5. After some background in
Section C.1, we show in Section C.2 how to fit the model using the Bayesian inference
package Stan, operating from within the general statistical package R. Sections C.3 and C.4
present several different ways of programming the model directly in R. These algorithms
require programming efforts that are unnecessary for the Stan user but are useful knowledge
for programming more advanced models for which Stan might not work. We conclude in
Section C.5 with some comments on practical issues of programming and debugging. It
may also be helpful to read the computational tips in Section 10.7 and the discussion of
Hamiltonian Monte Carlo and Stan in Sections 12.4–12.6.

C.1 Getting started with R and Stan

Go to http://www.r-project.org/ and http://mc-stan.org/. Further information in-
cluding links to help lists are available at these webpages. We anticipate continuing improve-
ments in both packages in the years after this book is released, but the general computational
strategies presented here should remain relevant.

R is a general-purpose statistical package that is fully programmable and also has avail-
able a large range of statistical tools, including flexible graphics, simulation from probability
distributions, numerical optimization, and automatic fitting of many standard probability
models including linear regression and generalized linear models. For Bayesian computa-
tion, one can directly program Gibbs and Metropolis algorithms (as we illustrate in Section
C.3) or Hamiltonian Monte Carlo (as shown in Section C.4). Computationally intensive
tasks can be programmed in Fortran or C and linked from R.

Stan is a high-level language in which the user specifies a model and has the option to
provide starting values, and then a Markov chain simulation is automatically implemented
for the resulting posterior distribution. It is possible to set up and fit models entirely
within Stan, but in practice it is almost always necessary to process data before entering
them into a model, and to process the inferences after the model is fitted, and so we run
Stan by calling it from R using the stan() function, as illustrated in Section C.2. Again,
the details of these function calls might change as Stan continues to be developed, so refer
to http://mc-stan.org/ for the latest documentation.

When working in R and Stan, it is helpful to set up the computer to simultaneously
display four windows: the R console, an R graphics window, a text editor with the R script,
and a text editor with Stan code. Rather than typing directly into R, we prefer to enter
the R code into the editor and then source the file to run the commands in the R console.
Using the text editor is convenient because it allows more flexibility in writing functions and
loops. Another alternative is to use a workspace such as RStudio (http://rstudio.org/)
which maintains several windows within a single environment.

591

592 C. COMPUTATION IN R AND STAN

C.2 Fitting a hierarchical model in Stan

In this section, we describe all the steps by which we would use Stan to fit the hierarchical
normal model to the educational testing experiments in Section 5.5. These steps include
writing the model in Stan and using R to set up the data and starting values, call Stan,
create predictive simulations, and graph the results.

Stan program

The hierarchical model can be written in Stan in the following form, which we save as a
file, schools.stan, in our working directory:

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e.’s of effect estimates

}
parameters {
real mu; // population mean
real<lower=0> tau; // population sd
vector[J] eta; // school-level errors

}
transformed parameters {
vector[J] theta; // school effects
theta <- mu + tau*eta;

}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);

}

The first paragraph of the above code specifies the data: the number of schools, J ; the
estimates, y1, . . . , yJ ; and the standard errors, σ1, . . .σJ . Data are labeled as integer or real
and can be vectors (or, more generally, arrays) if dimensions are specified. Data can also
be constrained; for example, in the above model J has been restricted to be nonnegative
and the components of σy must all be positive.

The code next introduces the parameters: the unknowns to be estimated in the model
fit. These are the school effects, θj ; the mean, µ, and standard deviation, τ , of the popula-
tion of school effects, the school-level errors η, and the effects, θ. In this model, we let θ be
a transformation of µ, τ , and η instead of directly declaring θ as a parameter. By parame-
terizing this way, the sampler runs more efficiently; the resulting multivariate geometry is
better behaved for Hamiltonian Monte Carlo.

Finally comes the model, which looks similar to how it would be written in this book.
(Just be careful: in our book, the second argument to the N(·, ·) distribution is the vari-
ance; Stan parameterizes using the standard deviation.) We have written the model in
vector notation, which is cleaner and also runs faster in Stan by making use of more
efficient autodifferentiation. It would also be possible to write the model more explic-
itly, for example replacing y ~ normal(theta,sigma); with a loop over the J schools,
for (j in 1:J) y[j] ~ normal(theta[j],sigma[j]); .

R script for data input, starting values, and running Stan

We put the data into a file, schools.csv, in the R working directory, with headers describ-
ing the data:

C.2. FITTING A HIERARCHICAL MODEL IN STAN 593

school, estimate, sd
A, 28, 15
B, 8, 10
C, -3, 16
D, 7, 11
E, -1, 9
F, 1, 11
G, 18, 10
H, 12, 18

From R, we then execute the following script to read in the data:

schools <- read.csv("schools.csv", header=TRUE)
J <- nrow(schools)
y <- schools$estimate
sigma <- schools$sd

We load in the rstan package:

library("rstan")

We now run Stan with 4 chains of 1000 iterations each and display the results numerically
and graphically:

schools_fit <- stan(file="schools.stan",
data=c("J","y","sigma"), iter=1000, chains=4)

print(schools_fit)
plot(schools_fit)

When the computations are finished, summaries of the inferences and convergence are
displayed in the R console (see Figure C.1) and in an R graphics window (not shown here).

In this example, the sequences appear to have mixed well—the estimated potential scale
reduction factor R̂ is below 1.1 for all the parameters and quantities of interest displayed.

Stan uses a stochastic algorithm and so results will not be identical when re-running it.
For example, here is the line of output for the parameter θ1 in our first Stan run (repeated
from Figure C.1):

mean se_mean sd 25% 50% 75% n_eff Rhat
theta[1] 12.1 1.3 11.1 5.8 10.0 15.4 72 1

and here is the corresponding result from the second run:

mean se_mean sd 25% 50% 75% n_eff Rhat
theta[1] 11.4 0.3 8.2 5.8 10.4 15.7 830 1

The inferences are similar but not identical. The simulation estimate for E(θ1|y) is 12.1
under one simulation and 11.4 under the other, not much of a difference considering that
the posterior standard deviation is about 10 (more precisely, estimated to be 11.0 under
one simulation and 8.2 under the other). The quantiles have the same general feel, but
one must beware of overinterpretation. For example, the 95% posterior interval for θ1
is [−3.0, 40.1] in one simulation and [−1.9, 31.5] in the other. (The 95% interval can be
obtained from the function call, print(schools_fit,"theta[1]",probs=c(.025,.975));
it is not shown in the default display in Figure C.1.) In practice, the intervals from the two
different simulation runs contain simular information but their variability indicates that,
even after approximate convergence, the tail quantiles of posterior quantities have a fair

594 C. COMPUTATION IN R AND STAN

Inference for Stan model: schools.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.

mean se_mean sd 25% 50% 75% n_eff Rhat
mu 7.4 0.2 4.8 4.5 7.4 10.5 534 1
tau 6.9 0.5 6.1 2.4 5.4 9.3 138 1
eta[1] 0.4 0.1 0.9 -0.2 0.4 1.1 332 1
eta[2] 0.0 0.0 0.9 -0.5 0.1 0.6 1052 1
eta[3] -0.2 0.0 1.0 -0.9 -0.3 0.4 820 1
eta[4] 0.0 0.0 0.8 -0.5 -0.1 0.5 848 1
eta[5] -0.3 0.0 0.8 -0.9 -0.3 0.1 1051 1
eta[6] -0.2 0.0 0.9 -0.8 -0.2 0.4 676 1
eta[7] 0.3 0.0 0.9 -0.2 0.4 1.0 793 1
eta[8] 0.1 0.0 0.9 -0.6 0.1 0.6 902 1
theta[1] 12.1 1.3 11.1 5.8 10.0 15.4 72 1
theta[2] 7.8 0.2 5.9 3.9 7.7 11.6 934 1
theta[3] 4.8 0.5 9.0 1.0 6.2 10.3 301 1
theta[4] 7.0 0.3 6.7 3.0 6.9 11.3 512 1
theta[5] 4.5 0.3 6.4 0.2 5.0 8.9 604 1
theta[6] 5.6 0.6 7.7 1.9 6.5 10.3 142 1
theta[7] 10.5 0.3 7.0 5.4 9.8 14.6 636 1
theta[8] 8.3 0.4 8.2 3.6 8.0 12.8 532 1
lp__ -4.9 0.2 2.6 -6.6 -4.8 -3.0 201 1

Samples were drawn using NUTS2 at Wed Apr 24 13:36:13 2013.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Figure C.1 Numerical output from the print() function applied to the Stan code of the hierarchical
model for the educational testing example. For each parameter, mean is the estimated posterior
mean (computed as the average of the saved simulation draws), se mean is the estimated standard
error (that is, Monte Carlo uncertainty) of the mean of the simulations, and sd is the standard
deviation. Thus, as the number of simulation draws approaches infinity, se mean approaches zero
while sd approaches the posterior standard deviation of the parameter. Then come several quantiles,
then the effective sample size neff (formula (11.8) on page 287) and the potential scale reduction

factor R̂ (see (11.4) on page 285). When all the simulated chains have mixed, R̂ = 1. Beyond
this, the effective sample size and standard errors give a sense of whether the simulations suffice
for practical purposes. Each line of the table shows inference for a single scalar parameter in the
model, with the last line displaying inference for the unnormalized log posterior density calculated
at each step in Stan.

amount of simulation variability. The importance of this depends on what the simulation
will be used for.

Both simulations show good mixing (R̂ ≈ 1), but the effective sample sizes are much
different. This sort of variation is expected, as neff is itself a random variable estimated from
simulation draws. The simulation with higher effective sample size has a lower standard
error of the mean and more stable estimates.

Accessing the posterior simulations in R

The output of the R function stan() is an object from which can be extracted various
information regarding convergence and performance of the algorithm as well as a matrix of
simulation draws of all the parameters, following the basic idea of Figure 1.1 on page 24.

C.2. FITTING A HIERARCHICAL MODEL IN STAN 595

For example:

schools_sim <- extract(schools_fit1)

The result is a list with four elements corresponding to the five quantities saved in the
model: theta, eta, mu, tau, lp__. The vector θ of length 8 becomes a 20,000× 8 matrix of
simulations, the vector η similarly becomes a 20,000 × 8 matrix, the scalars µ and τ each
become a vector of 20,000 draws, and the 20,000 draws of the unnormalized log posterior
density are saved as the fourth element of the list.

For example, we can display posterior inference for τ :

hist(schools_sim$tau)

Or compute the posterior probability that the effect is larger in school A than in school C:

mean(schools_sim$theta[,1] > schools_sim$theta[,3])

Posterior predictive simulations and graphs in R

Replicated data in the existing schools. Having run Stan to successful convergence, we can
work directly in R with the saved parameters, θ, µ, τ . For example, we can simulate poste-
rior predictive replicated data in the original 8 schools:

n_sims <- length(schools_sim$lp__)
y_rep <- array(NA, c(n_sims, J))
for (s in 1:n_sims)
y_rep[s,] <- rnorm(J, schools_sim$theta[s,], sigma)

We now illustrate a graphical posterior predictive check. There are not many ways to
display a set of eight numbers. One possibility is as a histogram; the possible values of yrep

are then represented by an array of histograms as in Figure 6.2 on page 144. In R, this
could be programmed as

par(mfrow=c(5,4), mar=c(4,4,2,2))
hist(y, xlab="", main="y")
for(s in 1:19)
hist(y_rep[s,], xlab="", main=paste("y_rep",s))

The upper-left histogram displays the observed data, and the other 19 histograms are
posterior predictive replications, which in this example look similar to the data.

We could also compute a numerical test statistic such as the difference between the best
and second-best of the 8 coaching programs:

test <- function(y){
y_sort <- rev(sort(y))
return(y_sort[1] - y_sort[2])

}
t_y <- test(y)
t_rep <- rep(NA, n_sims)
for(s in 1:n_sims)
t_rep[s] <- test(y_rep[s,])

We then can summarize the posterior predictive check. The following R code gives a
numerical comparison of the test statistic to its replication distribution, a p-value, and a
graph like those on pages 144 and 148:

596 C. COMPUTATION IN R AND STAN

par(mfrow=c(1,1))
cat("T(y) =", round(t_y,1), " and T(y_rep) has mean",

round(mean(t_rep),1), "and sd", round(sd(t_rep),1),
"\nPr (T(y_rep) > T(y)) =", round(mean(t_rep>t_y),2), "\n")

hist0 <- hist(t_rep, xlim=range(t_y,t_rep), xlab="T(y_rep)")
lines(rep(t_y,2), c(0,1e6))
text(t_y, .9*max(hist0$count), "T(y)", adj=0)

Replicated data in new schools. As discussed in Section 6.5, another form of replication
would simulate new parameter values and new data for eight new schools. To simulate data
yj ∼ N(θj ,σ2

j) from new schools, it is necessary to make some assumption or model for the
data variances σ2

j . For the purpose of illustration, we assume these are repeated from the
original 8 schools.

theta_rep <- array(NA, c(n_sims, J))
y_rep <- array(NA, c(n_sims, J))
for (s in 1:n_sims){
theta_rep[s,] <- rnorm(J, schools_sim$mu[s], schools_sim$tau[s])
y_rep[s,] <- rnorm(J, theta_rep[s,], sigma)

}

Numerical and graphical comparisons can be performed as before.

Alternative prior distributions

The model as programmed above has nearly uniform prior distributions on the hyperpa-
rameters µθ and σθ. An alternative is a half-Cauchy for σθ, which we could implement by
taking the Stan model on page 592 and adding the line, tau ~ cauchy(0,25);.

We can fit the model as before. This new hyperprior distribution leads to changed
inferences. In particular, the posterior mean and median of τ are lower and shrinkage of
the θj ’s is greater than in the previously fitted model with a uniform prior distribution
on τ . To understand this, it helps to graph the prior density in the range for which the
posterior distribution is substantial. Figure 5.9 on page 131 shows that the prior density is
a decreasing function of τ which has the effect of shortening the tail of the posterior density.

Using the t model

It is straightforward to expand the hierarchical normal distribution for the coaching effects
to a t distribution as discussed in Section 17.4, by replacing eta ~ normal(0,1); with
eta ~ student_t(nu,0,1); and declaring nu as a parameter that takes on a value of 1 or
greater (real<lower=1> nu;) and assigning it a prior distribution.

C.3 Direct simulation, Gibbs, and Metropolis in R

In this section we demonstrate several different ways to fit the 8-schools model by directly
programming the computations in R.

Marginal and conditional simulation for the normal model

We begin by programming the calculations in Section 5.4. The programs provided here
return to the notation of Chapter 5 (for example, τ is the population standard deviation
of the θ’s) as this allows for easy identification of some of the variables in the programs
(for example, mu hat and V mu are the quantities denoted by the corresponding symbols in
(5.20)).

C.3. DIRECT SIMULATION, GIBBS, AND METROPOLIS IN R 597

We assume that the dataset has been read into R as in Section C.2, with J the number
of schools, y the vector of data values, and sigma the vector of standard deviations. Then
the first step of our programming is to set up a grid for τ , evaluate the marginal posterior
distribution (5.21) for τ at each grid point, and sample 1000 draws from the grid. The
grid here is n grid=2000 points equally spread from 0 to 40. Here we use the grid as a
discrete approximation to the posterior distribution of τ . We first define µ̂ and Vµ of (5.20)
as functions of τ and the data, as these quantities are needed here and in later steps, and
then compute the log density for τ .

mu_hat <- function(tau, y, sigma){
sum(y/(sigma^2 + tau^2))/sum(1/(sigma^2 + tau^2))

}
V_mu <- function(tau, y, sigma){
1/sum(1/(tau^2 + sigma^2))

}
n_grid <- 2000
tau_grid <- seq(.01, 40, length=n_grid)
log_p_tau <- rep(NA, n_grid)
for (i in 1:n_grid){
mu <- mu_hat(tau_grid[i], y, sigma)
V <- V_mu(tau_grid[i], y, sigma)
log_p_tau[i] <- .5*log(V) - .5*sum(log(sigma^2 + tau_grid[i]^2)) -
.5*sum((y-mu)^2/(sigma^2 + tau_grid[i]^2))

}

We compute the posterior density for τ on the log scale and rescale it to eliminate the possi-
bility of computational overflow or underflow that can occur when multiplying many factors.

log_p_tau <- log_p_tau - max(log_p_tau)
p_tau <- exp(log_p_tau)
p_tau <- p_tau/sum(p_tau)
n_sims <- 1000
tau <- sample(tau_grid, n_sims, replace=TRUE, prob=p_tau)

The last step draws the simulations of τ from the approximate discrete distribution. The
remaining steps are sampling from normal conditional distributions for µ and the θj ’s as in
Section 5.4. The sampled values of the eight θj ’s are collected in an array.

mu <- rep(NA, n_sims)
theta <- array(NA, c(n_sims,J))
for (i in 1:n_sims){
mu[i] <- rnorm(1, mu_hat(tau[i],y,sigma), sqrt(V_mu(tau[i],y,sigma)))
theta_mean <- (mu[i]/tau[i]^2 + y/sigma^2)/(1/tau[i]^2 + 1/sigma^2)
theta_sd <- sqrt(1/(1/tau[i]^2 + 1/sigma^2))
theta[i,] <- rnorm(J, theta_mean, theta_sd)

}

We now have created 1000 draws from the joint posterior distribution of τ, µ, θ. Posterior
predictive distributions are easily generated using the random number generation capabili-
ties of R as described above in the Stan context.

Gibbs sampler for the normal model

Another approach, actually simpler to program, is to use the Gibbs sampler. This com-
putational approach follows the outline of Section 11.6 with the simplification that the
observation variances σ2

j are known.

598 C. COMPUTATION IN R AND STAN

theta_update <- function(){
theta_hat <- (mu/tau^2 + y/sigma^2)/(1/tau^2 + 1/sigma^2)
V_theta <- 1/(1/tau^2 + 1/sigma^2)
rnorm(J, theta_hat, sqrt(V_theta))

}
mu_update <- function(){
rnorm(1, mean(theta), tau/sqrt(J))

}
tau_update <- function(){
sqrt(sum((theta-mu)^2)/rchisq(1,J-1))

}

We now generate five independent Gibbs sampling sequences of length 1000. We initial-
ize µ and τ with overdispersed values based on the range of the data y and then run the
Gibbs sampler, saving the output in a large array, sims, that contains posterior simulation
draws for θ, µ, τ .

chains <- 5
iter <- 1000
sims <- array(NA, c(iter, chains, J+2))
dimnames(sims) <- list(NULL, NULL,
c(paste("theta[", 1:8, "]", sep=""), "mu", "tau"))

for (m in 1:chains){
mu <- rnorm(1, mean(y), sd(y))
tau <- runif(1, 0, sd(y))
for (t in 1:iter){

theta <- theta_update()
mu <- mu_update()
tau <- tau_update()
sims[t,m,] <- c(theta, mu, tau)

}
}

We then check the mixing of the sequences using the R function monitor that carries
out the convergence diagnostic and effective sample size computation described in Section
11.4:

monitor(sims)

The monitor function is part of the rstan package and thus is already loaded if you have en-
tered library("rstan") in your current R session. The function takes as input an array of
posterior simulations from multiple chains, and it returns an estimate of the potential scale
reduction R̂, effective sample size neff , and summary statistics for the posterior distribution
(based on the last half of the simulated Markov chains).

The model can also be computed using alternative parameterizations. For example, in
a parameter-expanded model, the Gibbs sampler steps can be programmed as

gamma_update <- function(){
gamma_hat <- (alpha*(y-mu)/sigma^2)/(1/tau^2 + alpha^2/sigma^2)
V_gamma <- 1/(1/tau^2 + alpha^2/sigma^2)
rnorm(J, gamma_hat, sqrt(V_gamma))

}
alpha_update <- function(){
alpha_hat <- sum(gamma*(y-mu)/sigma^2)/sum(gamma^2/sigma^2)
V_alpha <- 1/sum(gamma^2/sigma^2)

C.3. DIRECT SIMULATION, GIBBS, AND METROPOLIS IN R 599

rnorm(1, alpha_hat, sqrt(V_alpha))
}
mu_update <- function(){
mu_hat <- sum((y-alpha*gamma)/sigma^2)/sum(1/sigma^2)
V_mu <- 1/sum(1/sigma^2)
rnorm(1, mu_hat, sqrt(V_mu))

}
tau_update <- function(){
sqrt(sum(gamma^2)/rchisq(1,J-1))

}

The Gibbs sampler can then be implemented as

sims <- array(NA, c(iter, chains, J+2))
dimnames(sims) <- list(NULL, NULL,
c(paste("theta[", 1:8, "]", sep=""), "mu", "tau"))

for (m in 1:chains){
alpha <- 1
mu <- rnorm(1, mean(y), sd(y))
tau <- runif(1, 0, sd(y))
for (t in 1:iter){
gamma <- gamma_update()
alpha <- alpha_update()
mu <- mu_update()
tau <- tau_update()
sims[t,m,] <- c(mu + alpha*gamma, mu, abs(alpha)*tau)

}
}
monitor(sims)

Gibbs sampling for the t model with fixed degrees of freedom

As described in Chapter 17, the t model can be implemented using the Gibbs sampler
using the normal-inverse-χ2 parameterization for the θj ’s and their variances. Following
the notation of that chapter, we take Vj to be the variance for θj and model the Vj ’s as
draws from an inverse-χ2 distribution with degrees of freedom ν and scale τ . As with the
normal model, we use a uniform prior distribution on (µ, τ).

As before, we first create the separate updating functions, including a new function to
update the individual-school variances Vj .

theta_update <- function(){
theta_hat <- (mu/V + y/sigma^2)/(1/V + 1/sigma^2)
V_theta <- 1/(1/V + 1/sigma^2)
rnorm(J, theta_hat, sqrt(V_theta))

}
mu_update <- function(){
mu_hat <- sum(theta/V)/sum(1/V)
V_mu <- 1/sum(1/V)
rnorm(1, mu_hat, sqrt(V_mu))

}
tau_update <- function(){
sqrt(rgamma(1, J*nu/2+1, (nu/2)*sum(1/V)))

}
V_update <- function(){

600 C. COMPUTATION IN R AND STAN

(nu*tau^2 + (theta-mu)^2)/rchisq(J,nu+1)
}

Initially we fix the degrees of freedom at 4 to provide a robust analysis of the data.

sims <- array(NA, c(iter, chains, J+2))
dimnames(sims) <- list(NULL, NULL,
c(paste("theta[", 1:8, "]", sep=""), "mu", "tau"))

nu <- 4
for (m in 1:chains){
mu <- rnorm(1, mean(y), sd(y))
tau <- runif(1, 0, sd(y))
V <- runif(J, 0, sd(y))^2
for (t in 1:iter){

theta <- theta_update()
V <- V_update()
mu <- mu_update()
tau <- tau_update()
sims[t,m,] <- c(theta, mu, tau)

}
}
monitor(sims)

Gibbs-Metropolis sampling for the t model with unknown degrees of freedom

We can also include ν, the degrees of freedom in the above analysis, as an unknown param-
eter and update it conditional on all the others using the Metropolis algorithm. We follow
the discussion in Chapter 17 and use a uniform prior distribution on (µ, τ, 1/ν).

To do Metropolis updating function, we write a function log post to calculate the
logarithm of the conditional posterior distribution of 1/ν given all of the other parame-
ters. (We work on the logarithmic scale to avoid computational overflows, as mentioned in
Section 10.7.) The log posterior density function for this model has three terms—the loga-
rithm of a normal density for the data points yj , the logarithm of a normal density for the
school effects θj , and the logarithm of an inverse-χ2 density for the variances Vj . Actually,
only the last term involves ν, but for generality we compute the entire log-posterior density:

log_post <- function(theta, V, mu, tau, nu, y, sigma){
sum(dnorm(y, theta, sigma, log=TRUE)) +

sum(dnorm(theta, mu, sqrt(V), log=TRUE)) +
sum(.5*nu*log(nu/2) + nu*log(tau) -

lgamma(nu/2) - (nu/2+1)*log(V) - .5*nu*tau^2/V)
}

We introduce the function that performs the Metropolis step and then describe how
to alter the R code given earlier to incorporate the Metropolis step. The following func-
tion performs the Metropolis step for the degrees of freedom (recall that we work with
the reciprocal of the degrees of freedom). The jumping distribution is normal with mean
at the current value and standard deviation sigma jump nu (which is set as described be-
low). We compute the jumping probability as described on page 278, setting it to zero if the
proposed value of 1/ν is outside the interval (0, 1] to ensure that such proposals are rejected.

nu_update <- function(sigma_jump_nu){
nu_inv_star <- rnorm(1, 1/nu, sigma_jump_nu)
if (nu_inv_star<=0 | nu_inv_star>1)

C.3. DIRECT SIMULATION, GIBBS, AND METROPOLIS IN R 601

p_jump <- 0
else {
nu_star <- 1/nu_inv_star
log_post_old <- log_post(theta, V, mu, tau, nu, y, sigma)
log_post_star <- log_post(theta, V, mu, tau, nu_star,y,sigma)
r <- exp(log_post_star - log_post_old)
nu <- ifelse(runif(1) < r, nu_star, nu)
p_jump <- min(r,1)

}
return(nu=nu, p_jump=p_jump)

}

This updating function stores the acceptance probability p jump nu which is used in adap-
tively setting the jumping scale sigma jump nu, as we discuss when describing the Gibbs-
Metropolis loop.

Given these functions, it is relatively easy to modify the R code that we have already
written for the t model with fixed degrees of freedom. When computing the Metropolis up-
dates, we store the acceptance probabilities in an array, p jump nu, to monitor the efficiency
of the jumping. Theoretical results given in Chapter 11 suggest that for a single parameter
the optimal acceptance rate—that is, the average probability of successfully jumping—is
approximately 44%. We can vary sigma jump nu in a pilot study to aim for this rate. For
this example we can settle on a value such as sigma jump nu=1, which has an average
jumping probability of about 0.4.

sigma_jump_nu <- 1
p_jump_nu <- array(NA, c(iter, chains))
sims <- array(NA, c(iter, chains, J+3))
dimnames(sims) <- list(NULL, NULL,
c(paste("theta[", 1:8, "]", sep=""), "mu", "tau", "nu"))

for (m in 1:chains){
mu <- rnorm(1, mean(y), sd(y))
tau <- runif(1, 0, sd(y))
V <- runif(J, 0, sd(y))^2
nu <- 1/runif(1, 0, 1)
for (t in 1:iter){
theta <- theta_update()
V <- V_update()
mu <- mu_update()
tau <- tau_update()
temp <- nu_update(sigma_jump_nu)
nu <- temp$nu
p_jump_nu[t,m] <- temp$p_jump
sims[t,m,] <- c(theta, mu, tau, nu)

}
}
print(mean(p_jump_nu))
monitor(sims)

Parameter expansion for the t model

Finally, we can make the computations for the t model more efficient by applying param-
eter expansion. In the expanded parameterization, the new Gibbs sampler steps can be
programmed in R as

602 C. COMPUTATION IN R AND STAN

gamma_update <- function(){
gamma_hat <- (alpha*(y-mu)/sigma^2)/(1/V + alpha^2/sigma^2)
V_gamma <- 1/(1/V + alpha^2/sigma^2)
rnorm(J, gamma_hat, sqrt(V_gamma))

}
alpha_update <- function(){
alpha_hat <- sum(gamma*(y-mu)/sigma^2)/sum(gamma^2/sigma^2)
V_alpha <- 1/sum(gamma^2/sigma^2)
rnorm(1, alpha_hat, sqrt(V_alpha))

}
mu_update <- function(){
mu_hat <- sum((y-alpha*gamma)/sigma^2)/sum(1/sigma^2)
V_mu <- 1/sum(1/sigma^2)
rnorm(1, mu_hat, sqrt(V_mu))

}
tau_update <- function(){
sqrt(rgamma(1, J*nu/2+1,(nu/2)*sum(1/V)))

}
V_update <- function(){
(nu*tau^2 + gamma^2)/rchisq(J,nu+1)

}
nu_update <- function(sigma_jump){
nu_inv_star <- rnorm(1, 1/nu, sigma_jump)
if (nu_inv_star<=0 | nu_inv_star>1)

p_jump <- 0
else {

nu_star <- 1/nu_inv_star
log_post_old <- log_post(mu+alpha*gamma, alpha^2*V, mu,

abs(alpha)*tau, nu, y, sigma)
log_post_star <- log_post(mu+alpha*gamma, alpha^2*V, mu,

abs(alpha)*tau, nu_star, y, sigma)
r <- exp(log_post_star - log_post_old)
nu <- ifelse(runif(1) < r, nu_star, nu)
p_jump <- min(r,1)

}
return(nu=nu, p_jump=p_jump)

}

The posterior density can conveniently be calculated in terms of the original parameteriza-
tion, as shown in the function nu update() above. We can then run the Gibbs-Metropolis
algorithm as before (see the program on the bottom part of page 601 and the top of page
601), adding initialization steps for γ and α just before the ‘for (t in 1:iter)’ loop:

gamma <- rnorm(J, 0, 1)
alpha <- rnorm(1, 0, 1)

adding updating steps for γ and α inside the loop,

gamma <- gamma_update()
alpha <- alpha_update()

and replacing the last line inside the loop with simulations transformed to the original θ, µ, τ
parameterization:

sims[t,m,] <- c(mu+alpha*gamma, mu, abs(alpha)*tau, nu)

C.4. PROGRAMMING HAMILTONIAN MONTE CARLO IN R 603

We must once again tune the scale of the Metropolis jumps. We started for convenience
at sigma jump nu= 1, and this time the average jumping probability for the Metropolis
step is 17%. This is lower than the optimal rate of 44% for one-dimensional jumping, and
so we would expect to get a more efficient algorithm by decreasing the scale of the jumps
(see Section 12.2). Reducing sigma jump nu to 0.5 yields an average acceptance probability
p jump nu of 32%, and sigma jump nu= 0.3 yields an average jumping probability of 46%
and somewhat more efficient simulations—that is, the draws of ν from the Gibbs-Metropolis
algorithm are less correlated and yield a more accurate estimate of the posterior distribu-
tion. Decreasing sigma jump nu any further would make the acceptance rate too high and
reduce the efficiency of the algorithm.

C.4 Programming Hamiltonian Monte Carlo in R

We demonstrate Hamiltonian Monte Carlo (HMC) by programming the basic eight-schools
model. For this particular problem, HMC is overkill but it might help to have this code as
a template.

We begin by reading in and setting up the data:

schools <- read.csv("schools.csv", header=TRUE)
J <- nrow(schools)
y <- schools$estimate
sigma <- schools$sd

Our model has 10 parameters, which we string into a single vector which we label as th =
(theta[1],...,theta[8],mu,tau). In the HMC program we work with this ten-dimen-
sional vector, extracting its components as needed. First we program the log posterior
density:

log_p_th <- function(th, y, sigma){
J <- length(th) - 2
theta <- th[1:J]
mu <- th[J+1]
tau <- th[J+2]
if (is.nan(tau) | tau<=0)
return(-Inf)

else{
log_hyperprior <- 1
log_prior <- sum(dnorm(theta, mu, tau, log=TRUE))
log_likelihood <- sum(dnorm(y, theta, sigma, log=TRUE))
return(log_hyperprior + log_prior + log_likelihood)

}
}

The scale parameter τ is restricted under the model to be positive, hence the if-statement
above which has the effect of setting the posterior density to zero if τ jumps below zero.

Next we program the analytical gradient, the derivative of the log posterior with respect
to each parameter:

gradient_th <- function(th, y, sigma){
J <- length(th) - 2
theta <- th[1:J]
mu <- th[J+1]
tau <- th[J+2]
if (tau<=0)
return(c(0,0,0))

604 C. COMPUTATION IN R AND STAN

else {
d_theta <- - (theta-y)/sigma^2 - (theta-mu)/tau^2
d_mu <- -sum(mu-theta)/tau^2
d_tau <- -J/tau + sum((mu-theta)^2)/tau^3
return(c(d_theta, d_mu, d_tau))

}
}

If τ is less than zero, we have set the gradient to zero.
For debugging purposes we also write a numerical gradient function based on first dif-

ferences:

gradient_th_numerical <- function(th, y, sigma){
d <- length(th)
e <- .0001
diff <- rep(NA, d)
for (k in 1:d){

th_hi <- th
th_lo <- th
th_hi[k] <- th[k] + e
th_lo[k] <- th[k] - e
diff[k]<-(log_p_th(th_hi,y,sigma)-log_p_th(th_lo,y,sigma))/(2*e)

}
return(diff)

}

Next we program a single HMC iteration that takes as inputs the parameter vector θ, the
data y,σy, the step size ϵ, the number of leapfrog steps L per iteration, and a diagonal mass
matrix, expressed as a vector, M :

hmc_iteration <- function(th, y, sigma, epsilon, L, M) {
M_inv <- 1/M
d <- length(th)
phi <- rnorm(d, 0, sqrt(M))
th_old <- th
log_p_old <- log_p_th(th,y,sigma) - 0.5*sum(M_inv*phi^2)
phi <- phi + 0.5*epsilon*gradient_th(th, y, sigma)
for (l in 1:L){

th <- th + epsilon*M_inv*phi
phi <- phi + (if (l==L) 0.5 else 1)*epsilon*gradient_th(th,y,sigma)

}
phi <- -phi
log_p_star <- log_p_th(th,y,sigma) - 0.5*sum(M_inv*phi^2)
r <- exp(log_p_star - log_p_old)
if (is.nan(r)) r <- 0
p_jump <- min(r,1)
th_new <- if (runif(1) < p_jump) th else th_old
return(list(th=th_new, p_jump=p_jump))

}

The above function performs the L leapfrog steps of an HMC iteration and returns the
new value of θ (which is the same as the old value if the trajectory was rejected) and the
acceptance probability, which can be useful in monitoring the efficiency of the algorithm.

Our next function is a wrapper that runs hmc iteration and takes several arguments:

C.4. PROGRAMMING HAMILTONIAN MONTE CARLO IN R 605

an m × d matrix of starting values (corresponding to m sequences and a vector of d pa-
rameters to start each chain); the number of iterations to run each chain; the baseline step
size ϵ0 and number of steps L0, and the mass vector M . After setting up empty arrays to
store the results, our HMC function, hmc run runs the chains one at a time. Within each
sequence, ϵ and L are randomly drawn at each iteration in order to mix up the algorithm
and give it the opportunity to explore differently curved areas of the joint distribution. At
the end, inferences are obtained using the last halves of the simulated sequences, summaries
are printed out, and the simulations and acceptance probabilities are returned:

hmc_run <- function(starting_values, iter, epsilon_0, L_0, M) {
chains <- nrow(starting_values)
d <- ncol(starting_values)
sims <- array(NA, c(iter, chains, d),
dimnames=list(NULL, NULL, colnames(starting_values)))

warmup <- 0.5*iter
p_jump <- array(NA, c(iter, chains))
for (j in 1:chains){
th <- starting_values[j,]
for (t in 1:iter){
epsilon <- runif(1, 0, 2*epsilon_0)
L <- ceiling(2*L_0*runif(1))
temp <- hmc_iteration(th, y, sigma, epsilon, L, M)
p_jump[t,j] <- temp$p_jump
sims[t,j,] <- temp$th
th <- temp$th

}
}
monitor(sims, warmup)
cat("Avg acceptance probs:",
fround(colMeans(p_jump[(warmup+1):iter,]),2),"\n")

return(list(sims=sims, p_jump=p_jump))
}

Now it is time to get ready to run the algorithm. We define a vector with the names of the
parameters and set the number of chains to 4:

parameter_names <- c(paste("theta[",1:8,"]",sep=""), "mu", "tau")
d <- length(parameter_names)
chains <- 4

Next we define a diagonal mass matrix to be on the rough scale of the inverse variance
matrix of the posterior distribution. Given the estimates and standard errors in Table 5.2
on page 120, we can crudely approximate this scale as 15 for each of the parameters; thus,

mass_vector <- rep(1/15^2, d)

Then we set up an array of random starting points defined on roughly the same scale, being
careful to restrict the starting points for τ to be positive:

starts <- array(NA,c(chains,d),dimnames=list(NULL,parameter_names))
for (j in 1:chains){
starts[j,] <- rnorm(d,0,15)
starts[j,10] <- runif(1,0,15)

}

We are finally ready to go! We start with our default values ϵ0 = 0.1, L0 = 10, running for
only 20 iterations to make sure the program does not crash:

606 C. COMPUTATION IN R AND STAN

M1 <- hmc_run (starting_values=starts, iter=20,
epsilon_0=.1, L_0=10, M=mass_vector)

The program runs fine so we go back for 100 iterations:

M2 <- hmc_run(starting_values=starts, iter=100,
epsilon_0=.1, L_0=10, M=mass_vector)

Here are the results:

Inference for the input samples (4 chains: each with iter=100; warmup=50):

mean se_mean sd 25% 50% 75% n_eff Rhat
theta[1] 9.8 2.4 7.0 3.6 9.7 14.6 9 1.4
theta[2] 6.9 0.9 5.6 2.3 8.0 10.4 37 1.1
theta[3] 6.7 1.0 6.8 2.0 6.5 10.7 44 1.1
theta[4] 8.3 1.4 7.1 4.0 9.4 11.5 25 1.1
theta[5] 4.9 1.6 5.4 2.6 5.6 8.7 12 1.1
theta[6] 4.5 0.8 4.7 2.0 5.0 8.1 36 1.1
theta[7] 9.6 1.1 6.3 4.9 9.3 11.9 30 1.1
theta[8] 9.2 1.4 7.2 5.5 9.4 13.6 28 1.1
mu 7.4 0.7 3.9 4.4 7.2 10.2 27 1.1
tau 6.9 1.8 4.4 4.0 6.1 8.2 6 1.5

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Avg acceptance probs: 0.27 0.42 0.59 0.68

The acceptance rates seem low (recall our goal of approximately 65% acceptances), and so
we decrease the base step size from 0.1 to 0.05 and increase the base number of steps from
10 to 20:

M3 <- hmc_run(starting_values=starts, iter=100,
epsilon_0=.05, L_0=20, M=mass_vector)

This looks better:

Inference for the input samples (4 chains: each with iter=100; warmup=50):

mean se_mean sd 25% 50% 75% n_eff Rhat
theta[1] 16.5 2.7 11.5 9.1 14.6 23.3 18 1.1
theta[2] 9.2 0.7 7.7 5.4 8.9 14.0 110 1.0
theta[3] 6.6 0.8 8.4 1.9 6.2 12.4 99 1.0
theta[4] 8.1 0.9 8.8 3.7 7.2 13.5 96 1.0
theta[5] 3.7 0.8 7.3 -2.1 3.5 8.9 75 1.0
theta[6] 6.2 2.2 7.7 2.1 5.9 11.4 13 1.1
theta[7] 12.9 1.1 8.8 7.2 13.2 19.1 61 1.1
theta[8] 9.4 2.9 9.2 4.3 9.2 15.1 10 1.1
mu 8.7 0.8 5.4 5.0 8.0 12.5 49 1.1
tau 10.0 1.9 6.3 6.1 8.4 12.6 11 1.3

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Avg acceptance probs: 0.81 0.75 0.59 0.82

We re-run for 1000 and then 10,000 iterations and obtain stable inferences:

C.5. FURTHER COMMENTS ON COMPUTATION 607

Inference for the input samples (4 chains: each with iter=10000; warmup=5000):

mean se_mean sd 25% 50% 75% n_eff Rhat
theta[1] 11.5 0.3 8.5 5.8 10.4 15.8 1129 1
theta[2] 7.9 0.2 6.5 3.7 7.8 12.1 1853 1
theta[3] 6.1 0.2 8.0 2.0 6.5 11.0 2434 1
theta[4] 7.6 0.2 6.8 3.4 7.6 11.8 1907 1
theta[5] 4.8 0.2 6.5 1.1 5.2 9.1 1492 1
theta[6] 6.1 0.1 6.8 2.1 6.3 10.4 2364 1
theta[7] 10.9 0.2 7.1 6.0 10.3 15.0 1161 1
theta[8] 8.5 0.2 8.1 3.6 8.1 13.1 1778 1
mu 8.0 0.2 5.4 4.4 7.9 11.3 1226 1
tau 6.9 0.2 5.5 2.9 5.6 9.4 565 1

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Avg acceptance probs: 0.57 0.62 0.62 0.66

For this little hierarchical model, setting up and running HMC was costly both in program-
ming effort and computation time, compared to the Gibbs sampler. More generally, though,
Hamiltonian Monte Carlo can work in complicated problems where Gibbs and Metropolis
fail, which is why in Stan we implemented HMC (via the no-U-turn sampler). In addition,
this sort of hierarchical model exhibits better HMC convergence when parameterized in
terms of the group-level errors (that is, the vector η, where θj = µ+ τηj for j = 1, . . . , J),
as demonstrated in the Stan program in Section C.2.

C.5 Further comments on computation

We have already given general computational tips in Section 10.7: start by computing with
simple models and compare to previous inferences when complexity is adding. We also
recommend getting started with smaller or simplified datasets, but this strategy was not
really relevant to the current example with only eight data points.

There are various ways in which the programs in this appendix could be made more
computationally efficient. For example, in the Metropolis updating function nu update()
for the t degrees of freedom in Section C.3, the log posterior density can be saved so that
it does not need to be calculated twice at each step. It would also probably be good to
use a more structured programming style in our R code (for example, in our updating
functions mu update(), tau update(), and so forth) and perhaps to store the parameters
and data as lists and pass them directly to the functions. We expect that there are many
other ways in which our programs could be improved. Our general approach is to start
with transparent (and possibly inefficient) code and then reprogram more efficiently once
we know it is working.

We made several mistakes in the process of implementing the computations described
in this appendix. Simplest were syntax errors in Stan programs and related problems such
as feeding in the wrong inputs when calling the stan() function from R.

We fixed syntax errors and other minor problems in the R code by cutting and pasting
to run the scripts one line at a time, and by inserting print statements inside the R functions
to display intermediate values.

We debugged the Stan and R programs in this appendix by comparing them against
each other, and by comparing each model to previously fitted simpler models. We found
many errors, including treating variances as standard deviations (for example, the expres-
sion rnorm(1,alpha hat,V alpha) instead of rnorm(1,alpha hat,sqrt(V alpha)) when
simulating from a normal distribution in R), confusion between ν and 1/ν, forgetting a term

608 C. COMPUTATION IN R AND STAN

in the log-posterior density, miscalculating the Metropolis updating condition, and saving
the wrong output in the sims array in the Gibbs sampling loop.

More serious conceptual errors included a poor choice of prior distribution, which we
realized was a problem by comparing to posterior simulations computed using a different
algorithm. We also originally had an error in the programming of a reparameterized model,
a mistake we discovered because the inferences differed dramatically from the simpler pa-
rameterization.

As the examples in this appendix illustrate, Bayesian computation is not always easy,
even for relatively simple models. However, once a model has been debugged, it can be
applied and then generalized to work for a range of problems. Ultimately, we find Bayesian
simulation to be a flexible tool for fitting realistic models to simple and complex data
structures, and the steps required for debugging are often parallel to the steps required to
build confidence in a model. We can use R to graphically display posterior inferences and
predictive checks.

C.6 Bibliographic note

R is available at R Project (2002), and its parent software package S is described by Becker,
Chambers, and Wilks (1988). Two statistics texts that use R extensively are Fox (2002)
and Venables and Ripley (2002). For more on Stan, see Stan Development Team (2012). R
and Stan have online documentation, and their websites have pointers to various help files
and examples.

