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Preface

This book is intended to have three roles and to serve three associated audi-
ences: an introductory text on Bayesian inference starting from first principles,
a graduate text on effective current approaches to Bayesian modeling and com-
putation in statistics and related fields, and a handbook of Bayesian methods
in applied statistics for general users of and researchers in applied statistics.
Although introductory in its early sections, the book is definitely not elemen-
tary in the sense of a first text in statistics. The mathematics used in our book
is basic probability and statistics, elementary calculus, and linear algebra. A
review of probability notation is given in Chapter 1 along with a more detailed
list of topics assumed to have been studied. The practical orientation of the
book means that the reader’s previous experience in probability, statistics, and
linear algebra should ideally have included strong computational components.

To write an introductory text alone would leave many readers with only a
taste of the conceptual elements but no guidance for venturing into genuine
practical applications, beyond those where Bayesian methods agree essentially
with standard non-Bayesian analyses. On the other hand, given the continuing
scarcity of introductions to applied Bayesian statistics either in books or in
statistical education, we feel it would be a mistake to present the advanced
methods without first introducing the basic concepts from our data-analytic
perspective. Furthermore, due to the nature of applied statistics, a text on cur-
rent Bayesian methodology would be incomplete without a variety of worked
examples drawn from real applications. To avoid cluttering the main narra-
tive, there are bibliographic notes at the end of each chapter and references at
the end of the book.

Examples of real statistical analyses are found throughout the book, and
we hope thereby to give a genuine applied flavor to the entire development.
Indeed, given the conceptual simplicity of the Bayesian approach, it is only
in the intricacy of specific applications that novelty arises. Non-Bayesian ap-
proaches to inference have dominated statistical theory and practice for most
of the past century, but the last two decades or so have seen a reemergence of
the Bayesian approach. This has been driven more by the availability of new
computational techniques than by what many would see as the philosophical
and logical advantages of Bayesian thinking.

We hope that the publication of this book will enhance the spread of ideas
that are currently trickling through the scientific literature. The models and
methods developed recently in this field have yet to reach their largest possi-
ble audience, partly because the results are scattered in various journals and
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proceedings volumes. We hope that this book will help a new generation of
statisticians and users of statistics to solve complicated problems with greater
understanding.

Progress in Bayesian data analysis

Bayesian methods have matured and improved in several ways in the eight
years since the first edition of this book appeared.

• Successful applications of Bayesian data analysis have appeared in many
different fields, including business, computer science, economics, educa-
tional research, environmental science, epidemiology, genetics, geography,
imaging, law, medicine, political science, psychometrics, public policy, so-
ciology, and sports. In the social sciences, Bayesian ideas often appear in
the context of multilevel modeling.

• New computational methods generalizing the Gibbs sampler and Metropo-
lis algorithm, including some methods from the physics literature, have
been adapted to statistical problems. Along with improvements in comput-
ing speed, these have made it possible to compute Bayesian inference for
more complicated models on larger datasets.

• In parallel with the theoretical improvements in computation, the software
package Bugs has allowed nonexperts in statistics to fit complex Bayesian
models with minimal programming. Hands-on experience has convinced
many applied researchers of the benefits of the Bayesian approach.

• There has been much work on model checking and comparison, from many
perspectives, including predictive checking, cross-validation, Bayes factors,
model averaging, and estimates of predictive errors and model complexity.

• In sample surveys and elsewhere, multiple imputation has become a stan-
dard method of capturing uncertainty about missing data. This has moti-
vated ongoing work into more flexible models for multivariate distributions.

• There has been continuing progress by various researchers in combining
Bayesian inference with existing statistical approaches from other fields,
such as instrumental variables analysis in economics, and with nonpara-
metric methods such as classification trees, splines, and wavelets.

• In general, work in Bayesian statistics now focuses on applications, com-
putations, and models. Philosophical debates, abstract optimality criteria,
and asymptotic analyses are fading to the background. It is now possible to
do serious applied work in Bayesian inference without the need to debate
foundational principles of inference.

Changes for the second edition

The major changes for the second edition of this book are:

• Reorganization and expansion of Chapters 6 and 7 on model checking and
data collection;

• Revision of Part III on computation;
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• New chapters on nonlinear models and decision analysis;

• An appendix illustrating computation using the statistical packages R and
Bugs,

• New applied examples throughout, including:

– Census record linkage, a data-based assignment of probability distribu-
tions (Section 1.7),

– Cancer mapping, demonstrating the role of the prior distribution on data
with different sample sizes (Section 2.8),

– Psychological measurement data and the use of graphics in model check-
ing (Section 6.4),

– Survey of adolescent smoking, to illustrate numerical predictive checks
(Section 6.5),

– Two surveys using cluster sampling (Section 7.4),

– Experiment of vitamin A intake, with noncompliance to assigned treat-
ment (Section 7.7),

– Factorial data on internet connect times, summarized using the analysis
of variance (Section 15.6),

– Police stops, modeled with hierarchical Poisson regressions (Section 16.5),

– State-level opinions from national polls, using hierarchical modeling and
poststratification (Section 16.6),

– Serial dilution assays, as an example of a nonlinear model (Section 20.2),

– Data from a toxicology experiment, analyzed with a hierarchical nonlin-
ear model (Section 20.3),

– Pre-election polls, with multiple imputation of missing data (Section
21.2),

– Incentives for telephone surveys, a meta-analysis for a decision problem
(Section 22.2),

– Medical screening, an example of a decision analysis (Section 22.3),

– Home radon measurement and remediation decisions, analyzed using a
hierarchical model (Section 22.4).

We have added these examples because our readers have told us that one
thing they liked about the book was the presentation of realistic problem-
solving experiences. As in the first edition, we have included many applications
from our own research because we know enough about these examples to
convey the specific challenges that arose in moving from substantive goals
to probability modeling and, eventually, to substantive conclusions. Also as
before, some of the examples are presented schematically and others in more
detail.

We changed the computation sections out of recognition that our earlier rec-
ommendations were too rigid: Bayesian computation is currently at a stage
where there are many reasonable ways to compute any given posterior distri-
bution, and the best approach is not always clear in advance. Thus we have
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moved to a more pluralistic presentation—we give advice about performing
computations from many perspectives, including approximate computation,
mode-finding, and simulations, while making clear, especially in the discus-
sion of individual models in the later parts of the book, that it is important to
be aware of the different ways of implementing any given iterative simulation
computation. We briefly discuss some recent ideas in Bayesian computation
but devote most of Part III to the practical issues of implementing the Gibbs
sampler and the Metropolis algorithm. Compared to the first edition, we deem-
phasize approximations based on the normal distribution and the posterior
mode, treating these now almost entirely as techniques for obtaining starting
points for iterative simulations.

Contents

Part I introduces the fundamental Bayesian principle of treating all unknowns
as random variables and presents basic concepts, standard probability models,
and some applied examples. In Chapters 1 and 2, simple familiar models using
the normal, binomial, and Poisson distributions are used to establish this
introductory material, as well as to illustrate concepts such as conjugate and
noninformative prior distributions, including an example of a nonconjugate
model. Chapter 3 presents the Bayesian approach to multiparameter problems.
Chapter 4 introduces large-sample asymptotic results that lead to normal
approximations to posterior distributions.

Part II introduces more sophisticated concepts in Bayesian modeling and
model checking. Chapter 5 introduces hierarchical models, which reveal the
full power and conceptual simplicity of the Bayesian approach for practical
problems. We illustrate issues of model construction and computation with a
relatively complete Bayesian analysis of an educational experiment and of a
meta-analysis of a set of medical studies. Chapter 6 discusses the key prac-
tical concerns of model checking, sensitivity analysis, and model comparison,
illustrating with several examples. Chapter 7 discusses how Bayesian data
analysis is influenced by data collection, including the topics of ignorable
and nonignorable data collection rules in sample surveys and designed ex-
periments, and specifically the topic of randomization, which is presented as
a device for increasing the robustness of posterior inferences. This a difficult
chapter, because it presents important ideas that will be unfamiliar to many
readers. Chapter 8 discusses connections to non-Bayesian statistical methods,
emphasizing common points in practical applications and current challenges
in implementing Bayesian data analysis. Chapter 9 summarizes some of the
key ideas of Bayesian modeling, inference, and model checking, illustrating
issues with some relatively simple examples that highlight potential pitfalls in
trying to fit models automatically.

Part III covers Bayesian computation, which can be viewed as a highly
specialized branch of numerical analysis: given a posterior distribution func-
tion (possibly implicitly defined), how does one extract summaries such as
quantiles, moments, and modes, and draw random samples of values? We em-
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phasize iterative methods—the Gibbs sampler and Metropolis algorithm—for
drawing random samples from the posterior distribution.

Part IV discusses regression models, beginning with a Bayesian treatment
of classical regression illustrated using an example from the study of elec-
tions that has both causal and predictive aspects. The subsequent chapters
give general principles and examples of hierarchical linear models, generalized
linear models, and robust models.

Part V presents a range of other Bayesian probability models in more detail,
with examples of multivariate models, mixtures, and nonlinear models. We
conclude with methods for missing data and decision analysis, two practical
concerns that arise implicitly or explicitly in many statistical problems.

Throughout, we illustrate in examples the three steps of Bayesian statistics:
(1) setting up a full probability model using substantive knowledge, (2) con-
ditioning on observed data to form a posterior inference, and (3) evaluating
the fit of the model to substantive knowledge and observed data.

Appendixes provide a list of common distributions with their basic proper-
ties, a sketch of a proof of the consistency and limiting normality of Bayesian
posterior distributions, and an extended example of Bayesian computation in
the statistical packages Bugs and R.

Most chapters conclude with a set of exercises, including algebraic deriva-
tions, simple algebraic and numerical examples, explorations of theoretical
topics covered only briefly in the text, computational exercises, and data anal-
yses. The exercises in the later chapters tend to be more difficult; some are
suitable for term projects.

One-semester or one-quarter course

This book began as lecture notes for a graduate course. Since then, we have
attempted to create an advanced undergraduate text, a graduate text, and a
reference work all in one, and so the instructor of any course based on this
book must be selective in picking out material.

Chapters 1–6 should be suitable for a one-semester course in Bayesian statis-
tics for advanced undergraduates, although these students might also be in-
terested in the introduction to Markov chain simulation in Chapter 11.

Part I has many examples and algebraic derivations that will be useful for
a lecture course for undergraduates but may be left to the graduate students
to read at home (or conversely, the lectures can cover the examples and leave
the theory for homework). The examples of Part II are crucial, however, since
these ideas will be new to most graduate students as well. We see the first two
chapters of Part III as essential for understanding modern Bayesian compu-
tation and the first three chapters of Part IV as basic to any graduate course
because they take the student into the world of standard applied models; the
remaining material in Parts III–V can be covered as time permits.

This book has been used as the text for one-semester and one-quarter
courses for graduate students in statistics at many universities. We suggest
the following syllabus for an intense fifteen-week course.
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1. Setting up a probability model, Bayes’ rule, posterior means and variances,
binomial model, proportion of female births (Chapter 1, Sections 2.1–2.5).

2. Standard univariate models including the normal and Poisson models, can-
cer rate example, noninformative prior distributions (Sections 2.6–2.9).

3. Multiparameter models, normal with unknown mean and variance, the mul-
tivariate normal distribution, multinomial models, election polling, bioas-
say. Computation and simulation from arbitrary posterior distributions in
two parameters (Chapter 3).

4. Inference from large samples and comparison to standard non-Bayesian
methods (Chapter 4).

5. Hierarchical models, estimating population parameters from data, rat tu-
mor rates, SAT coaching experiments, meta-analysis (Chapter 5).

6. Model checking, posterior predictive checking, sensitivity analysis, model
comparison and expansion, checking the analysis of the SAT coaching ex-
periments (Chapter 6).

7. Data collection—ignorability, surveys, experiments, observational studies,
unintentional missing data (Chapter 7).

8. General advice, connections to other statistical methods, examples of po-
tential pitfalls of Bayesian inference (Chapters 8 and 9).

9. Computation: overview, uses of simulations, Gibbs sampling (Chapter 10,
Sections 11.1–11.3).

10. Markov chain simulation (Sections 11.4–11.10, Appendix C).

11. Normal linear regression from a Bayesian perspective, incumbency advan-
tage in Congressional elections (Chapter 14).

12. Hierarchical linear models, selection of explanatory variables, forecasting
Presidential elections (Chapter 15).

13. Generalized linear models, police stops example, opinion polls example
(Chapter 16).

14. Final weeks: topics from remaining chapters (including advanced compu-
tational methods, robust inference, mixture models, multivariate models,
nonlinear models, missing data, and decision analysis).

Computer sites and contact details

Additional materials, including the data used in the examples, solutions to
many of the end-of-chapter exercises, and any errors found after the book goes
to press, are posted at http://www.stat.columbia.edu/∼gelman/. Please
send any comments to us at gelman@stat.columbia.edu, sternh@uci.edu,
jbcarlin@unimelb.edu.au, or rubin@stat.harvard.edu.
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Part I: Fundamentals of Bayesian
Inference

Bayesian inference is the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on the parameters
of the model and on unobserved quantities such as predictions for new obser-
vations. In Chapters 1–3, we introduce several useful families of models and
illustrate their application in the analysis of relatively simple data structures.
Some mathematics arises in the analytical manipulation of the probability
distributions, notably in transformation and integration in multiparameter
problems. We differ somewhat from other introductions to Bayesian inference
by emphasizing stochastic simulation, and the combination of mathematical
analysis and simulation, as general methods for summarizing distributions.
Chapter 4 outlines the fundamental connections between Bayesian inference,
other approaches to statistical inference, and the normal distribution. The
early chapters focus on simple examples to develop the basic ideas of Bayesian
inference; examples in which the Bayesian approach makes a practical differ-
ence relative to more traditional approaches begin to appear in Chapter 3. The
major practical advantages of the Bayesian approach appear in hierarchical
models, as discussed in Chapter 5 and thereafter.




