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Abstract

Variance parameters in mixed or multilevel models can be difficult to estimate,

especially when the number of groups is small. Here we address the problem that

the group-level variance estimate is often on the boundary. We propose a maximum

penalized likelihood approach which is equivalent to estimating the variance by its

marginal posterior mode, given a weakly informative prior distribution. By choosing

the prior from the gamma family with at least 1 degree of freedom, we ensure that

the prior density is zero at the boundary and thus the marginal posterior mode of the

group-level variance will be positive. The use of a weakly informative prior allows us

to stabilize our estimates while remaining faithful to the data.

1 Introduction

Linear mixed models (e.g. Harville, 1977; Laird and Ware, 1982), also known as hierarchical

or multilevel linear models, are widely used for longitudinal data, cross-sectional data on sub-

jects nested in neighborhoods or institutions (hospitals, schools, firms), cluster-randomized

trials, multi-site trials, and meta-analysis.

The models allow intercepts and sometimes coefficients to vary randomly between groups.

However, when the number of groups is small, maximum likelihood estimates of group-level

variance parameters can be noisy and can often be zero. In a multivariate setting, estimated
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covariance matrices can be degenerate non-positive-definite. In this paper we focus mostly

on linear varying intercept models.

1.1 Motivation for avoiding boundary estimates

Zero group-level variance estimates can cause several problems. First, they can go against

prior knowledge of researchers. Mixed models are typically used because it is known that

there are processes operating at the group level that are not completely captured by the

covariates. Omitted group-level covariates will lead to residual between-group variation.

A second problem with group-level variance estimates on the boundary is the resulting

underestimation of uncertainty in fixed coefficient estimates. For instance, in a cluster-

randomized study or meta-analysis, researchers might be overconfident in concluding that a

treatment is effective.

Third, group comparisons are often of interest to researchers, but when the group-level

variance is estimated as zero, the resulting predictions of the group-level errors will all be

zero, so one fails to find unexplained differences between groups.

An argument against avoiding boundary estimates is that negative variance parameters

should be permitted if the model is viewed as a marginal model for the responses given

the covariates, in which case only the sum of the group-level and within-group variance

must be positive (Verbeke and Molenberghs, 1997, p.52-53). However, we take a hierarchical

perspective, where the intercepts vary due to omitted group-level variables, and therefore

the group-level variance must be nonnegative.

In some settings, researchers are interested in testing null hypotheses that one or more

variance parameters are zero. In other settings, a variance estimate at the boundary should

not be viewed as non-rejection of a null hypothesis that was not of interest a-priori. Non-

rejection of the null hypothesis cannot be viewed as evidence for zero variance, especially

2



when the power of the test is low. This point is particularly important when zero variance

leads to the smallest possible standard errors for parameters of interest as in meta-analysis

where the practice of using tests of homogeneity as a basis for choosing between fixed and

random-effects meta-analysis has been criticized (Hardy and Thompson, 1998; Curcio and

Verde, 2011; Draper, 1995, p.52-53). Inclusion of varying intercepts can be viewed as a

continuous model expansion (Draper, 1995) to allow for the possibility that there may be

unexplained differences between groups (see also Gelman and Meng, 1996). Removing vary-

ing intercepts can then lead to an understatement of model uncertainty (Draper, 1995;

Greenland, 2000).

We propose a method that pulls the variance estimates off the boundary and makes them

more stable by maximizing the likelihood multiplied by a penalty function, or equivalently by

assigning a prior distribution to the unknown variance parameters and finding the marginal

posterior mode. Bayes modal estimation has previously been used to obtain more stable

estimates of item parameters in item response theory (Swaminathan and Gifford, 1985;

Mislevy, 1986; Tsutakawa and Lin, 1986) and to avoid boundary estimates in log-linear

models (Galindo-Garre et al., 2004) and latent class analysis (Maris, 1999; Galindo-Garre

and Vermunt, 2006). To our knowledge, this idea has not yet been applied to variance

parameters in mixed models.

To avoid boundary estimates, we require a prior or penalty function that goes to zero at

the boundary—but without requiring the sort of strong prior knowledge that would limit the

routine use of this approach. We recommend a gamma prior with specific default parameter

values that produce Bayes modal estimates approximately one standard error away from zero

when the maximum likelihood estimate is at zero. We consider these priors to be weakly

informative in the sense that they supply some direction but still allow inference to be driven

by the data. If prior information is available, the parameters of the gamma prior can be
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chosen to appropriately instead of using default values.

The Bayes modal estimator with our recommended default prior has the same order and

amount of asymptotic bias and variance with the maximum likelihood estimator while the

bias has opposite direction. When the true group-level variance is not too close to zero,

simulations show that our estimator tends to perform better than maximum likelihood and

comparable to restricted maximum likelihood in terms of bias and mean squared error for the

group-level standard deviation and coverage of confidence intervals for regression coefficients.

Our method can be considered as posterior modal estimation with a uniform prior for the

group-level variance after applying a log transformation to make the posterior distribution

more symmetric and the posterior mode closer to the posterior mean. Bayes modal inference

for other Box-Cox transformations of the group-level variance can be achieved by tuning the

shape parameter of the prior.

Compared with full Bayes or posterior mean estimation, our approach does not require

simulation and is computationally as efficient as maximum likelihood estimation. No elab-

orate convergence checking is required and there is no need to specify priors for all model

parameters. We have implemented posterior modal estimation in Stata and R with only

minor modifications of existing software for maximum likelihood estimation of linear mixed

models.

We begin by illustrating the boundary problem for a simple model in Section 1.3 and

discuss Bayes modal estimation in Section 2. Section 3 proposes a gamma prior and consider

properties of the resulting estimator. In Section 4 we apply the proposed method to a

dataset and in Section 5 we perform simulations to compare performance of our method

with maximum likelihood and restricted maximum likelihood in a range of situations. We

end with a discussion in Section 6.
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Figure 1: Simple varying intercept model with σθ = 0.5 and J = 10 groups: (a) Sampling
distribution of the maximum likelihood estimate σ̂θ, based on 1000 simulations of data from
the model. (b) 100 simulations of the likelihood. In this example, the maximum likelihood
estimate is extremely variable and the likelihood function is not very informative about σθ.

1.2 Boundary problem for a simple model

We demonstrate the problem with a varying-intercept model with J = 10 groups and a

single group-level variance parameter. To keep things simple, we do not include covariates

and treat the mean and within-group variance as known:

yj ∼ N(θj, 1), θj ∼ N(0, σ2

θ), for j = 1, . . . , J.

In our simulation, we set the group-level standard deviation σθ to 0.5. From this model,

we create 1000 simulated datasets and estimate σθ by maximum likelihood by solving for σ̂θ in

the equation 1+ σ̂2
θ = 1

J

∑J
j=1

y2j , with the boundary constraint that σ̂θ = 0 if 1

J

∑J
j=1

y2j < 1.

In this simple example, it is easy to derive the probability of obtaining a boundary estimate

as Pr(χ2(J) < J
1+σ2

θ

) = 0.37.
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Figure 1(a) shows the sampling distribution of the maximum likelihood estimate of σθ.

As expected, in more than a third of the simulations, the likelihood is maximized at σ̂θ = 0.

Figure 1b displays 100 draws of the likelihood function, which shows in a different way that

the maximum is likely to be on the boundary and that there is considerably uncertainty.

2 Bayes modal estimation with weakly informative priors

2.1 A brief review of the maximum likelihood and restricted maximum likeli-

hood estimation

We consider the model

yij = xT
ijβ + θj + ǫij , i = 1, . . . , nj, j = 1, . . . , J,

J∑

j=1

nj = N, (1)

where yij is the response variable and xij is a p-dimensional vector of covariates for unit

i in group j; β is a p-dimensional vector of coefficients that do not vary between groups;

θj ∼ N(0, σ2
θ) is a group-level error; and ǫij ∼ N(0, σ2

ǫ ) is a residual for each observation.

We further assume that θj and ǫij are independent.

The parameters (β, σθ, σǫ) are commonly estimated by maximum likelihood (ML). An-

other option is restricted or residualized maximum likelihood (REML, Patterson and Thomp-

son, 1971), which is equivalent to specifying uniform priors for the regression coefficients β

and maximizing the marginal posterior mode, integrated over θj and β (Harville, 1974). Un-

like the ML estimator, the REML estimator of σ2
θ is unbiased in balanced designs (constant

group-size) if it is allowed to be negative.

Discussion of small-sample inference for mixed models has largely focused on the covari-

ance matrix of β̂ (e.g., Kenward and Roger, 1997). Longford (2000) points out that this

covariance matrix is often poorly estimated because variance components are estimated in-
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accurately. The sandwich estimator (Huber, 1967; White, 1990) is asymptotically consistent

even if the distributional assumptions are violated. However, as Drum and McCullagh (1993)

note, it can perform poorly when the sample size is small. Crainiceanu et al. (2003) derive

a general expression for the probability that the (local) maximum of the marginal (or re-

stricted) likelihood is at the boundary for linear mixed models and Crainiceanu and Ruppert

(2004) discuss the finite-sample distribution of the likelihood ratio statistic for testing null

hypotheses regarding the group-level variance.

2.2 Bayes modal estimation

In the present article, we are particularly concerned with the group-level standard deviation,

and we specify a prior p(σθ) only for σθ, implicitly assuming a uniform prior, p(β, σǫ) = 1,

on β and σǫ.

The marginal log-posterior density with varying intercepts (θj) integrated out can be

written as

log p(σθ,β, σǫ|y) = log p(y|σθ,β, σǫ) + log p(σθ) + c, (2)

where the first term of the right hand side is the log-likelihood and c is a constant. We

find the parameters that maximize (2). By integrating the posterior over θ, we avoid the

incidental parameter problem (Neyman and Scott, 1948; O’Hagan, 1976; Mislevy, 1986).

The marginal posterior density for (β, σθ, σǫ) can equivalently be regarded as a penalized

likelihood.

Unlike posterior mean estimation, posterior modal estimation does not involve simula-

tion and is computationally as efficient as maximum likelihood estimation. In addition, by

modifying existing maximum likelihood estimation procedures, we can easily find the pos-

terior mode. We have implemented Bayes modal estimation gllamm (Rabe-Hesketh et al.,

2005; Rabe-Hesketh and Skrondal, 2008) in Stata and lmer in the lme4 package (Bates and
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Maechler, 2010) in R. In both programs, the user has the option to specify a prior and the

corresponding log density is added to the log likelihood during optimization. (The modified

gllamm is available from www.gllamm.org and the modified lmer can be found in the blmer

package available from the Comprehensive R Archive Network.)

2.3 Desired properties of a weakly informative prior

Our goal is to find a prior or penalty function for σθ so that the posterior mode is off the

boundary, but with the prior being weak enough so that inferences are consistent with the

data. For our purpose, we desire a prior on σθ that

(i) is zero at the origin and

(ii) has a positive constant derivative at zero.

Condition (i) ensures a positive estimate of the variance parameter, even when the maximum

of the likelihood is at 0. Condition (ii) allows the likelihood to dominate if it is strongly

curved near zero. The positive constant derivative implies that there is no “dead zone” in

the prior near zero—that is, the prior does not rule out positive values near zero if they are

supported by the likelihood.

For our default choice of prior we do not impose any restriction on the right tail of p(σθ)

since our primary concern is to avoid boundary estimates and the right tail has little impact

on that. If the number of groups is small and we want to further control the estimate, it

would make sense to assign a finite scale to the prior to constrain the right tail.

Various reasonable-seeming choices of priors do not satisfy both the above conditions. The

exponential and half-Cauchy families, for example, do not decline to zero at the boundary, so

they do not rule out posterior mode estimates of zero. Such priors can be excellent weakly

informative priors for full Bayesian (posterior mean) inference (see Gelman, 2006) but do

not work if the goal is to get a stable and reasonable posterior mode estimate.
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The lognormal and inverse-gamma densities satisfy condition (i) but not condition (ii).

They have a zero derivative at the origin, essentially ruling out low estimates of σθ no

matter what the data suggest. Thus, the lognormal can only be used when there is real prior

information to guide the choices of its two parameters; it cannot be a default choice of the

sort we are seeking here.

3 Gamma prior

We propose a gamma (not inverse-gamma) prior on σθ: defined by

p(σθ) =
λα

Γ(α)
σα−1

θ e−λσθ , α > 0, λ > 0 (3)

with mean α/λ and variance α/λ2, where α is the shape parameter and λ is the rate param-

eter (the reciprocal of the scale parameter).

With an appropriate choice of parameters, the gamma satisfies the two conditions for the

weakly informative prior listed in the previous section. For any α > 1, gamma(α, λ) satisfies

the first condition that p(0) = 0. In order to have a positive constant derivative at zero (the

second condition), α can be chosen to be 2.

3.1 Default choice and other options

We consider three ways to apply the gamma prior as penalty function:

• Our default choice is gamma(α, λ) with α = 2 and λ → 0, which is the (improper)

density (p(σθ) ∝ σθ). As we discuss shortly, this default bounds the posterior mode

away from zero while keeping it consistent with the likelihood.

• Sometimes we have weak prior information about a variance parameter that we would

like to include in our model. When α = 2, the gamma density has its mode at 1/λ,
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and so our recommendation is to use the gamma(α, λ) prior with 1/λ set to the prior

estimate of σθ.

• If strong prior information is available, then both parameters of the gamma density

can be set to encode this. If α is given a value higher than 2, property (ii) above will

no longer hold, but this is acceptable if this represents real information about σθ.

3.2 Difference between ML estimator and Bayes modal estimator

To examine the effect of α and λ on the posterior mode analytically, we treat (β, σǫ) as

nuisance parameters and assume that the profile log-likelihood can be approximated by a

quadratic function in σθ around the ML estimator, σ̂ml
θ ,

logL(σθ) ≈ −(σθ − σ̂ml
θ )2

2 · se2ml

+ c1. (4)

Here seml = ŝe(σ̂ml
θ ) represents the estimated asymptotic standard error of σθ (based on the

observed information). This quadratic approximation of the profile log-likelihood function

of σθ is reasonable because the first derivative of the profile log-likelihood (with respect to

σθ, not σ
2
θ) at the ML estimate σ̂ml

θ is zero even when σ̂ml
θ is zero.

For example, consider a balanced random intercept model without covariates by setting

xT
ijβ = µ and ni = n in the model (1). Then the profile log-likelood of σθ is given by

logLσθ
(σθ) = −(n− 1)J

2
log σ̂2

ǫ −
J

2
log

{
σ̂2

ǫ + nσ2

θ

}
− 1

2

(
SST

σ̂2
ǫ

− nσ2
θ

σ̂2
ǫ (σ̂

2
ǫ + nσ2

θ)
SSB

)

where

σ̂2

ǫ =





SSW/(n− 1)J if SSB ≥ SSW
n−1

SST/nJ if SSB < SSW
n−1

,

SST =
∑

j

∑
i(yij − ȳ··)

2, SSB = n
∑

j(ȳ·j − ȳ··)
2 and SSW = SST − SSB.
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Taking the derivative of logLσθ
with respect to σθ, we have

∂ logLσθ

∂σθ
=

(
− nJ

2(σ̂2
ǫ + nσ2

θ)
+

n · SSB
2(σ̂2

ǫ + nσ2
θ)

2

)
· 2σθ. (5)

When we have boundary estimates of σθ, it is possible that the log-likelihood function of σ2
θ

has the maximum in the negative region, and so ∂ logLσθ
/∂(σ2

θ) (the part in the parenthesis

of the right-hand side in (5)) is negative at σ2
θ = 0. In this case, the quadratic approximation

of logLσθ
in σ2

θ at the boundary will not be appropriate because the linear term still exists.

Even in this case, (5) will be zero because of the factor 2σθ. Therefore, in the Taylor

expansion of logLσθ
in σθ at 0, the linear term vanishes, the leading term becomes the

quadratic (with negative coefficient when σ̂θ = 0) and the higher order terms are negligible

around σθ = 0. In Sections 4 and 5, we will confirm that the quadratic approximation fits

well in an application and in simulations.

Using this quadratic approximation of the profile log-likelihood in σθ, we derive a number

of properties of the gamma(α, λ) prior on σθ. (Derivations are in the supplementary mate-

rials.) In what follows, we discuss the behavior of σ̂θ for two cases: given under Property 1

for σ̂ml
θ = 0 and Property 2 for σ̂ml

θ > 0.

Property 1. When σ̂ml
θ = 0, for fixed α > 1 and seml, the largest posterior mode is attained

when λ → 0 with the value

σ̂θ = seml

√
α− 1. (6)

When α = 2, we obtain σ̂θ = seml. That is, when the ML estimate is on the boundary,

the gamma(2, λ) prior shifts the posterior mode away from zero but not more than one

standard error.

One standard error can be regarded as a statistically insignificant distance from the ML

estimate. If the quadratic approximation in (4) holds and σ̂ml
θ is zero, the likelihood-ratio test
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(LRT) statistic for H0 : σθ = seml is 2(logL(0) − logL(seml)) = 1. For the null hypothesis

σθ = 0, it is known that asymptotic distribution (as J approaches infinity) of the test statistic

is 0.5χ2
0 + 0.5χ2

1 with 99th percentile 5.41. In finite samples, the mass at zero is larger and

the 99th percentile is smaller, but even with J = 5, the 99th percentile is as large as 3.48,

in a model without covariates and large cluster size (Crainiceanu and Ruppert, 2004). For

testing H0 : σθ = seml (> 0), the percentile will be larger because there is less point mass at

zero (Crainiceanu et al., 2003). Therefore, a LRT statistic of 1 can be considered small.

Property 2. When σ̂ml
θ > 0, for fixed α > 1 and seml, the largest possible posterior mode is

attained when λ → 0 with the value

σ̂θ =
σ̂ml
θ

2
+

σ̂ml
θ

2

√
1 + 4(α− 1)se2ml/(σ̂

ml
θ )2 > σ̂ml

θ .

In addition, ∂σ̂θ/∂seml decreases in σ̂ml
θ .

Similar to the case of σ̂ml
θ = 0, σ̂θ is greater than σ̂ml

θ and is an increasing function of

seml. The gradient ∂σ̂θ/∂seml has maximum
√
α− 1 for σ̂ml

θ = 0 that coincides with (6)

and decreases as σ̂ml
θ increases. This implies that the gamma(α, λ) prior does not shift the

posterior mode as much when σ̂ml
θ > 0 as it does when σ̂ml

θ = 0 when λ is close to zero.

Therefore it has less influence on the estimate when the ML estimate is plausible than when

the ML estimate is on the boundary.

3.3 Asymptotic properties

Although this paper is concerned with the problem of boundary estimates which occurs when

J is small, it is important to investigate the asymptotic properties of the proposed estimator

as J → ∞ and compare them with the asymptotic properties of the ML estimator.

Consider a balanced random-intercept model with xT
ijβ = µ and ni = n. For sim-
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plicity, we assume that µ and σ2
ǫ are known. Then the ML estimator of σθ is σ̂ml

θ =[(∑J
j=1

(ȳ·j − ȳ··)
2/J − σ2

ǫ /n
)+

]1/2
where (·)+ = max(·, 0).

When gamma(α, λ) is assigned to σθ, the posterior mode, say σ̂Bayes
θ , is a root of a fifth

order polynomial (See the supplementary materials). Therefore, we do not have simple

formula for σ̂Bayes
θ but we can investigate its asymptotic properties using expansions of the

log-posterior (or penalized log-likelihood) function.

The asymptotic distribution of the ML estimator in linear mixed models is shown in

Miller (1977). To examine the asymptotic properties of estimator for σθ, it is sufficient to

assume only J → ∞ regardless of n. As J → ∞, σ̂ml
θ is consistent with σ0

θ and
√
J
(
σ̂ml
θ − σ0

θ

)

follows N(0, I(σ0
θ)

−1) asymptotically where I(σ0
θ) is the information matrix and σ0

θ is the true

value of σθ.

Fu and Gleser (1975) show that the posterior mode is consistent and has the same limiting

distribution as the ML estimator under some regularity conditions that are satisfied for our

model. That is, as J → ∞,

√
J(σ̂Bayes

θ − σ0

θ) → N
(
0, I(σ0

θ)
−1
)
.

Based on this result, we compare the higher order bias of the ML estimator and the Bayes

modal estimator in the following theorem.

Theorem 3. At the order of J−1, the ML estimator and the Bayes modal estimator has the

following bias.

E(σ̂ml
θ ) = σ0

θ −
1

4(σ0
θ)

3J

(
σ2
ǫ

n
+ (σ0

θ)
2

)2

+ o(J−1)

E(σ̂Bayes
θ ) = σ0

θ +

(
α + λσ0

θ − 1

2
− 1

4

)
1

(σ0
θ)

3J

(
σ2
ǫ

n
+ (σ0

θ)
2

)2

+ o(J−1)

In addition, with the default prior (α = 2 and λ → 0), two estimators have the same

13



magnitude of bias but negative for σ̂ML
θ and positive for σ̂Bayes

θ .

Proof. Outline of the proof is in the supplementary materials and (cite Dorie’s disserta-

tion).

Not only σ̂Bayes
θ with the default prior is asymptotically unbiased and efficient as σ̂ml

θ ,

but also they have the same magnitude of the bias at the higher order as seen in Theorem 3.

Therefore, when J is large, the Bayes modal estimator will be as good as the ML estimator

in addition that the Bayes modal estimator tend to be less biased for small J as will be

shown in Section 5.

3.4 Transformation of σθ

When the posterior density of σθ is asymmetric, a transformation of σθ can make the den-

sity more symmetric so that the posterior mode will be located near the posterior mean

which has good asymptotic properties. Note that while the ML estimator is invariant under

transformations, the Bayes modal estimator is not due to the change in prior density when

transforming σθ. Thus the transformation affects the posterior mode.

Consider the Box-Cox transformations (Box and Cox, 1964)

gγ(σθ) =





σγ
θ
−1

γ
if γ 6= 0;

log(σθ) if γ = 0
.

Property 4. With a gamma(α, λ) prior on σθ, maximizing the posterior of gγ(σθ) is equiv-

alent to maximizing the posterior of σθ with a gamma(α+ 1− γ, λ) prior on σθ.

For example, consider a special case with α = 1, λ → 0, and γ = 0, which implies the

uniform (improper) prior on σθ and log transformation of σθ. With this prior, the marginal

posterior density is just the likelihood, which is often right-skewed or even has its mode at
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σθ = 0 (where the boundary estimation problem occurs). In this case, the log transformation

of σθ can make the shape of the posterior more symmetric. If we maximize the posterior

density of log(σθ), then the maximizer ̂log(σθ) will be the same as log(σ̂θ) where σ̂θ is the

maximizer of the posterior with gamma(2, λ) prior on σθ.

We have discussed the gamma prior on the group-level standard deviation (σθ) since the

profile log-likelihood as a function of σθ has a better quadratic approximation so it helps us

to investigate the properties in Section 3.2. However, one might be still insterested in priors

on the variance, σ2
θ .

Property 5. In the limit λ → 0, a gamma(α, λ) prior on σ2
θ is equivalent to a gamma(2α−

1, λ) prior on σθ.

Therefore, the properties of the gamma prior in this paper hold for the gamma prior on

σ2
θ with α adjusted appropriately.

3.5 Connection to REML

In Section 2.1, we mentioned that REML gives an unbiased estimate for variance components

in the balanced case (when negative variance estimates are permitted). In this section, we

regard REML as a penalized likelihood estimator and compare the REML penalty with the

log of the gamma density, considered as a penalty on the log-likelihood.

Longford (1993) describes the REML log-likelihood, say logLR, in terms of the original

log-likelihood, L, and an additive penalty term,

logLR = logL− 1

2
log

(
det(XTV −1X)

)
(7)

where V is the N ×N covariance matrix of the vector of all responses y and X is the design

matrix with rows xT
ij. In the varying-intercept model in (1), V is a block-diagonal matrix
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with nj × nj blocks, Vj , j = 1, . . . , J , where Vj contains σ2
θ + σ2

ǫ in the diagonal and σ2
θ in

the off-diagonals. Recalling that the log-posterior density is the sum of the log-likelihood

and the log-prior density in (2), the second term in (7), denoted by log pR(σθ), is analogous

to the log of the gamma prior.

In order to compare the REML penalty and log gamma density, we consider a special

case of model (1) with balanced group size n, q level-1 covariates, and r level-2 covariates.

The level-1 covariates, written as columns z1, . . . , zq of the design matrix, consist of the

same elements for each group and satisfy 1Tzu = 0, zT
u zu′ = 1 if u = u′, and 0 otherwise

for u = 1, . . . , q. The level-2 covariates are assumed to be dummy variables for the first

r(< J − q − 2) groups. Then the REML penalty becomes

log pR(σθ) =
r + 1

2
log

(
σ2

θ +
σ2
ǫ

n

)
+ c1 (8)

where c1 is a constant. The proof is provided in the supplementary materials.

Recall that, when λ → 0, the gamma(α, λ) prior on σ2
θ (equivalently gamma(2α − 1, λ)

on σθ) has log density,

log p(σ2

θ) = (α− 1) log σ2

θ + c2. (9)

Ignoring the constant terms that have no influence on the posterior mode, we see that the

gamma((r + 1)/2 + 1, λ) on σ2
θ (equivalently gamma(r+2, λ) on σθ) approximately matches

the REML penalty, particularly when the group-size n is large and λ is close to zero.

The difference between these two penalty terms is clear when σθ is close to zero. At

σθ = 0, the log of the gamma prior in (9) is −∞ for α > 1, whereas the REML penalty in (8)

approaches −∞ only if σǫ → 0 or n → ∞. This explains why REML can produce boundary

estimates. Further, it implies that the gamma prior assigns more penalty on σθ close to zero

than REML for small n and large σǫ. Otherwise, REML can approximately be viewed as a
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special case of our method with a gamma prior.

The REML penalty expression in (8) is derived for covariates with specific properties as

described above. However, we found that the relationship between the REML and gamma

penalty illustrated in this section holds more generally (see the supplementary materials.)

4 Application: meta-analysis of 8-schools data

Alderman and Powers (1980) report the results of randomized experiments of coaching for the

Scholastic Aptitude Test (SAT) conducted in eight schools. The data consist of an estimated

treatment effect and associated standard error for each school (obtained by separate analyses

of the data of each school) and have previously been analyzed by Rubin (1981) and Gelman

et al. (2004).

Meta-analysis with varying intercepts (DerSimion and Laird, 1986), typically called

random-effects meta-analysis, allows for heterogeneity among studies due to differences in

populations, interventions, and measures of outcomes. The model for the effect size yi of

study i can be written as

yi = µ+ θi + ǫi, θi ∼ N(0, σ2

θ), ǫi ∼ N(0, s2i ), (10)

and allows the true effect µ + θi of study i to deviate from the overall effect size µ by a

study-specific amount θi. In addition, the estimated effect yi for study i differs from its true

value by an estimation error ǫi with standard deviation set equal to the estimated standard

error for study i.

Figure 2 shows the profile log-likelihood (maximized with respect to µ) of σθ (left) and σ2
θ

(right). On the left we see that the profile log-likelihood has its maximum at zero where the

gradient is zero as discussed in Section 3.2. Further, the profile log-likelihood is quite flat.
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Figure 2: Profile log likelihood as a function of σθ (left) and σ2
θ (right) for 8-schools data. The

dashed curve on the left is the quadratic approximation at the mode, based on the estimated
standard error. The vertical dashed line is the Bayes modal estimate for a gamma(2,λ) prior
on σθ (left) or σ2

θ (right). The quadratic approximation is good as a function of σθ (left)
and consequently the Bayes modal estimate is one standard error away from the maximum
likelihood estimate of zero. As a function of σ2

θ (right), the maximum is attained for a
negative σ2

θ , so the quadratic approximation at the ML estimate of zero is poor.

We see in the right panel of Figure 2 that the profile log-likelihood has a negative gradient at

zero as a function of σ2
θ so that the quadratic approximation for σ2

θ is poor at the maximum

likelihood estimate of zero.

Inference for σθ is important because it affects both the point estimate and estimated

standard error of the overall effect size µ,

ŝe(µ̂) =

[∑

i

1

s2i + σ2
θ

]−1/2

. (11)

For example, the estimated standard error is 4.1 for σθ = 0, compared with 5.5 for σθ = 10

(the corresponding estimates of µ are 7.7 and 8.1, respectively.)

For the model in (10), we consider four different priors: gamma(2, λ) and gamma(3, λ)

on σθ and gamma(1.5, λ) and gamma(2, λ) on σ2
θ , where λ = 10−4. Posterior mode estimates
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Prior µ σθ σ2
θ

Method α Est SE SER Est SE Est SE Log-lik
ML 7.69 4.07 3.33 0 6.32 0 0.00 −29.67
gamma on σθ 2 7.92 4.72 3.39 6.30 4.61 39.73 58.15 −30.18
gamma on σθ 3 8.10 5.38 3.43 9.42 5.34 88.65 100.62 −30.76

gamma on σ2
θ 1.5 7.92 4.72 3.38 6.28 4.79 39.42 57.65 − 30.18

gamma on σ2
θ 2 8.09 5.37 3.42 9.37 5.30 87.71 99.23 −30.75

SER: robust (sandwich) standard error.

Table 1: Maximum likelihood and posterior mode estimates for the 8 schools data, where
the prior is gamma(α, λ) on σθ or σ2

θ , with λ = 10−4. With gamma(α, λ) priors on σθ, the
posterior mode estimates are approximately at seml

√
1− α and agree well with the posterior

mode estimates with gamma((α + 1)/2, λ) on σ2
θ .

with these priors and maximum likelihood estimates are given in Table 1. The estimated

standard error of σ̂ml
θ is 6.32 (which corresponds to seml in Section 3.2).

When the prior is on σθ (rows 2 and 3), σ̂Bayes
θ is 6.30 and 9.42 for α = 2 and α = 3,

respectively. These are close to the values seml

√
α− 1 with seml = 6.32, which we expect

with σ̂ml
θ = 0 if the marginal posterior log-likelihood is quadratic in σθ, as it appears to be

in the left panel of Figure 2. In both cases, the log-likelihood at the posterior mode estimate

is only a little bit lower than the maximum log-likelihood.

Specifying a gamma(2, λ) prior on σ2
θ (row 5) gives estimates that agree well with those

for a gamma(3, λ) prior on σθ as expected (see Property 5). Similarly, a gamma(1.5, λ) prior

on σ2
θ (row 4) gives posterior mode estimates that are close to the estimates with gamma(2, λ)

on σθ. A gamma prior on σ2
θ with α = 1.5 corresponds to REML with no level-2 covariates.

While REML gives σ̂θ = 0 (not shown here), a gamma prior with α = 1.5 gives a legitimate

estimate and decreases the log-likelihood by only 0.5.

Table 1 also reports model-based and robust standard error estimates for µ̂ (SER). We

see that the estimated model-based standard error of the estimated overall effect size µ

increases with σθ as implied by (11), whereas the robust standard errors, based on the
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sandwich estimator, change very little.

5 Simulation of balanced varying-intercept model

We consider a varying-intercept model,

yij = β0 + θj + β1x1ij + β2x2ij + ǫij , i = 1, . . . , n, j = 1, . . . , J (12)

with J = 3, 5, 10, 30 groups and n = 5, 30 observations per group. This model includes

two covariates: x1ij = i varies within groups only (its mean is constant across groups),

and x2ij = j varies between groups only. The coefficients β0, β1, β2 are fixed parameters,

θj ∼ N(0, σ2
θ) is a varying intercept for each group, and ǫij ∼ N(0, σ2

ǫ ) is an error for each

observation.

For each combination of J and n, we generate 1000 datasets with true parameter values,

β0 = 0, β1 = β2 = 1, σǫ = 1, and σθ = 0, 1/
√
3, or 1, which correspond to intra-class corre-

lations ρ = 0, 0.25 and 0.5, respectively. Although our method is based on the assumption

that σθ > 0, we include the condition σθ = 0 as the worst-case scenario. We obtain posterior

mode estimates with gamma(2, λ) and gamma(3, λ) priors on σθ, where λ = 10−4. The

REML penalty corresponds to α = 3 since the model contains one group-level covariate. We

compare posterior mode estimates with ML and REML estimates.

Boundary estimates Here we report the proportion of estimates of σθ that are on the bound-

ary (less than 10−5) when the true σθ is not zero (1/
√
3 and 1). For σθ = 1/

√
3, 47% of ML

estimates and 45% of REML estimates are zero for J = 3 and n = 5. As J or n increases,

the proportion decreases, but for J = 5 and n = 30, the proportion of estimates on the

boundary is still 5% for ML and 4% for REML.

When σθ = 1, the same pattern occurs but estimates are on the boundary less often for
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Figure 3: Posterior mode estimates with a gamma(2,λ) prior on σθ for ρ = 0.25 and n =
30 for the first 100 replicates, compared with the posterior mode based on the quadratic
approximation of the profile likelihood (see properties 1 and 2). Agreement is good, suggesting
that the quadratic approximation is good. Dots on the left graph that fall off the line are due
to a few samples that have uncommonly large estimated standard errors.

a given condition. For J = 3 and n = 5, ML produces 34% of estimates on the boundary

compared with 32% for REML. When J increases to 5 and n to 30, 1% of ML estimates

and 0.7% of REML estimates are on the boundary. When J = 30, ML and REML yield no

boundary estimates for either value of σθ.

In contrast to the ML and REML estimates, the Bayes modal estimates are never on

the boundary in any of the simulation conditions. At the same time, the Bayes modal

estimates do not differ significantly from the ML estimates. The likelihood ratio test statistic

−2
[
logL(σ̂Bayes

θ )− logL(σ̂ml
θ )

]
for testing the restriction σθ = σ̂Bayes

θ was calculated for each

replicate. When J > 3, the largest test statistic among all the replicates and simulation

conditions is 2.60. Even for J = 3, the largest test statistic is 3.45. As discussed in Section

3.2, these values are not large.
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Quadratic approximation We now assess how well some of the relationships hold that were

derived in Section 3.2 by assuming that the profile log likelihood is quadratic. Figure 3

shows that the posterior modes calculated by the quadratic approximation of the profile

log-likelihood (see properties 1 and 2) agree well with the posterior mode estimates with a

gamma(2,λ) prior on σθ for J = 3 and J = 30 when ρ = 0.25 and n = 30.

Figure 4 summarizes the estimated bias and the root mean squared error (RMSE) of σθ,

and the coverage of 95% confidence intervals (CI) for β2 for the four methods for n = 5,

J = 3, 5, 10, 30 and σθ = 0, 1/
√
3, 1. Results for n = 30 are given in the supplementary

materials.

Estimates of σ̂θ The first row of Figure 4 shows that the bias for σθ decreases as J increases

and σθ decreases. Thus the differences between methods are most obvious with small J , and

particularly when σθ > 0.

For σθ > 0, both REML and ML tend to underestimate σθ. Bayes modal estimates

with gamma(2, λ) also tend to be downward biased for σθ but not as much as the ML

estimates. On the other hand, the Bayes modal estimator with gamma(3, λ) produces the

largest estimates among the four estimators so it often overestimates σθ. For σθ = 1, the

Bayes modal estimator with gamma(3, λ) has the smallest bias for all J .

When σθ = 0, as expected, the Bayes modal estimators assign more penalty on the values

close to the boundary than REML, so the bias is larger than for REML as well as ML.

When n = 30 (given in the supplementary materials), the overall pattern is the same as

when n = 5 but the Bayes modal estimates with gamma(3, λ) are closer to REML for σθ > 0.

This confirms that the gamma penalty on σθ with α = 3 agrees with the REML penalty

when the model contains one group-level covariate, particularly with large n, as discussed in

Section 3.5.
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Figure 4: Bias of σθ , RMSE of σθ and coverage of CI for β2 for group size 5, standard
deviation σθ = 0, 1/

√
3, and 1 (columns) and number of groups J = 3, 5, 10, 30 (x-axis).

Different estimators are represented by different line patterns. When σθ > 0, all the methods
outperform ML. Bias of the Bayes modal estimator is as low as REML depending on α.
RMSE of the Bayes modal estimator with both α is smaller than REML and ML. Coverage
of CI is best for the Bayes modal estimator with α = 3.
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The root mean squared errors (RMSE) of both Bayes modal estimators are consistently

smaller than for ML and REML when σθ is not zero (see second row of the figure). For

σθ = 1/
√
3 and σθ = 1, REML has smaller bias than the Bayes modal estimator with

gamma(2, λ) but its RMSE is significantly larger because the REML estimates have the

largest variance among the four estimators. The Bayes modal estimator tends to have

smaller RMSE with gamma(2, λ) than with gamma(3, λ) but the difference decreases as n,

J and σθ increase.

Coverage of CI for β2 The standard error estimates of the estimated coefficient of the group-

level covariate (β̂2) is greatly influenced by σ̂θ. The squared asymptotic standard error of β̂2

from the Hessian matrix is Var(β̂2) ≈ (nσ2
θ + σ2

ǫ )/nJs
2
X2

where sX2
is the standard deviation

of the group-level covariate X2 (Snijders and Bosker, 1993). When the true variance is not

zero but σ̂θ is on the boundary, the standard error of β̂2 will be underestimated and the CI

will be too narrow.

The third row of Figure 4 shows the proportions of 95% CI that cover the true value of

β2. The gray solid line shows the nominal coverage (0.95). For all values of σθ, ML gives

CI with lower than nominal coverage. For σθ = 0, all the methods except ML tend to have

higher than nominal coverage.

When σθ > 0, most of the methods have lower than nominal coverage, but the Bayes

modal estimator with α = 3 has the best coverage, particularly for σθ = 1/
√
3. Although

the Bayes modal estimator with α = 3 tends to have large positive bias for σθ, it turns out

to give better coverage. Recalling that gamma(3, λ) is close to the REML penalty (discussed

in Section 3.5) for large n, we found that the coverage for the Bayes modal estimator with

α = 3 is closer to REML for n = 30 (not shown here) than for n = 5. However, REML still

shows significantly lower coverage than the Bayes modal estimator, particularly for small J .
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In summary, when the true σθ is not zero, the bias of σ̂θ is as low for the Bayes modal

estimators as for REML depending on α. The RMSE of σ̂θ is uniformly lower for the Bayes

modal estimator with both gamma priors than for REML and the ML estimator. Coverage

of the CI is best for the Bayes modal estimator with α = 3. Although there is no obvious

winner between gamma with α = 2 and α = 3, neither prior ever produces a boundary

estimate (σ̂θ < 10−5). Recalling that ML and REML have quite a large proportion of

boundary estimates, the Bayes modal estimator with a gamma prior is successful at avoiding

boundary solutions and, at the same time, the estimates are not significantly different from

ML estimates for most cases.

We also performed a simulation study for unbalanced variance component models with-

out any covariates, following Swallow and Monahan (1984). For two different unbalanced

patterns with σθ = 0, 1/
√
3, 1, we compared ML and REML estimates with posterior mode

estimates with a gamma(2, λ) prior, which corresponds to the REML penalty when there is

no group-level covariate. (Results are in the supplementary materials.)

Similar to the balanced case, when σθ is not zero, ML and REML tend to underestimate

σθ and the RMSE tends to be larger than for the posterior mode estimates. The advantage

of the gamma prior in terms of the RMSE is more obvious for σθ = 1. The standard errors

of the fixed intercept estimate are also underestimated by ML and REML when σθ is not

zero while the posterior mode estimators perform better in this regard.

6 Discussion

In this paper, we considered linear varying intercept models and suggested specifying a

gamma prior for the group-level standard deviation to avoid boundary estimates. We showed

that our procedure guarantees non-zero estimates of the group-level variance, while maintain-

ing statistical properties as good or better than maximum likelihood and restricted maximum
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likelihood when the true group-level variance is not too close to zero. The prior is only weakly

informative in the sense that the log likelihood at the Bayes modal estimates is not much

lower than the maximum.

As mentioned in the introduction, we acknowledge that there are situations where tests

for zero variance correspond to a research question or where negative variances cannot be

ruled out, and our method is clearly not appropriate in those situations. In other situations,

it can however be problematic to react to boundary estimates by proceeding as if the true

group-level variance is zero since this will often lead to the smallest possible estimated

standard error for parameters of interest. We have shown that this strategy of accepting the

maximum likelihood estimate results in under-coverage of confidence intervals for regression

coefficients of group-level covariates. In datasets where boundary estimates occur, large

range of values of the group-level standard deviation is often supported by the data, and

our method provides one such value. Our approach is hence somewhere between purely

data-based maximum likelihood estimation and setting the variance to a constant instead of

estimating it, as suggested by Longford (2000) for the purpose of obtaining better standard

errors and by Greenland (2000) when the variance is not identified.

Our idea can also be applied to models with varying intercepts and slopes where the

problem is to regularize the covariance matrix, say Σ, away from its boundary, |Σ| = 0. In

this case, the gamma prior can be naturally extended to the Wishart prior on Σ, which is

equivalent to the product of gamma priors on the eigenvalues of Σ1/2. Therefore the Wishart

prior with a certain choice of parameters will shift the posterior mode of each eigenvalue

away from 0, or equivalently move the posterior mode of Σ away from the singularity. At the

same time, it moves the eigenvalues approximately at most one standard error away from

the ML estimates as did the gamma(2,λ) in the univariate case.

Other applications of our approach include generalized linear mixed models, models with
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more hierarchical levels, and latent variable models of all sorts—basically, any models in

which there are variance parameters that could be estimated at zero.

Another generalization arises when there are many variance parameters—either from

a large group-level covariance matrix, several different levels of variation in a multilevel

model, or both. In any of these settings, it can make sense to stabilize the estimated

variance parameters by modeling them together, adding another level of the hierarchy to

allow partial pooling of estimated variances.

Finally, from a computational as well as an inferential perspective, a natural interpreta-

tion of a posterior mode is as a starting point for full Bayes inference, in which informative

priors are specified for all parameters in the model and Metropolis or Gibbs jumping is used

to capture uncertainty in the coefficients and the variance parameters (Dorie et al., 2011).

For reasons discussed above, it can make sense to switch to a different class of priors when

moving to full Bayes: once modal estimation is abandoned, there is no general reason to

work with priors that go to zero at the boundary.
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