Subject index

1.6, factor for converting from logit to probit, $86,118,131$
100,000 iterations, why we do not recommend, 369
2 standard deviations, scaling by, 56-57
2.8 standard errors for power calculation, 441
5 ways to write the same model, $262-265$
55,000 residents desperately need your help, 23-26
6 quick tips, 547-549
8 schools, 430-434
ability parameter, in item-response model, 315-320
abline(), 353, 520
Academy awards, 133
accessing the simulations from a Bugs fit, 358
AD Model Builder, multilevel modeling in, 572-573
adding a predictor can increase the residual variance, 480-481
additivity, 46
adjusted parameters, 382, 420, 422
compared to raw parameters, 423
adjusted R, 475
Advanced Placement exams, 463-464
age guessing, 299
age, as regression input, 66, 67
Akaike information criterion (AIC), 105, 525-527
aliasing, a form of nonidentifiability, 318, 321
American Indians, 340
analysis of covariance, 496-498
analysis of variance (ANOVA), 487-502
additive data decomposition, 488
balance, 489
classical, 487-490
contrasts, 462-466, 496-498
degrees of freedom, 488, 499
F-test, 489
generalized linear models, 491
graphical display, 492-495, 497, 499, 500
mean square, 489
method of summarizing a multilevel model, 492-494
model comparison and, 489
multilevel models and, 490-502
nested designs, 496
sum of squares, 488
unbalanced designs, 496
analytic calculations and simulation, 148
Annenberg Election Survey, 311
$\operatorname{apply}(), 44,353,477$
$\operatorname{array}(), 308$
arsenic, see wells
as.bugs(), 413
as.bugs.array(), 400
as.vector(), 348
attach.bugs(), 305, 352, 358
augmented data
multilevel model, 397
regression with prior information, 393
autoregression, 163-165
available-case analysis, 532
average causal effect, definition, 173
average predictive comparison, see predictive comparison
axes of graphs, 553
B-K plot, $312,313,321$
balance, see causal inference
Bangladesh, see wells
basement, 254
Bayesian inference, 142, 276, 345-348, 392-414
calibration, 433
censored data, 405-408
classical regression, 392
debugging, 434
exchangeability, 347
Gibbs sampler, 397-402
informal, 143
informative prior distribution, 392-393, 427-434
Metropolis algorithm, 408-409
multilevel model, 393-402, 413
picture, 395, 396
prior distribution, 427-434
variance parameters, 432-434, 499-501
separation in logistic regression, 104
social networks model, 409-413
beauty and teaching evaluations, 51
before-after graph, 555
behavioral learning experiment, 515-524
beta-binomial model, 321
binary data and count data, 117
binary outcomes, 79
binned residual plot, 97-101, 105, 559
binomial distribution, 16
bounding trick in Bugs, 382
compared to Poisson, 112
binomial-normal model, 321
births, 27, 137-139
black box, 190
bounding parameters in Bugs, 383
bounding trick for binomial model in Bugs, 382
brlr package, 104
broken windows, 325
Bugs, 11, 305, 345-386, 567, 573
bounding parameters, 383
bounding trick for binomial model, 382
brute force, why we do not recommend, 369
calling from $\mathrm{R}, 350-352$
censored data, 405-406
classical regression, 360
compared to lmer(), 386
compared to R, 399-402
compiling, 416
complete-pooling model, 360
confidence-building, 415-417
current problems with, 417
data, 350, 356, 416
data, parameters, and derived
quantities, 366-369
dbin(), 381
dcat(), 383
debugging, 415-417
derived quantities, 367
detailed example, 348-359
dgamma(), 430
dlnorm(), 383
dlogis(), 384
dmnorm(), 376
dnorm(), 353, 354
dt(), 372, 384
dunif(), 355
dwish(), 377
each object can be defined at most once, 368
equals(), 384, 405
example of graphical output, 351
example of slow convergence, 421
example of tabular output, 351
examples, 353
fake-data simulation, 363-365
finding errors in a model, 373
general principles, 366-369
group-level model, 354
help, 353, 373, 565
I(), 383, 384, 405
individual-level model, 353
initial values, 350, 356, 369-370, 416
inprod(), 361, 378, 379
interpreting inferences from fitted model, 352
inverse(), 377
inverse-variance parameterization, 354, 368
knowing when to give up, 419
latent data for generalized linear models, 384
linear transformation to speed convergence, 419-427
logistic regression, 381-382
latent-data formulation, 384
logit(), 381
looping indexes, 353, 367
$\max (), 381$
mean(), 382
$\min (), 381$
missing data, 367,529
model as specifications, not instructions, 368
model too big for, 336
modeled data and parameters, 366, 367
multilevel model, 375-386
logistic, 381-382
non-nested, 380-382
Poisson, 382
varying intercepts and slopes, 375-379
multiple group-level predictors, 379-380
multiple varying coefficients, 378
n.thin, 518
nested subscripts, 372
no overwriting in model, 368
no-pooling model, 360
non-nested model, 380-381
noninformative prior distribution, 355
nonlinear and nonadditive models, 371
number of iterations and sequences, 356-358, 369
open-ended modeling, 370-372
ordered categorical regression, 383
overdispersed Poisson regression, 382
parameters, 350,356
postprocessing inferences in R, 359
pow(), 355
practical advice, 357, 369-370, 415-434, 547-549
prediction, 361-363
prior distribution, 354
$\hat{R}, 358,369$
raw (unscaled) parameters, 377
redundant parameters, 419-427
replicated data for predictive checking, 518
robit regression, 384
scaled inverse-Wishart model, 376-380
$\operatorname{sd}(), 460$
simple multilevel model, 350
slow with large datasets, 418
stochastic learning model
logarithmic link, 521
logistic link, 517
multilevel, 522-524
thinning, 418
too slow for looping in power calculation, 451
unequal variances, 371-372
unmodeled data and parameters, 366, 367, 378
varying-intercept model, 350,361
varying-intercept, varying-slope model, 375-379
group-level predictors, 379-380
modeling the correlation, 376
no correlation, 375
scaled inverse-Wishart, 376
why you should learn Bugs, 345
Wishart model, 376-380
bugs(), 350, 565, 567
building generalized linear models, 125-127
building regression models, 68-73
c(), 350
calibration
Bayesian inference, 433
plot, 309, 558
calling Bugs from R, 350-352
Caltech, 332
cancer and nutrients, 294
categorical variables as regression inputs, 66
Cauchy distribution, 428, 430
causal inference, 95, 167-198, 549
average causal effect, 173, 180, 205
balance, 181, 184-186, 199-204, 208, 209, 212
plot, 202, 229
causes of an effect, 187
confounding covariate, 169, 176, 181, 184, 196, 200, 202-203, 207, 212-213, 215
constructed observational study, 210, 230, 231
continuous treatment, 177
controlling for post-treatment variable, don't do it, 177, 187-194, 227, 229
counterfactual, 170, 173, 184, 185, 188, 201, 206, 218
definition, 170
difference-in-differences, 228, 231
direct and indirect effects, 191-194
effect of causes, 187
effect of the treatment on the controls and treated, 205, 206, 211
exclusion restriction, 216-218
experiment, see randomized experiment
external validity, 174
fixed effects, 231
fundamental problem, 171-172, 191
hypothetical intervention, 187
ignorability, 182-184, 186, 207, 212, 216-217, 225, 228, 231, 232
infinite regress of causation, 187
instrumental variables, 215-226, 230-231, 233
assumptions, 216-218, 220-221, 225-226, 233
derivation, 218-221
identifiability, 220-221, 224
multilevel model, 509-511
standard error, 222
two-stage least squares, 221
Wald estimate, 219, 221
weak instrument, 225
intent-to-treat (ITT) effect, 216, 219, 220, 222
internal validity, 174
local average treatment effect (LATE), 219-220, 229, 233
mapping your study to an ideal randomized experiment, 187-188
matching, 206-212
model checking, 208
nearest-neighbor, 207
propensity score, 230
R packages for, 230
model extrapolation, 169, 185, 201, 209, 213
monotonicity, 216-217
multilevel model, $178,210,212$, 227-228, 503-512
multiple treatments, $177,186,187$
natural experiment, 187, 225
nonignorable assignment mechanism, 183
observational study, 172, 181-188
design of, 437
overlap, 184-186, 199-204, 209, 212-215
poststratification, $178,181,206$
potential outcome, 168, 170, 171, 183, 186, 189, 191, 219
close substitutes, 171-172
predictive comparison, 167,168
principal stratification, 192
propensity score matching, 207-210, 230, 232
assumptions, 207
model checking, 208
R packages for, 230
standard errors, 212
propensity score weighting, 211, 229
randomized encouragement, 216
randomized experiment, 171-181, 183
completely randomized, 175,182 , 183
design of, 437
paired comparisons, 175
randomized blocks, 175
regression, 167-198
regression discontinuity, 212-215, 232
selection bias, 168
selection model, 231
selection on observables, 183
sensitivity analysis, 231
simultaneous causality, a meaningless concept?, 188
structural equation model, 226
subclassification, 204-207, 210-211, 229
support of the data, 169
SUTVA, stable unit treatment value assumption, 178
treatment interaction, 178-180, 189, 205, 214-215
treatment variable, definition, 186
weighting, 205
cbind(), 43, 146, 157, 361, 529
CD4, 249, 277, 373
censored data, 402-408
Bayesian inference, 405-408
Bugs, 405-406
Gibbs sampler, 406-408
imputation for, 540-541
likelihood, 404
maximum likelihood, 404-405
naive regression estimates, 403-404
picture, 541
R, 404-408
Census, 277, 301, 308
centering, 55-57, 419, 464-466
changes the correlation of group-level
intercepts and slopes, 288-289
interactions and, 93
non-nested model, 292
Central Limit Theorem, 13-14, 27 regression coefficients, 14
chick brains, magnetic fields and, 481-484
child care, 189-193, 201, 224
child support enforcement in cities, 237-241
children with HIV, 249, 443-447
children's test scores, 31-51, 55-57
classical models for regression coefficients, 293
classical regression, as a special case of multilevel modeling, 258
cluster sampling, 437, 447-449
clustered data, 237-241
cockroaches, 126-127, 161-163
$\operatorname{coef}(), 43,156,260,267,280,352$
coin flipping, patterns in, 554
collinearity, $68,255,393$, see also identifiability
colMeans(), 520
colochos, canasta de, vii, xxii
colors(), 43
colSums(), 411
combining inferences from multiple imputations, 542
combining separate local regressions, 263
comparing two surveys, 442
comparisons, graphs as, 552-553
compiling Bugs, 416
complete pooling, 247, 252-259, 270, 348
Bugs model, 360
problems, 256
special case of multilevel modeling, 258
complete-case analysis, 531
compound models
imputing a variable that can be positive or zero, $537-538$
simulation of, 150-151, 537-538
computer display, 565,566
computing, 9-11, 547, 565-574
debugging, 415-417
instead of matrix algebra, 8
multilevel models, 345-434
practical advice, 415-434
confidence intervals, 18-20
continuous data, 18
discrete data, 18
proportions, 18
confidence-building, 415-417
confounding covariate, 169, 176, 181, 184, 196, 200, 202-203, 207, 212-213, 215
congressional elections, 76, 144-148, 197, 213, 233
conjunctive item-response or ideal-point model, 319
connect times on the web, 492-493
Connecticut, what's the matter with, 310-314
constant term, 251, 349
constraining a batch of coefficients to sum to zero, 326
constructed observational study, 210
constructive choice models, 127-131
contextual effect, 481
continuous and discrete predictors, 66
continuous probability simulation, 152
contrasts, 462-466
analysis of variance, 496-498
computing in R, 464
convergence of iterative simulations
monitoring, 352
pictures, 357
correlation, 57-59, 265, 389
coefficient estimates, 40
graph, 340
group-level intercepts and slopes, 279, 287-289
individual-level variables and group-level errors, 481
modeling in Bugs, 376-380
scaled inverse-Wishart model, 287
cost-benefit analysis, $128,153,454-455$
costs and benefits of multilevel modeling, 246-247
count data and binary data, 117
counterfactual, 170, 173, 184, 185, 188, 201, 206, see also potential outcome
counterfactual and predictive interpretations of regression, 34
covariance, see correlation
coverage of confidence intervals, 156
cows, 196
$C_{p}, 527$
curve(), 43, 353
cutpoints, for ordered logit or probit, 119-120, 332
estimating in Bugs, 383
data cleaning, for social networks survey, 333
data for examples, 11
data matrix, $37,238,239$
group-level, 239, 240, 243
imputation, 541
individual-level, 239, 243
non-nested data, 243
data model, 347
data reduction, 209
data sent to Bugs, 350, 356, 416
data subsetting, 326, 357, 547
speeding computation, 418
data.frame(), 48, 140, 452, 535
dbin(), 381
dcat(), 383
death penalty, 19, 116, 243-244, 320-321, 540-541
debugging, 415-417, 434
diagram of general strategy, 416
decision analysis, well-switching example, 127-131
default line in graph, 556, 560
defaults in R functions, 452
degree distribution, estimated for men and women, 337
degrees of freedom, 41, 372, 488
inverse-Wishart distribution, 286
Democrats and Republicans, 310-314
dependent variable, see outcome
derived quantities, 366,367
design of sampling and experiments, 437-455
details in graphs, 560
deterministic or random imputation, 534, 537
deterministic part of a regression model, 31
deviance, 100, 105, 113, 524-526
deviance information criterion (DIC), 105, 525-527
instability in computation of, 526
dgamma(), 430
diagnostics
external validation, 48
residuals, 40, 47, 97-101
simulation-based, 155-166, 513-524
diarrhea, zinc, and HIV, 443-447
difference-in-differences estimation, 228, 231
difficulty parameter, in item-response model, 315-320
$\operatorname{dim}(), 147$
dimnames(), 400
discrepancy variable, 513
discrete and continuous predictors, 66, 107
discrete probability simulation, 152
discrimination parameter, in item-response model, 316
disjunctive item, 319
display (), 38-39, 565
distance to the nearest safe well, 88
distribution, 13-16
binomial, 16
bounding trick in Bugs, 382
Cauchy, 428, 430
folded noncentral t, 428
gamma, 335
$\log =$ TRUE option in R, 405
logistic, 85
Bugs, 384
lognormal, 15, 383
multivariate normal, 15
negative binomial, 115,336
normal, 13-15, 263
computing in R, 405
truncated, 407
Poisson, 16, 110-116, 335
scaled inverse-Wishart, 284-287, 376-380
t, $124,372,428$
truncated normal, 407
Wishart, 284-287, 298, 376-380
divide by 4 rule, for interpreting logistic regression, 82
dividing by two standard deviations, 56-57
dlnorm(), 383
dlogis(), 384
dmnorm(), 376
dnorm(), 353, 354, 404
dog experiment, 515-524
model comparison, 526
observed and replicated data, 516, 523
Douglas, William, 318
$\operatorname{dt}(), 372,384$
dummy variable, see indicator
dunif(), 355
dwish(), 377
dynamic graphics, 563
earnings
height and, 50, 53-54, 75, 126, 287, 290-292
logarithmic models, 59-65
mixed discrete/continuous data, 126
econometrics and biostatistics, 231
education as categorical input variable, 95
educational children's television programs, see Electric Company and Sesame Street
educational testing, 317, 430-434
effect size, why more important than sample size, 439
effective sample size, 352
elasticity, 64, 76
election forecasting, graphs of, 557, 562
election fraud, 23-26
Electric Company experiment, 174-186
graph of data, 552
multilevel model, 503-505
Emacs, 565
equal variance of errors, 46
equals(), 384, 405
Erdos-Renyi model, 334
error rate, 99
errors, distinguished from residuals, 387
exam scores, actual vs. guessed, 558, 559
examples, data for, 11
exchangeability and prior distribution, 347
exclusion restriction, see causal inference, instrumental variables, assumptions
expected(), 123
experiment, see causal inference, randomized experiment
experimental design, 437-455
experimental economics, 331
explained variance, see R^{2}
exploratory data analysis, 551
exposure, in Poisson model, 111-113
expression(), 148, 353
external validation, 48
election polls, 309
external validity, 174
F-test, 489
factor, 68
factor analysis, 296
factor(), 255, 349
fake-data simulation, 50, 155-158
Bayesian inference and, 434
checking coverage of intervals, 365
multilevel model, 363-365
residual plots, 157-158
sample size and power calculations, 449-454
using Bugs, 363-365
feeling thermometer, 86
figure skaters, 248
finite-population variance, 459-462, 499
analysis of variance (ANOVA), 491
Bugs, 460
graph, 461
unmodeled coefficients, 462
fit many models, 547
fitted(), 158
fitting multilevel models, 259-262, 345-434
fitting the wrong model, 165
fixed effects, 231, 244-246, 259, 261
finite-population inferences and, 461
many definitions, 245, 248
R, 260
why we avoid the term, $2,226-228$, 245
fixef(), 260, 280
flight-simulator experiment, 289-290, 297, 464-466
analysis of variance, 488
Bugs model, 380
superpopulation and finite-population variance, 459-460
folded noncentral t distribution, 428
forecasting elections, 294-296
Fragile Families study, 238
function(), 350, 401
functions in R, 139, 147, 151, 404, 534, 535
fundamental problem of causal inference, 171-172, 191
gain scores, 177, 195
Gallup Report, 560
GAMM package, 567
gamma distribution, 335
generalized additive model, 298, 567
generalized estimating equations, 248
generalized linear model, 109-133
analysis of variance (ANOVA), 491, 493-494
binomial, 116-117
building, 125-127
cutpoints, 119-120
deviance, 100, 105, 113
latent-data formulation, 384
logistic, 79-108
logistic-binomial, 109, 116-117
multilevel, 325-342
multinomial logit and probit, 110, 119-124
negative binomial, 115
ordered logit, 119-124
Bugs, 383
multilevel, 331-332
others, 127
Poisson, 109-116
Bugs, 382
compared to binomial, 112
exposure, 111-113
overdispersion, 382
prediction, 272
predictive comparisons, 466-473
probit, 109, 118-119
probit or logit, 118
robit as robust alternative to logit and probit, 124-125
robust, 110
simulation, 148-151
thresholds, 119-120
Gibbs sampler, 385, 397-402
censored data, 406-408
linear transformation to speed convergence, 419-427
model building and, 402
multilevel model, 398-402
picture, 398
programming in R, 399-402, 412
redundant parameters, 419-427
slow convergence, 424
social networks model, 410
updating functions in R, 399-402
glm(), 79, 110, 565
global variables in R, 400, 412
goodness-of-fit, see model checking
grades, predicting, 157
graphics, 42-45, 548, 551-563
comparisons, 552-553
general advice, 562
instead of tables, 328, 337
jittering, 32
no single graph does it all, 552-553
plotting regression coefficients, 337, 341
plotting symbols, 555
R, 562
scatterplot with regression lines superimposed, 35, 42-45
shape of the plotting region, 556
showing fitted models, 551, 553
symbols and auxiliary lines, 554
theory of, 562
why, 551
group, 261
group indicators, 264
group- and individual-level data matrices, 239, 243
imputation, 541
group-level predictors, 265-269, 271
along with group indicators, 269, 293, 463-464, 498
Bugs model, 361
varying-intercept, varying-slope models, 280
group-level standard deviation, 270
guessing ages, 299
guessing, in item-response model, 319
handedness, 66
hard constraint, 257
hazard regression, 298
height, 139
earnings and, 50, 53-54, 75, 126, 287, 290-292
logarithmic models, 59-65
mixture model for, 14
parents and children, 58
weight and, 41, 74, 402-408
help in Bugs, 565
help in R, 405, 565, 567
heteroscedasticity (unequal variances), 297
hett package for robust regression, 110, $124,133,567$
hist(), 137, 536, 562
histograms, 561
HLM, multilevel modeling in, 573
holding other predictors constant, difficulty of, 34
homeless people, 333
hot-deck imputation, 538
how many groups, 275-276
how many observations per group, 275-276
how many x's survey, 332-342
hyperparameter, 1,258
hypothesis testing, 20-26
I(), 215, 383, 384, 405, 538
ideal-point model, 314-321
multilevel, 316
picture, 315
redundant parameters in Bugs, 426
two-dimensional, 319
identifiability, 419, 420
Bayesian regression and, 393
categorized predictors and, 68
causal inference, 170
constant term in non-nested models, 381
ideal-point model, 318
instrumental variables, 220-221, 224
item-response model, 315
likelihood and, 392
linear regression, 68
logistic regression, 86, 104, 107
social networks model, 336
ifelse(), 126, 150, 384, 403, 534
ignorability, 182-184, 186, 231, 530, 542, see also causal inference
imbalance, see causal inference, balance
imputation, see missing data
impute(), 535
income and voting, 79-84, 105, 107, 310-314
incremental cost-effectiveness ratio, 153
incumbency, 197, 233
independence of errors, 46
independent variable, see input variable
index number, don't graph by, 553
index variable, 67, 238, 252
creating in R, 348
non-nested models, 289
indicator variable, 67, 238, 244-246, 255
default, reference, or baseline condition, 68
individual- and group-level data matrices, 239, 243
imputation, 541
Infant Health and Development Program, see child care
inference, see statistical inference
informative prior distribution, 392-393
initial values sent to Bugs, 350, 356, 369-370, 416
restricted parameter space, 384
inprod(), 361, 378, 379
input variables, as distinguished from predictors, 37,466
install.packages(), 567
instrumental variables, see causal inference
interactions, 34-36, 242, 453
centering the input variables, 93
graphing, 36, 94, 313
logistic regression, 92-96
predictive comparisons and, 469
sample size and, 438
treatment effects, 178-180, 189, 205
varying slopes as example of, 282-283
when to look for, 36
intercept, 33,35 , see varying intercepts and slopes
intermediate outcome, see causal inference, controlling for post-treatment variable
internal validity, 174
interpreting regression coefficients, see linear regression, logistic regression, generalized linear model, and multilevel model
interquartile range (IQR), 70
intraclass correlation (ICC), 258, 448
inverse variance, used in dnorm() in Bugs, 354-355
inverse(), 377
inverse-gamma distribution, why we do not use as prior distribution for variance parameters, 430-434
inverse-logit function, 80
invlogit(), 149
item-response model, 314-321
guessing, 319
multilevel, 316
picture, 315, 317
redundant parameters in Bugs, 426
two-dimensional, 319
iterative regression imputation, 539
iterative simulation, 408-409

Jacobian for nonlinear transformations, 409, 430
Jaycees, 334, 335, 340
jitter.binary(), 89
jittering, 32, 554
knowing when to give up, 419
Lac Qui Parle County, 253
large regression with correlated errors, 265
latent-data formulation for logistic regression, 85-86, 120
latin square, 292, 297, 497-501
Latinos, hypothetical survey of, 454
least squares, 39, 387-390
augmented data and multilevel model, 396-397
weighted, 389
legislative redistricting, 555
length(), 157
level, 68
lgamma(), 411
library(), 567
likelihood, 347, 387-414
censored data, 404
generalized linear model, 389-390
inferential uncertainty and simulation, 392
logistic regression, 389
picture, 390, 391, 395, 396
Poisson regression, 390
social networks model, 409-413
surface, 390-392
linear predictor, 79, 305
linear regression, 31-77, 387-390
assumptions, 45-47
Bayesian inference, 346
binary predictor, 31
Bugs model, 360
compared to principal component line, $57-58$
continuous predictor, 32
correlation and, 57-59
counterfactual interpretation, 34
diagnostics, 45-47
displaying several, 73-74
fitting in R, 38-39
general principles for building models, 69
inferential uncertainty, 40
interactions, 34-36
interpreting coefficients, 33-34
interactions, 35-36
least squares, 39
matrix notation, 388
missing-data imputation, 533-538
multiple predictors, 32-34
notation, 37-38
one predictor, 31-32
picture of matrix, 37
prediction, 47-49, 70-73, 272
predictive interpretation, 34
sample size and power calculations, 446, 451
simulation, 140-148
standard error, 40
statistical inference, 37-42
transformation, 53-77
validation, 47-49
linear transformation, 14, 53-54, 88, 95, 122, 294
centering a batch of multilevel coefficients, 464-466
prior distribution and, 355
speeding convergence of Gibbs sampler, 419-427
linearity, 46
link function, 109
list(), 143, 350
$\operatorname{lm}(), 38-39,402,565$
$\operatorname{lmer}(), 259-262,266,267,277,566,573$
compared to Bugs, 386
limitations, 262, 304, 345
logistic regression, 302
non-nested model, 289
six quick examples, 568-569
varying intercepts and slopes, 279-289
local average treatment effect (LATE), 219-220, 229, 233
$\log (), 59$
log-log model, 64
$\log 10(), 61$
logarithmic transformation, 59-65, 98, 252
even when not necessary, 65
interpreting regression coefficients, 60
interpreting variance parameters, 327
picture, 60
why we usually don't use base 10 , 60-61
logistic distribution, 85
Bugs, 384
close to normal with standard deviation 1.6, 86, 118, 131
logistic regression, 79-108
binned residual plot, 105
Bugs, 381-382
latent-data formulation, 384
choice models in one and multiple
dimensions, 128-131
compared to probit, 118, 129
computing using lmer(), 302
deviance, 100, 105
divide by 4 rule for interpreting coefficients, 82
graph of coefficient estimates, 306
graphs of data and fitted curves, 307
ideal-point model, 314-320
identifiability, 86, 104, 107
inference, 83
interactions, 92-96
interpreting coefficients, 81-84, 89
item-response (Rasch) model, 314-320
latent-data formulation, 85-86, 384
logit and logit ${ }^{-1}$ functions, 80
missing-data imputation, 533-538
multilevel, 301-323
Bugs, 381-382
formula, 302, 303
graphing, 304-310
interpreting coefficients, 304
non-nested, 302-304, 320-321
overdispersion, 320-321
odds ratios, 82-83
pictures, 80
plotting data and fitted curve, 80, 84
predicntive comparisons, 81
prediction, 272
predictive comparisons, 101-104, 466-473
propensity score, 207-208
separation, 104, 107
simulation, 148
standard error, 83
two predictors, 90-92
varying-intercept, varying-slope model, 310-314
wells in Bangladesh, 86-92
logistic-binomial model, 109, 116-117
overdispersion, 116
logit, see logistic regression
logit(), 381
lognormal distribution, 15, 383
looping indexes in Bugs, 353, 366, 367
looping, for power calculation, 452
lowess, 298
lurking variable, 169
magnetic fields and brain functioning, 481-484
Mahalanobis distance, 207
many predictors, multilevel models for, 293-296
maps, 556-557
Markov chain Monte Carlo (MCMC), 408-409
MASS package, 122, 567, 573
matching, 206-212
missing-data imputation, 538
propensity score, 207-210, 232
R packages for, 230
matching(), 208
maternal IQ, 32
matrix notation, 37-38, 284-287
matrix of predictors
group-level, 252
individual-level, 251
matrix of simulations, 146, 149, 353, 358
Matrix package, 259, 566
$\max (), 381$
maximum likelihood, 388-390
censored data, 404-405
generalized linear model, 389-390
logistic regression, 389
MCMCpack, 567
mean(), 56, 359, 382, 477
mediator, see causal inference, controlling for post-treatment variable
men and women, 337
mesquite bushes, 68-73
meta-analysis, 386, 438
Metropolis algorithm, 385, 408-409
picture, 408
social networks model, 410
midterm and final exams, 157
millet crop, 292
millimeters, inches, and miles, 53
$\min (), 381$
missing at random (MAR), 530, 542
impossibility of verifying, 531
missing completely at random (MCAR), 530
missing data in R and Bugs, 529
missing not at random (MNAR), 530
missing values, not allowed in unmodeled data, 416, 529
missing-data imputation, 333, 529-543
available-case analysis, 532
Bugs, 367
complete-case analysis, 531
congressional elections, 145
deterministic or random, 534, 537
iterative, 539
many variables, 539-540
matching, 538
model-based, 540-541
models, 530-531
multilevel data structures, 541
one variable, 533-538
simple methods, 531-533
topcoding, 534
Mississippi, as poor state, 313
mixed discrete/continuous data, 126, 537
mixed effects, see random effects

MLWin, multilevel modeling in, 573
mnp package, 110
model checking, see posterior predictive checks and residuals
using simulation, 158-165, 513-524
model comparison, 524-526
model extrapolation, 169, 185, 201, 209, 213
model-based imputation, 540-541
modeled data and parameters, 367
modeling the coefficients of a large regression model, 264
monotonicity, see causal inference, instrumental variables, assumptions
month of arrest, 21, 331
more than two varying coefficients, 285
mothers and children, 31-51, 55-57
motivations for multilevel modeling, 6-8, 246-247
mtext(), 520
multilevel model, 1, 237-342, 463
alternative to selecting regression predictors, 294
analysis of variance (ANOVA), 490-502
assumptions, 247
Bayesian inference, 393
Bayesian perspective, 346
building, 293-296
Gibbs sampler, 402
building from classical regression, 270
causal inference, 503-512
combining regression inputs, 293-296
compared to classical regression, 463
comparison to simpler methods, 310
complexity, 246
computing, 345-434
equivalent sample size, 258, 268
factor analysis and, 296
fake-data simulation, 363-365
fitting in Bugs, 345-386
fitting in R, Stata, SAS, and other software, 568
fitting using lmer(), 259-262
five ways to write, 262-265
generalized linear model, 325-342
Gibbs sampler, 398-402
programming in R, 399-402
graphing, 304-310
group-level predictors, 265-269, 568
group-level variance, superpopulation and finite-population, 459-462
how many groups needed, 275-276
how many observations per group needed, 275-276
imputation at different levels, 541
inference for groups with no data, 306
instead of comparing significance levels, 482
instrumental variables, 509-511
interpreting coefficients, 268
least squares with augmented data, 396-397
logistic regression, 301-323, 568
Bugs, 425
computing using lmer(), 302
non-nested, 302-304, 320-321
overdispersion, 320-321
matrix notation, 284
negative binomial, 332-342
non-nested, 289-293, 569
Bugs, 380-382, 424
identifiability of constant term, 381
negative binomial, 332-342
redundant parameters, 421-423
notation, 251-252
ordered logistic regression, 331-332
plot of group-level estimates and fitted regression line, 266, 307
Poisson (overdispersed), 332-342, 382, 568
pooling, 252-259
prediction, 272-275, 361-363
predictive comparisons, 470
prior distribution for variance parameters, 427-434, 499-501
$R^{2}, 473-477$
redundant parameters, 420
sample size and power calculations, 447-454
six quick examples, 568-569
small number of groups, 431-432, 461
statistical significance, 271
summarizing and displaying, 261
understanding and summarizing, 457-486
variance parameters, 480-481
varying intercepts and slopes, 279-289, 568
varying slopes without varying intercepts, 283-284
varying the number of groups, 330
multilevel modeling
costs and benefits, 9, 246-247
motivations, 6-8, 246
when most effective, 270
multilevel structures, 237-249
data matrix, 238-240, 243
imputation, 541
multinomial logit and probit models, 110, 119-124
storable votes, 120-124
multiple chains, necessary to monitor mixing, 356-358
multiple comparisons, why we do not worry about, 22, 484-485
multiple imputation, combining inferences, 542
multiplicative model, 59
multivariate imputation, 539-540
multivariate normal distribution, 15
mvrnorm(), 143
n.chains, number of chains when running Bugs, 356-358, 369
n.eff, effective sample size of Bugs fit, 352, 358
n.iter, number of iterations when running Bugs, 356-358, 369
n.sims, 143
n.thin option in Bugs, 518

NA, missing value in R and Bugs, 50, 362, 529
naming inputs, 62
National Election Study, 73, 311, 342, 385
National Longitudinal Survey of Youth, 210
National Supported Work, 231
natural log, 60-61
ncol(), 361, 519
negative binomial distribution, 115, 336
multilevel model, 332-342
neighborhoods and crime, 325, 342
nested subscripts in Bugs, 372
networks, 297, 333
New York City schools, 458-459
Newcomb's speed of light data, 159
Nicoles, 333, 335, 340
nmatch package, 230
no data, multilevel inference for groups with, 306
no pooling, 247, 252-259, 270, 349
Bugs model, 360
overestimates between-group variation, 253
picture, 253
problems, 256
special case of multilevel modeling, 258
non-nested models, 241-244, 248-249, 289-293
Bugs, 380-381
varying intercepts and slopes, 291
where to put the intercept or constant term, 381
nonidentifiability, see identifiability
noninformative prior distribution, 347, 355

Bugs, 354, 355
nonlinear prediction, 147
nonparametric regression, 297
normal distribution, 13-15, 263
computing in R, 405
estimated regression coefficients, 15, 40, 83
inverse-variance parameterization in Bugs, 354-355
regression errors, 46
truncated, 407
notation, 263
capital letters for matrices, lowercase for vectors and scalars, 167, 252, 376, 383
cluster sampling, 447
linear regression, 37-38
multilevel model, 251-252
parameters and probability distributions, 13
varying intercepts and slopes, 284
nrow(), 519
number of iterations when running Bugs, 356-358, 369
number of observations and groups needed, 275-276, 278
number of sequences when running Bugs, 356-358, 369
numerical optimization in R, 405
nutrients and cancer, 294
NYPD stops, see police stops
O'Connor, Sandra Day, 318
observational study, see causal inference odds ratios and logistic regression, 82-83
offset, in Poisson regression, 112, 326, 382
Ohio, as intermediate state, 313
Olympics, 248, 485
omitted variable, 169
omniscience, 195
one-way analysis of variance, 494
open-ended modeling in Bugs, 370-372
OpenBugs, 11, 565, 574, see also Bugs
optim(), 405, 413
optimal design, 455
options(), 561
order(), 519
ordered and unordered categorical outcomes, 119, 123
ordered logistic model, 119-124
fitting in Bugs, 383
multilevel, 331-332
storable votes, 120-124
outcome, 37, 251
outer(), 411
overdispersion, 21, 114-116, 320
adjusting standard errors, 115, 117
groups in the social network, 338
multilevel Poisson model, 335-336, 382, 409-413
simulation, 150
variance components and, 325
overlap, see causal inference
pain scores, observed vs. expected, 558
panel-corrected standard errors, 248
$\operatorname{par}(), 305$
parameter expansion, see redundant parameters
parameters saved from Bugs, 350, 356
partial pooling, 252-259, 394, 477-480
Bayesian, 394
formula, 253, 258, 269, 477
graph, 479
group-level predictors and, 269
picture, 253
plotting data and fitted lines, 257, 266
set of regression predictors, 295
summarizing a fitted multilevel model, 477-480
partisan bias, 555
paste(), 353
pch, 43
p_{D}, effective number of parameters in a Bayesian inference, 525
phase diagram for decision analysis, 130
plot(), 43, 350
plots of replicated datasets, 160, 163
pmin(), 478
pnorm(), 404
points(), 43
Poisson model, 16, 109-116, 335
checking using simulation, 161-163
compared to binomial, 112
exposure, 111-113
interpreting coefficients, 111
multilevel, 325-331
offset, 326
overdispersion, 114-116
police stops, 112-116
zero-inflated, 126-127
police stops, 5-6, 21, 112-116, 325-331, 342
Bugs model, 382
graph, 328
political ideology, 73
political party identification, 73-74
pollution, 76
polr(), 110, 122
pooling, see complete pooling, no pooling, partial pooling
pooling factor, 478-480
posterior distribution
picture, 395, 396
programming in R, 411
social networks model, 409
posterior predictive checks, 158-165, 513-515
data display for dog example, 516, 523
numerical summary, 521
time plot, 519, 520, 522
using Bugs, 518
using R, 518
posterior uncertainty, 149
postprocessing Bugs output, 359
poststratification, 178, 181, 206, 301-310
formula, 301, 308
R code, 308
potential outcome, 168, 171, 183, 186, 189, 191, 219
close substitutes, 171-172
interpreting regression coefficients, 34
pow(), 355
power calculation, 437-455
2.8 standard errors, 441
classical, 439-447
general concerns, 439
inference for continuous outcomes, 443-447
inference for linear regression, 451
inference for proportions, 439-443
inference for regression coefficients, 446-447
inherently speculative, 445, 447
multilevel models, 447-454
pictures, 440, 441
unequal sample sizes, 443
pre-election polls, 560
precinct, 325
predict(), 48, 115, 208, 535
prediction, 47-49, 68-73
Bugs, 361-363
interpreting regression coefficients, 34
model checking and, 513-515
multilevel model, 272-275, 361-363
new observations and new groups, 272-275, 361-363
nonlinear, 274
predictive checks, see posterior predictive checks
predictive comparison, $81,101-104,167$, 168, 466-473, 485
comparing models, 472-473
formula, 466
general approach, 468
general notation, 103
graph, 467, 468
interactions and, 103
model summary, 471
predictive simulation, 140, 147-151
binomial distribution, 149
generalized linear models, 148-151
latent logistic distribution, 149
linear regression, 140-148, 152
model checking and, 158-165, 513-524
predictive standard deviation, 274
predictive uncertainty, simulation of, 140
predictors, as distinguished from input variables, 37,466
presidential elections, 3-4, 79-84, 294, 301-314, 493, 557, 560
principal component line, 57
principles of modeling in Bugs, 366-369
print(), 350
prior distribution, 143, 345-348, 413, 427-434
Bugs, 354
effect on posterior distribution, picture, 430, 432
informative, 392-393
scale, 430
inverse-gamma, why we do not use, 430-434
noninformative, 347, 354, 355
picture, 395, 396
provisional nature of, 347
scale, 355
uniform, 428-429
variance parameters, 432-434, 499-501
weakly informative, 431-432
Wishart model, 377
prison sentences, example for predictive comparisons, 470
probability, see distribution
probability models, simulation of, 137-140
probability of a tied election, 148
probit model, 109, 118-119
compared to logit, 118, 129
programming in R, 567
Progresa, 508-509
propagating uncertainty, 142,152
propensity score matching, see causal inference
provisional nature of prior distributions, 347
psychological experiment of pilots on flight simulators, 289-290
quantile(), 141, 359
quasibinomial family, 117
quasipoisson family, 115
quick tips, 547-549
R, 10-11, 298, 565, 573
abline(), 353, 520
$\operatorname{apply}(), 44,353,477$
$\operatorname{array}(), 308$
as.bugs(), 413
as.bugs.array(), 400
as.vector(), 348
attach.bugs(), 305, 352, 358
Bayesian inference for social networks model, 409-413
brlr package, 104
bugs(), 350, 567
c(), 350
calling Bugs from, 350-352
cbind(), 43, 146, 157, 361, 529
censored data, 404-408
$\operatorname{coef}(), 43,156,260,267,280,352$
colMeans(), 520
colors(), 43
colSums(), 411
console, 565
curve(), 43, 353
data.frame(), 48, 140, 452, 535
default values in functions, 452
digits, 561
$\operatorname{dim}(), 147$
dimnames(), 400
display(), 38-39, 565
dnorm(), 404
expected(), 123
expression(), 148, 353
factor(), 255, 349
fitted(), 158
fixef(), 260, 280
function(), 350, 401
GAMM package, 567
Gibbs sampler, 399-402
censored data, 406-408
$\operatorname{glm}(), 79,110,565$
global variables, 400, 412
graphics, 562
graphics window, 565
graphing models fit in Bugs, 352
help, 405, 565, 567
hett package for robust regression, 110, 124, 133, 567
hist(), 137, 536, 562
I(), 215, 538
ifelse(), 126, 150, 384, 403, 534
impute(), 535
install.packages(), 567
invlogit(), 149
jitter.binary(), 89
length(), 157
lgamma(), 411
library(), 411, 567
list(), 143, 350
$\operatorname{lm}(), 38-39,402,565$
$\operatorname{lmer}(), 259-262,266,267,277,566$, 573
limitations, 262, 304, 345
logistic regression, 302
non-nested model, 289
six quick examples, 568-569
varying intercepts and slopes, 279-289
$\log (), 59$
$\log 10(), 61$
log=TRUE option, 405
MASS package, 122, 567, 573
matching(), 208
Matrix package, 259, 566
MCMCpack package, 567
mean(), 56, 359, 477
mnp package, 110
mtext(), 520
mvrnorm(), 143
NA, 50
ncol(), 361, 519
nmatch package, 230
nrow(), 519
optim(), 405, 413
options(), 561
order(), 519
outer(), 411
par(), 305
paste(), 353
pch, 43
plot(), 43, 350
pmin(), 478
pnorm(), 404
points(), 43
polr(), 110, 122
predict(), 48, 115, 208, 535
print(), 350
probit family, 118
programming, 567
quantile(), 141, 359
quasibinomial family, 117
quasipoisson family, 115
R2WinBUGS, 565
ranef(), 260, 280
range(), 352, 520
rbinom(), 137, 149
read.dta(), 411
read.table(), 49, 348
rep(), 452
replicate(), 139, 147
replicated data for predictive checking, 518
return(), 401
rnegbin(), 150
rnorm(), 106, 141, 155, 356, 401, 407
rnorm.trunc(), 407
rowMeans(), 180
rowSums(), 147, 411
rpois(), 150
runif(), 150, 353, 356
rwish(), 377
sample(), 138, 278, 418, 452, 534
sapply(), 151
save(), 362
sd(), 56, 462
se.coef(), 156, 565
se.fixef(), 261
se.ranef(), 261
sem package, 223
sigma.hat(), 273, 565
$\operatorname{sim}(), 43,142,143,392,565$
sorting, 519
subset option in $\operatorname{lm}()$ and $\operatorname{glm}(), 107$, 126, 538
sum(), 147
summary (), why we don't use, 39
table(), 353
tlm(), 124, 133, 567
tsls(), 223
unique(), 348
updating functions for Gibbs sampler, 399-402
$\operatorname{var}(), 477$
R functions, 44, 139, 147, 151, 404, 534, 535
$R^{2}, 41,49,62,485$
adjusted, 475
Bayesian definition, 475
classical definition, 474
computation, 476
each level of a model, 474
interpretation for model with no constant term, 349
multilevel, 473-477
pictures, 42
why we do not define in terms of model comparison, 474
R2WinBUGS package, 565
\hat{R} for summarizing convergence of Bugs fit, 352, 358, 369
radon, 3, 36, 252-283, 348-369, 480-481
random effects, 244-246, 259
many definitions, 245, 248
R, 260
superpopulation inferences and, 461
why we avoid the term, 2,245
random imputation, 534, 537
randomized experiment, 171-181, 183, see also causal inference
ranef(), 260, 280
range(), 352, 520
Rasch model, 315-320
ratings, 298
ratio of parameters, 152
raw (unscaled) parameters, 377
compared to adjusted parameters, 423
rbinom(), 137, 149
read.dta(), 411
read.table(), 49, 348
recall, in social networks survey, 339
red states and blue states, 310-314
redundant parameters, 419-427
additive, 316, 326, 336, 382, 412, 419-423, 464-466
future implementations, 427
item-response and ideal-point models, 316
multiplicative, 424-427
Bugs, 424, 425
social network model, 336
reference condition, in classical no-pooling regression, 349
reference model, 347
regression, see linear regression, logistic regression, generalized linear models
regression coefficients, graph, 337, 341
regression discontinuity, 212-215
regression to the mean, 57-59
rejection, not the goal of model checking, 524
rep(), 452
repeated measurements, 241-243 graph, 450
replicate(), 139, 147
replicated data, for predictive checking, 514
replicated datasets, plotted, 160, 163
residuals, 40, 97-101
binned, 97-101, 559
distinguished from errors, 387
plot, 47, 48, 97, 114, 558
plot vs. predicted values, not vs. observed values, 157, 158
social network model, 341-342
square root, for Poisson model, 341-342
standard deviation of, 41
return(), 401
rnegbin(), 150
$\operatorname{rnorm}(), 106,141,155,356,401,407$
rnorm.trunc(), 407
robit regression, 124-125, 133, 320

Bugs, 384
generalization of logit and probit, 125
latent-data formulation, 384
picture, 124
robust regression, 110, 131
rodents, 106, 248, 322
rowMeans(), 180
rowSums(), 147, 411
rpois(), 150
runif(), 150, 353, 356
rwish(), 377
S and S-Plus, see R
sample size and interactions, 438
sample size calculation, 437-455
2.8 standard errors, 441
classical, 439-447
general concerns, 439
inference for continuous outcomes, 443-447
inference for linear regression, 451
inference for proportions, 439-443
inference for regression coefficients, 446-447
inherently speculative, 445, 447
multilevel models, 447-454
pictures, 440, 441
unequal sample sizes, 443
sample(), 138, 278, 418, 452, 534
sampling, design for, 437-455
sapply(), 151
SAS
code for matching, 230
multilevel modeling in, 570-571
save(), 362
scale of prior distribution, 355
scale-up model for estimation in a social network, 333
scaled inverse-Wishart distribution, 284-287, 298, 376-380
Scalia, Antonin, 318
scaling of predictors, 53
scatterplot
advice, 553-559
data and regression lines superimposed, 35
$\operatorname{sd}(), 56,460,462$
se.coef(), 156, 565
se.fixef(), 261
secret weapon, 73-74
income and voting, 311
pictures, 19, 74, 84
selection bias, 168, 231, see also causal inference
selection on observables, see ignorability
sem package, 223
separation in logistic regression, 104, 107
Sesame Street, 196, 216-220, 231, 509-511
sex ratio of births, 27, 137-139
shrinkage and partial pooling, 477
sigma.hat(), 273, 565
significance, see statistical significance
significant digits and uncertainty, 561
$\operatorname{sim}(), 43,142,143,392,565$
simple and complex models, 416
simulation, 19-20, 137-166
combined with analytic calculations, 148
comparing simulated to actual data, 158-165
compound models, 150-151, 537-538
coverage of confidence intervals, 156
displaying uncertainty in a fitted model, 149
fake data, 50, 155-158
generalized linear models, 148-151
how many draws are needed, 153
logistic regression, 148
matrix of simulated parameters and predictions, 146, 149
nonlinear predictions, 144-148
overdispersed models, 150
posterior predictive checks, 158-165, 513-524
predictive, 148-151
probability models, $137-140$
regression inferences, 140-148
replicated datasets, plotted, 160, 163
saved as vectors and matrices, 353 , 358
why necessary, 141
slope, see varying intercepts and slopes
small multiples plot, 255, 257, 266, 291, 560
logistic regression, 307
small-area estimation, 301-310
smoking, 36, 241-243
data matrix, 242, 243
Social Indicators Survey, 529-543
social networks, 332-342
Bayesian inference, 409-413
graph of data, 335
group sizes, 339
predicted from demographics, 337
residuals, 341-342
soft constraint, 257
software, 565-574, see also R, Bugs, Stata, SAS, SPSS, AD Model Builder, HLM, MLWin
data and code for examples, 11
getting started, 565
multilevel modeling, 573

S and S-Plus, see R
WinBugs and OpenBugs, see Bugs
speed dating experiment, 322,323
speed of light, 159
splines, 298
split-plot latin square, 498-501, 509
SPSS, multilevel modeling in, 571
square root transformation, 249, 535
standard deviation, see variance
standard error, 17, 40
picture, 40
proportions, 17
standardizing predictors, 54-57, 96
Stata
multilevel modeling in, 569-570
reading in data from, 50, 411
state-level opinions from national polls, 4-5, 301-310, 493-494
Bugs model, 381
statistical inference, 16-17, 37-42
graph of uncertainty, 40,83
measurement error model, 16
sampling model, 16
standard error, 40, 83
statistical significance, $42,69,83,94$
limitations of, 481-484
multilevel model, 271
problems with, 22-23
sample size and power, 440
stochastic learning in dogs, 515-524
Bugs model, 517, 521-524
model comparison, 526
stop and frisk, see police stops
storable votes, 120-124, 331-332, 386
Bugs model, 383
data and fitted curves, 121
strategy of debugging, 416
structural equation modeling, 231
subclassification, 206-207, 229
subset option in $\operatorname{lm}()$ and $\operatorname{glm}(), 107,126$, 538
subsetting data, 326, 357, 547
speeding computation, 418
sum of squares
analysis of variance, 488
least squares estimation, 387
sum(), 147
superpopulation, 167, 173
analysis of variance, 491, 500
variance, 459-462
computing in Bugs, 460
graph, 461
Supreme Court voting, ideal-point model for, 317
survey design, 437
survey weighting, 301-310
switches, 165
t distribution, 124, 131, 372, 428
table(), 353
tables, 563
teachers, effect of, 459
teaching evaluations and beauty, 51
test summary, 513-515
graphical, $160,163,516,519,522,523$
numerical, 23, 159, 161, 521
text editor, 565
thinning in Bugs, 418, 518
thresholds, for ordered logit or probit, 119-120
tied election, probability of, 148
time series, 297
checking a fitted model, 163-165
cross-sections, 243-244, 248
tlm()$, 124,133,567$
tobit model, 126, 132
topcoding, for missing-data imputation, 534
traffic accidents, 110-111
transformation, 53-77, 548
idiosyncratic, 65
linear, 53-54
logarithmic, 59-65, 98, 252
interpreting variance parameters, 327
square root, $65,249,535$
treatment effect, see causal inference
true values in fake-data simulation, 155, 363
truncated normal distribution, 407
tsls(), 223
twins, 138
two-factor experiment, 289-290
two-level classical regression, 240, 248, 270
two-stage least squares, see causal inference, instrumental variables
two-stage model for mixed discrete/ continuous data, 126, 537
two-way analysis of variance, 495, 496
U.S. Census, 277, 301, 308

UCLA, 332
Ulysses, 339
Umacs, 337, 410-413, 567
uncertainty, as distinguished from
variability, 457-459
uncontested elections, as missing data, 145
underdispersion, 21, 22
unemployment series, graph of data and replications, 163-165
unexpected patterns, discovering through graphs, 551
unexplained variance, see R^{2}
unique(), 348
units, $37,251,553$
unmodeled data and parameters, 364, 367, 378
unordered categorical regression, 124
updating functions in R, 399-402
uranium, as county-level predictor in radon model, 266
utility theory, 128
validation, 47-49
validity, 45,174
value added by schools, 458-459, 485
value function, 128
value of a statistical life, 197
$\operatorname{var}(), 477$
variability, as distinguished from uncertainty, 457-459
variance
explained and unexplained, 41, 473-477
group level, 270
models for, 297
multiple error terms, 264
non-nested models, 290, 291
predictive, 274
ratio of between to within, 258
residual, 41
superpopulation and finite-population, 459-462
varying intercepts, see multilevel model
varying intercepts and slopes, 1,237 ,

$$
279-289,549
$$

Bayesian perspective, 346
Bugs, 375-379
computing using lmer(), 282
graph, 450
group-level predictors, 280, 379-380
interactions, 282-283
logistic regression, 310-314
non-nested model, 291
notation, 284
pictures, 238
varying slopes without varying intercepts, 283-284
vector of simulations, 353, 358
vector-matrix notation, 37-38, 284-287
Bugs, 361
Vietnam War draft lottery, 225-226, 230
visual and numerical comparisons of replicated to actual data, 164
voting and income, 79-84, 105, 107, 310-314

Wald estimate for instrumental variables, 219, 221
wavelets, 298
weight
age and, 75
example of a lognormal distribution, 15
height and, 74, 402-408
weighted average, 19
weighted least squares, 389
wells in Bangladesh, 86-92, 105, 193
arsenic levels, 90
choice models, 127-131
map, 87
when does multilevel modeling make a difference, 247
WinBugs, see Bugs
WinEdt, 565
Wishart distribution, 284-287, 298, 376-380
world wide web connect times, 492-493
χ^{2} test, $25-26,114$
z-score, 50, 54
zero-inflated Poisson model, 126-127
zinc and HIV, 443-447

