CHAPTER 9

Causal inference using regression on the
treatment variable

9.1 Causal inference and predictive comparisons

So far, we have been interpreting regressions predictively: given the values of several
inputs, the fitted model allows us to predict y, considering the n data points as a
simple random sample from a hypothetical infinite “superpopulation” or probability
distribution. Then we can make comparisons across different combinations of values
for these inputs.

This chapter and the next consider causal inference, which concerns what would
happen to an outcome y as a result of a hypothesized “treatment” or intervention.
In a regression framework, the treatment can be written as a variable T:!

T — 1 if unit ¢ receives the “treatment”
‘ 0 if unit ¢ receives the “control,”

or, for a continuous treatment,
T; = level of the “treatment” assigned to unit 7.

In the usual regression context, predictive inference relates to comparisons between
units, whereas causal inference addresses comparisons of different treatments if
applied to the same units. More generally, causal inference can be viewed as a
special case of prediction in which the goal is to predict what would have happened
under different treatment options. We shall discuss this theoretical framework more
thoroughly in Section 9.2. Causal interpretations of regression coefficients can only
be justified by relying on much stricter assumptions than are needed for predictive
inference.

To motivate the detailed study of regression models for causal effects, we present
two simple examples in which predictive comparisons do not yield appropriate
causal inferences.

Hypothetical example of zero causal effect but positive predictive comparison

Consider a hypothetical medical experiment in which 100 patients receive the treat-
ment and 100 receive the control condition. In this scenario, the causal effect rep-
resents a comparison between what would have happened to a given patient had
he or she received the treatment compared to what would have happened under
control. We first suppose that the treatment would have no effect on the health
status of any given patient, compared with what would have happened under the
control. That is, the causal effect of the treatment is zero.

However, let us further suppose that treated and control groups systematically
differ, with healthier patients receiving the treatment and sicker patients receiving

1 We use a capital letter for the vector T (violating our usual rule of reserving capitals for
matrices) in order to emphasize the treatment as a key variable in causal analyses, and also to
avoid potential confusion with ¢, which we sometimes use for “time.”
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Distribution of measurements after experiment
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Figure 9.1 Hypothetical scenario of zero causal effect of treatment: for any value of pre-
vious health status, the distributions of potential outcomes are identical under control and
treatment. Howewver, the predictive comparison between treatment and control could be
positive, if healthier patients receive the treatment and sicker patients receive the control
condition.
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Figure 9.2 Hypothetical scenario of positive causal effect of treatment: for any value of
previous health status, the distributions of potential outcomes are centered at higher values
for treatment than for control. However, the predictive comparison between treatment and
control could be zero, if sicker patients receive the treatment and healthier patients receive
the control condition. Compare to Figure 9.1.

the control. This scenario is illustrated in Figure 9.1, where the distribution of
outcome health status measurements is centered at the same place for the treatment
and control conditions within each previous health status category (reflecting the
lack of causal effect) but the heights of each distribution reflect the differential
proportions of the sample that fell in each condition. This scenario leads to a positive
predictive comparison between the treatment and control groups, even though the
causal effect is zero. This sort of discrepancy between the predictive comparison
and the causal effect is sometimes called self-selection bias, or simply selection bias,
because participants are selecting themselves into different treatments.

Hypothetical example of positive causal effect but zero positive predictive
comparison

Conversely, it is possible for a truly nonzero treatment effect to not show up in the
predictive comparison. Figure 9.2 illustrates. In this scenario, the treatment has a
positive effect for all patients, whatever their previous health status, as displayed
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by outcome distributions that for the treatment group are centered one point to
the right of the corresponding (same previous health status) distributions in the
control group. So, for any given unit, we would expect the outcome to be better
under treatment than control. However, suppose that this time, sicker patients are
given the treatment and healthier patients are assigned to the control condition,
as illustrated by the different heights of these distributions. It is then possible to
see equal average outcomes of patients in the two groups, with sick patients who
received the treatment canceling out healthy patients who received the control.

Previous health status plays an important role in both these scenarios because
it is related both to treatment assignment and future health status. If a causal
estimate is desired, simple comparisons of average outcomes across groups that
ignore this variable will be misleading because the effect of the treatment will
be “confounded” with the effect of previous health status. For this reason, such
predictors are sometimes called confounding covariates.

Adding regression predictors; “omitted” or “lurking” variables

The preceding theoretical examples illustrate how a simple predictive comparison is
not necessarily an appropriate estimate of a causal effect. In these simple examples,
however, there is a simple solution, which is to compare treated and control units
conditional on previous health status. Intuitively, the simplest way to do this is to
compare the averages of the current health status measurements across treatment
groups only within each previous health status category; we discuss this kind of
subclassification strategy in Section 10.2.

Another way to estimate the causal effect in this scenario is to regress the outcome
on two inputs: the treatment indicator and previous health status. If health status
is the only confounding covariate—that is, the only variable that predicts both the
treatment and the outcome—and if the regression model is properly specified, then
the coeflicient of the treatment indicator corresponds to the average causal effect in
the sample. In this example a simple way to avoid possible misspecification would
be to discretize health status using indicator variables rather than including it as
a single continuous predictor.

In general, then, causal effects can be estimated using regression if the model
includes all confounding covariates (predictors that can affect treatment assignment
or the outcome) and if the model is correct. If the confounding covariates are all
observed (as in this example), then accurate estimation comes down to proper
modeling and the extent to which the model is forced to extrapolate beyond the
support of the data. If the confounding covariates are not observed (for example, if
we suspect that healthier patients received the treatment, but no accurate measure
of previous health status is included in the model), then they are “omitted” or
“lurking” variables that complicate the quest to estimate causal effects.

We consider these issues in more detail in the rest of this chapter and the next,
but first we will provide some intuition in the form of an algebraic formula.

Formula for omitted variable bias

We can quantify the bias incurred by excluding a confounding covariate in the
context where a simple linear regression model is appropriate and there is only one
confounding covariate. First define the “correct” specification as

Yi = Po + B5iTi + Poxi + € (9.1)
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where T; is the treatment and x; is the covariate for unit <.
If instead the confounding covariate, x;, is ignored, one can fit the model

yi = 0o + BT + €
What is the relation between these models? To understand, it helps to define a
third regression,

i =7 +nTi +vi
If we substitute this representation of x into the original, correct, equation, and
rearrange terms, we get

Yi = Bo + B0 + (b1 + Bom1)Ti + € + Bovi (9.2)
Equating the coefficients of T in (9.1) and (9.2) yields

Bi =B+ am

This correspondence helps demonstrate the definition of a confounding covariate. If
there is no association between the treatment and the purported confounder (that
is, v1 = 0) or if there is no association between the outcome and the confounder
(that is, B2 = 0) then the variable is not a confounder because there will be no bias
(8571 =0).

This formula is commonly presented in regression texts as a way of describing
the bias that can be incurred if a model is specified incorrectly. However, this term
has little meaning outside of a context in which one is attempting to make causal
inferences.

9.2 The fundamental problem of causal inference

We begin by considering the problem of estimating the causal effect of a treatment
compared to a control, for example in a medical experiment. Formally, the causal
effect of a treatment T on an outcome y for an observational or experimental unit
1 can be defined by comparisons between the outcomes that would have occurred
under each of the different treatment possibilities. With a binary treatment 7" taking
on the value 0 (control) or 1 (treatment), we can define potential outcomes, y? and
y} for unit 7 as the outcomes that would be observed under control and treatment
conditions, respectively.?(These ideas can also be directly generalized to the case of
a treatment variable with multiple levels.)

The problem

For someone assigned to the treatment condition (that is, 7; = 1), y} is observed
and y? is the unobserved counterfactual outcome—it represents what would have
happened to the individual if assigned to control. Conversely, for control units, y
is observed and y; is counterfactual. In either case, a simple treatment effect for
unit ¢ can be defined as

treatment effect for unit i =y} — ¢!

Figure 9.3 displays hypothetical data for an experiment with 100 units (and thus
200 potential outcomes). The top panel displays the data we would like to be able
to see in order to determine causal effects for each person in the dataset—that is,
it includes both potential outcomes for each person.

2 The word “counterfactual” is sometimes used here, but we follow Rubin (1990) and use the
term “potential outcome” because some of these potential data are actually observed.
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(Hypothetical) complete data:

Pre-treatment Treatment Potential Treatment

inputs indicator  outcomes effect
Unit, ¢ X; T; T T
1 2 1 50 0 69 75 6
2 3 1 98 0 111 108 -3
3 2 2 80 1 92 102 10
4 3 1 98 1 112 111 -1
100 4 1 104 1 111 114 3

Observed data:

Pre-treatment Treatment Potential Treatment

inputs indicator ~ outcomes effect
Unit, ¢ X T; T yi —yy
1 2 1 50 0 69 ? ?
2 3 1 98 0 111 ? ?
3 2 2 80 1 7 102 ?
4 3 1 98 1 ?7 111 ?
100 4 1 104 1 ?7 114 ?

Figure 9.3 Illustration of the fundamental problem of causal inference. For each unit, we
have observed some pre-treatment inputs, and then the treatment (T; = 1) or control
(T; = 0) is applied. We can then observe only one of the potential outcomes, (y?,y;). As
a result, we cannot observe the treatment effect, yi — 42, for any of the units.

The top table shows what the complete data might look like, if it were possible to observe
both potential outcomes on each unit. For each pair, the observed outcome is displayed in
boldface. The bottom table shows what would actually be observed.

The so-called fundamental problem of causal inference is that at most one of these
two potential outcomes, y? and y}, can be observed for each unit i. The bottom
panel of Figure 9.3 displays the data that can actually be observed. The y} values
are “missing” for those in the control group and the y? values are “missing” for
those in the treatment group.

Ways of getting around the problem

We cannot observe both what happens to an individual after taking the treatment
(at a particular point in time) and what happens to that same individual after
not taking the treatment (at the same point in time). Thus we can never measure
a causal effect directly. In essence, then, we can think of causal inference as a
prediction of what would happen to unit ¢ if 7; = 0 or T; = 1. It is thus predictive
inference in the potential-outcome framework. Viewed this way, estimating causal
effects requires one or some combination of the following: close substitutes for the
potential outcomes, randomization, or statistical adjustment. We discuss the basic
strategies here and go into more detail in the remainder of this chapter and the
next.
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Close substitutes. One might object to the formulation of the fundamental problem
of causal inference by noting situations where it appears one can actually measure
both y? and y} on the same unit. Consider, for example drinking tea one evening
and milk another evening, and then measuring the amount of sleep each time. A
careful consideration of this example reveals the implicit assumption that there are
no systematic differences between days that could also affect sleep. An additional
assumption is that applying the treatment on one day has no effect on the outcome
on another day.

More pristine examples can generally be found in the natural and physical sci-
ences. For instance, imagine dividing a piece of plastic into two parts and then
exposing each piece to a corrosive chemical. In this case, the hidden assumption is
that pieces are identical in how they would respond with and without treatment,
that is, y¥ = 9 and yi = 3.

As a third example, suppose you want to measure the effect of a new diet by
comparing your weight before the diet and your weight after. The hidden assump-
tion here is that the pre-treatment measure can act as a substitute for the potential
outcome under control, that is, y? = x;.

It is not unusual to see studies that attempt to make causal inferences by substi-
tuting values in this way. It is important to keep in mind the strong assumptions
often implicit in such strategies.

Randomization and experimentation. A different approach to causal inference is
the “statistical” idea of using the outcomes observed on a sample of units to learn
about the distribution of outcomes in the population.

The basic idea is that since we cannot compare treatment and control outcomes
for the same units, we try to compare them on similar units. Similarity can be
attained by using randomization to decide which units are assigned to the treat-
ment group and which units are assigned to the control group. We will discuss this
strategy in depth in the next section.

Statistical adjustment. For a variety of reasons, it is not always possible to achieve
close similarity between the treated and control groups in a causal study. In obser-
vational studies, units often end up treated or not based on characteristics that are
predictive of the outcome of interest (for example, men enter a job training program
because they have low earnings and future earnings is the outcome of interest). Ran-
domized experiments, however, can be impractical or unethical, and even in this
context imbalance can arise from small-sample variation or from unwillingness or
inability of subjects to follow the assigned treatment.

When treatment and control groups are not similar, modeling or other forms
of statistical adjustment can be used to fill in the gap. For instance, by fitting a
regression (or more complicated model), we may be able to estimate what would
have happened to the treated units had they received the control, and vice versa.
Alternately, one can attempt to divide the sample into subsets within which the
treatment/control allocation mimics an experimental allocation of subjects. We
discuss regression approaches in this chapter. We discuss imbalance and related
issues more thoroughly in Chapter 10 along with a description of ways to help
observational studies mimic randomized experiments.

9.3 Randomized experiments

We begin with the cleanest scenario, an experiment with units randomly assigned
to receive treatment and control, and with the units in the study considered as a
random sample from a population of interest. The random sampling and random
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treatment assignment allow us to estimate the average causal effect of the treatment
in the population, and regression modeling can be used to refine this estimate.

Average causal effects and randomized experiments

Although we cannot estimate individual-level causal effects (without making strong
assumptions, as discussed previously), we can design studies to estimate the popu-
lation average treatment effect:

average treatment effect = avg (yzl - y? ),

for the units ¢ in a larger population. The cleanest way to estimate the population
average is through a randomized experiment in which each unit has a positive
chance of receiving each of the possible treatments.? If this is set up correctly, with
treatment assignment either entirely random or depending only on recorded data
that are appropriately modeled, the coefficient for 7" in a regression corresponds to
the causal effect of the treatment, among the population represented by the n units
in the study.

Considered more broadly, we can think of the control group as a group of units
that could just as well have ended up in the treatment group, they just happened
not to get the treatment. Therefore, on average, their outcomes represent what
would have happened to the treated units had they not been treated; similarly,
the treatment group outcomes represent what might have happened to the control
group had they been treated. Therefore the control group plays an essential role in
a causal analysis.

For example, if ng units are selected at random from the population and given
the control, and n; other units are randomly selected and given the treatment,
then the observed sample averages of y for the treated and control units can be
used to estimate the corresponding population quantities, avg(y®) and avg(y!),
with their difference estimating the average treatment effect (and with standard
error \/s2/ng + s2/n1; see Section 2.3). This works because the y?’s for the control
group are a random sample of the values of ¢ in the entire population. Similarly,
the y!’s for the treatment group are a random sample of the y}’s in the population.

Equivalently, if we select ng + n; units at random from the population, and then
randomly assign ng of them to the control and n; to the treatment, we can think of
each of the sample groups as representing the corresponding population of control
or treated units. Therefore the control group mean can act as a counterfactual for
the treatment group (and vice versa).

What if the ng+n1 units are selected nonrandomly from the population but then
the treatment is assigned at random within this sample? This is common practice,
for example, in experiments involving human subjects. Experiments in medicine,
for instance, are conducted on volunteers with specified medical conditions who
are willing to participate in such a study, and experiments in psychology are of-
ten conducted on university students taking introductory psychology courses. In
this case, causal inferences are still justified, but inferences no longer generalize to
the entire population. It is usual instead to consider the inference to be appropri-
ate to a hypothetical superpopulation from which the experimental subjects were
drawn. Further modeling is needed to generalize to any other population. A study

3 Ideally, each unit should have a nonzero probability of receiving each of the treatments, because
otherwise the appropriate counterfactual (potential) outcome cannot be estimated for units in
the corresponding subset of the population. In practice, if the probabilities are highly unequal,
the estimated population treatment effect will have a high standard error due to the difficulty
of reliably estimating such a rare event.
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Figure 9.4 Post-treatment test scores from an experiment measuring the effect of an ed-
ucational television program, The Electric Company, on children’s reading abilities. The
experiment was applied on a total of 192 classrooms in four grades. At the end of the
experiment, the average reading test score in each classroom was recorded.

in which causal inferences are merited for a specific sample or population is said to
have internal validity, and when those inferences can be generalized to a broader
population of interest the study is said to have external validity.

We illustrate with a simple binary treatment (that is, two treatment levels, or a
comparison of treatment to control) in an educational experiment. We then briefly
discuss more general categorical, continuous, and multivariate treatments.

Ezxample: showing children an educational television show

Figure 9.4 summarizes data from an educational experiment performed around 1970
on a set of elementary school classes. The treatment in this experiment was exposure
to a new educational television show called The Electric Company. In each of four
grades, the classes were randomized into treated and control groups. At the end of
the school year, students in all the classes were given a reading test, and the average
test score within each class was recorded. Unfortunately, we do not have data on
individual students, and so our entire analysis will be at the classroom level.
Figure 9.4 displays the distribution of average post-treatment test scores in the
control and treatment group for each grade. (The experimental treatment was ap-
plied to classes, not to schools, and so we treat the average test score in each class as
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a single measurement.) We break up the data by grade for convenience and because
it is reasonable to suppose that the effects of this show could vary by grade.

Analysis as a completely randomized experiment. The experiment was performed
in two cities (Fresno and Youngstown). For each city and grade, the experimenters
selected a small number of schools (10-20) and, within each school, they selected
the two poorest reading classes of that grade. For each pair, one of these classes
was randomly assigned to continue with its regular reading course and the other
was assigned to view the TV program.

This is called a paired comparisons design (which in turn is a special case of a
randomized block design, with exactly two units within each block). For simplicity,
however, we shall analyze the data here as if the treatment assignment had been
completely randomized within each grade. In a completely randomized experiment
on n units (in this case, classrooms), one can imagine the units mixed together in
a bag, completely mixed, and then separated into two groups. For example, the
units could be labeled from 1 to n, and then permuted at random, with the first nq
units receiving the treatment and the others receiving the control. Each unit has
the same probability of being in the treatment group and these probabilities are
independent of each other.

Again, for the rest of this chapter we pretend that the Electric Company ex-
periment was completely randomized within each grade. In Section 23.1 we return
to the example and present an analysis appropriate to the paired design that was
actually used.

Basic analysis of a completely randomized experiment

When treatments are assigned completely at random, we can think of the different
treatment groups (or the treatment and control groups) as a set of random samples
from a common population. The population average under each treatment, avg(y°)
and avg(y'), can then be estimated by the sample average, and the population
average difference between treatment and control, avg(y') — avg(y®)—that is, the
average causal effect—can be estimated by the difference in sample averages, 1 —¥o.

Equivalently, the average causal effect of the treatment corresponds to the coeffi-
cient 6 in the regression, y; = a+ 07; 4+ error;. We can easily fit the four regressions
(one for each grade) in R:

for (k in 1:4) {
display (1lm (post.test
}

The estimates and uncertainty intervals for the Electric Company experiment
are graphed in the left panel of Figure 9.5. The treatment appears to be generally
effective, perhaps more so in the low grades, but it is hard to be sure given the
large standard errors of estimation.

treatment, subset=(grade==k)))

Controlling for pre-treatment predictors

In this study, a pre-test was given in each class at the beginning of the school year
(before the treatment was applied). In this case, the treatment effect can also be
estimated using a regression model: y; = a+0T; + Bx; +error; on the pre-treatment
predictor z.# Figure 9.6 illustrates for the Electric Company experiment. For each

4 We avoid the term confounding covariates when describing adjustment in the context of a ran-
domized experiment. Predictors are included in this context to increase precision. We expect

R code
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Figure 9.5 FEstimates, 50%, and 95% intervals for the effect of the Electric Company tele-
vision show (see data in Figures 9.4 and 9.6) as estimated in two ways: first, from a
regression on treatment alone, and second, also controlling for pre-test data. In both cases,
the coefficient for treatment is the estimated causal effect. Including pre-test data as a
predictor increases the precision of the estimates.

Displaying these coefficients and intervals as a graph facilitates comparisons across grades
and across estimation strategies (controlling for pre-test or not). For instance, the plot
highlights how controlling for pre-test scores increases precision and reveals decreasing ef-
fects of the program for the higher grades, a pattern that would be more difficult to see in
a table of numbers.

Sample sizes are approximately the same in each of the grades. The estimates for higher
grades have lower standard errors because the residual standard deviations of the regres-
sions are lower in these grades; see Figure 9.6.
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Figure 9.6 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent parallel regression lines fit to the treatment and control groups, respectively. The
solid lines are slightly higher than the dotted lines, indicating slightly positive estimated
treatment effects. Compare to Figure 9.4, which displays only the post-test data.

grade, the difference between the regression lines for the two groups represents the
treatment effect as a function of pre-test score. Since we have not included any
interaction in the model, this treatment effect is assumed constant over all levels of
the pre-test score.

For grades 2—4, the pre-test was the same as the post-test, and so it is no surprise
that all the classes improved whether treated or not (as can be seen from the plots).
For grade 1, the pre-test was a subset of the longer test, which explains why the
pre-test scores for grade 1 are so low. We can also see that the distribution of post-
test scores for each grade is similar to the next grade’s pre-test scores, which makes
sense.

In any case, for estimating causal effects (as defined in Section 9.2) we are in-
terested in the difference between treatment and control conditions, not in the
simple improvement from pre-test to post-test. The pre-post improvement is not a

them to be related to the outcome but not to the treatment assignment due to the randomiza-
tion. Therefore they are not confounding covariates.
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causal effect (except under the assumption, unreasonable in this case, that under
the control there would be no change from pre-post change).
In the regression
y; = a + 0T; + Bx; + error; (9.3)

the coefficient for the treatment indicator still represents the average treatment
effect, but controlling for pre-test can improve the efficiency of the estimate. (More
generally, the regression can control for multiple pre-treatment predictors, in which
case the model has the form y; = a + 0T; + X; 0 + error;, or alternatively a can be
removed from the equation and considered as a constant term in the linear predictor
Xp.)

The estimates for the Electric Company study appear in the right panel of Figure
9.5. It is now clear that the treatment is effective, and it appears to be more effective
in the lower grades. A glance at Figure 9.6 suggests that in the higher grades there
is less room for improvement; hence this particular test might not be the most
effective for measuring the benefits of The Electric Company in grades 3 and 4.

It is only appropriate to control for pre-treatment predictors, or, more generally,
predictors that would not be affected by the treatment (such as race or age). This
point will be illustrated more concretely in Section 9.7.

Gain scores

An alternative way to specify a model that controls for pre-test measures is to use
these measures to transform the response variable. A simple approach is to subtract
the pre-test score, x;, from the outcome score, y;, thereby creating a “gain score,” g;.
Then this score can be regressed on the treatment indicator (and other predictors
if desired), g; = a + 0T; + error;. (In the simple case with no other predictors, the
regression estimate is simply 6 = " — g“, the average difference of gain scores in
the treatment and control groups.)

In some cases the gain score can be more easily interpreted than the original
outcome variable y. Using gain scores is most effective if the pre-treatment score is
comparable to the post-treatment measure. For instance, in our Electric Company
example it would not make sense to create gain scores for the classes in grade 1
since their pre-test measure was based on only a subset of the full test.

One perspective on this model is that it makes an unnecessary assumption,
namely, that 5 = 1 in model (9.3). On the other hand, if this assumption is close to
being true then # may be estimated more precisely. One way to resolve this concern
about misspecification would simply be to include the pre-test score as a predictor
as well, g; = a + 0T; + yx; + error;. However, in this case, é, the estimate of the
coefficient for T', is equivalent to the estimated coefficient from the original model,
yi = a+ 0T; + Bx; + error; (see Exercise 9.7).

More than two treatment levels, continuous treatments, and multiple treatment
factors

Going beyond a simple treatment-and-control setting, multiple treatment effects
can be defined relative to a baseline level. With random assignment, this simply
follows general principles of regression modeling.

If treatment levels are numerical, the treatment level can be considered as a con-
tinuous input variable. To conceptualize randomization with a continuous treatment
variable, think of choosing a random number that falls anywhere in the continuous
range. As with regression inputs in general, it can make sense to fit more compli-
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Figure 9.7 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent separate regression lines fit to the treatment and control groups, respectively.
For each grade, the difference between the solid and dotted lines represents the estimated
treatment effect as a function of pre-test score.

cated models if suggested by theory or supported by data. A linear model-—which
estimates the average effect on y for each additional unit of 7—is a natural starting
point, though it may need to be refined.

With several discrete treatments that are unordered (such as in a comparison of
three different sorts of psychotherapy), we can move to multilevel modeling, with the
group index indicating the treatment assigned to each unit, and a second-level model
on the group coeflicients, or treatment effects. We shall illustrate such modeling in
Section 13.5 with an experiment from psychology. We shall focus more on multilevel
modeling as a tool for fitting data, but since the treatments in that example are
randomly assigned, their coefficients can be interpreted as causal effects.

Additionally, different combinations of multiple treatments can be administered
randomly. For instance, depressed individuals could be randomly assigned to receive
nothing, drugs, counseling sessions, or a combination of drugs and counseling ses-
sions. These combinations could be modeled as two treatments and their interaction
or as four distinct treatments.

The assumption of no interference between units

Our discussion so far regarding estimation of causal effects using experiments is
contingent upon another, often overlooked, assumption. We must assume also that
the treatment assignment for one individual (unit) in the experiment does not affect
the outcome for another. This has been incorporated into the “stable unit treat-
ment value assumption” (SUTVA). Otherwise, we would need to define a different
potential outcome for the i*" unit not just for each treatment received by that
unit but for each combination of treatment assignments received by every other
unit in the experiment. This would enormously complicate even the definition, let
alone the estimation, of individual causal effects. In settings such as agricultural
experiments where interference between units is to be expected, it can be modeled
directly, typically using spatial interactions.

9.4 Treatment interactions and poststratification
Interactions of treatment effect with pre-treatment inputs

Once we include pre-test in the model, it is natural to allow it to interact with
treatment effect. The treatment is then allowed to affect both the intercept and the
slope of the pre-test/post-test regression. Figure 9.7 shows the Electric Company
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data with separate regression lines estimated for the treatment and control groups.
As with Figure 9.6, for each grade the difference between the regression lines is the
estimated treatment effect as a function of pre-test score.

We illustrate in detail for grade 4. First, we fit the simple model including only
the treatment indicator:

Im(formula = post.test ~ treatment, subset=(grade==4))
coef.est coef.se

(Intercept) 110.4 1.3
treatment 3.7 1.8
n =42, k

2

residual sd = 6.0, R-Squared = 0.09

The estimated treatment effect is 3.7 with a standard error of 1.8. We can improve
the efficiency of the estimator by controlling for the pre-test score:

Im(formula = post.test ~ treatment + pre.test, subset=(grade==4))
coef.est coef.se

(Intercept) 42.0 4.3
treatment 1.7 0.7
pre.test 0.7 0.0

n=42, k=3
residual sd = 2.2, R-Squared = 0.88

The new estimated treatment effect is 1.7 with a standard error of 0.7. In this case,
controlling for the pre-test reduced the estimated effect. Under a clean randomiza-
tion, controlling for pre-treatment predictors in this way should reduce the standard
errors of the estimates.? (Figure 9.5 shows the estimates for the Electric Company
experiment in all four grades.)

Complicated arise when we include the interaction of treatment with pre-test:

Im(formula = post.test
subset=(grade==4))
coef.est coef.se

treatment + pre.test + treatment:pre.test,

(Intercept) 37.84 4.90
treatment 17.37 9.60
pre.test 0.70 0.05
treatment:pre.test -0.15 0.09

n =42, k=4
residual sd = 2.1, R-Squared = 0.89

The estimated treatment effect is now 17 — 0.15z, which is difficult to interpret
without knowing the range of x. From Figure 9.7 we see that pre-test scores range
from approximately 80 to 120; in this range, the estimated treatment effect varies
from 17—0.15-80 = 5 for classes with pre-test scores of 80 to 17—0.15-120 = —1 for
classes with pre-test scores of 120. This range represents the variation in estimated
treatment effects as a function of pre-test score, not uncertainty in the estimated
treatment effect.

To get a sense of the uncertainty, we can plot the estimated treatment effect as
a function of x, overlaying random simulation draws to represent uncertainty:

5 Under a clean randomization, controlling for pre-treatment predictors in this way does not
change what we are estimating. If the randomization was less than pristine, however, the ad-
dition of predictors to the equation may help us control for unbalanced characteristics across
groups. Thus, this strategy has the potential to move us from estimating a noncausal estimand
(due to lack of randomization) to estimating a causal estimand by in essence “cleaning” the
randomization.

R output

R output

R output



R code

R code

R code

180 CAUSAL INFERENCE USING DIRECT REGRESSION

treatment effect in grade 4

10

treatment effect

T T T T I
80 90 100 110 120
pre-test

Figure 9.8 Estimate and uncertainty for the effect of viewing The Electric Company (com-
pared to the control treatment) for fourth-graders. Compare to the data in the rightmost
plot in Figure 9.7. The dark line here—the estimated treatment effect as a function of pre-
test score—is the difference between the two regression lines in the grade 4 plot in Figure
9.7. The gray lines represent 20 random draws from the uncertainty distribution of the
treatment effect.

Im.4 <- 1lm (post.test ~ treatment + pre.test + treatment:pre.test,
subset=(grade==4))

Im.4.sim <- sim (1m.4)

plot (0, O, xlim=range (pre.test[grade==4]), ylim=c(-5,10),
xlab="pre-test", ylab="treatment effect",
main="treatment effect in grade 4")

abline (0, 0, lwd=.5, 1lty=2)

for (i in 1:20){
curve (Im.4.sim$betali,2] + Im.4.sim$beta[i,4]*x, lwd=.5, col="gray",

add=TRUE) }
curve (coef(1m.4)[2] + coef(1m.4)[4]*x, 1lwd=.5, add=TRUE)

This produces the graph shown in Figure 9.8.

Finally, we can estimate a mean treatment effect by averaging over the values of
in the data. If we write the regression model as y; = a+ 0, T; + fx; + 02T;x; + error;,
then the treatment effect is 61 4+62x, and the summary treatment effect in the sample
is L3 (61 + 621;), averaging over the n fourth-grade classrooms in the data. We
can compute the average treatment effect as follows:

n.sims <- nrow(1lm.4.sim$beta)
effect <- array (NA, c(n.sims, sum(grade==4)))
for (i in 1:n.sims){
effect[i,] <- 1m.4.sim$betal[i,2] + 1m.4.sim$betal[i,4]*pre.test[grade==4]
}

avg.effect <- rowMeans (effect)

The rowMeans () function averages over the grade 4 classrooms, and the result
of this computation, avg.effect, is a vector of length n.sims representing the
uncertainty in the average treatment effect. We can summarize with the mean and
standard error:

print (c (mean(avg.effect), sd(avg.effect)))

The result is 1.8 with a standard deviation of 0.7—quite similar to the result from
the model controlling for pre-test but with no interactions. In general, for a linear
regression model, the estimate obtained by including the interaction, and then
averaging over the data, reduces to the estimate with no interaction. The motivation
for including the interaction is thus to get a better idea of how the treatment effect
varies with pre-treatment predictors, not simply to estimate an average effect.
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Poststratification

We have discussed how treatment effects interact with pre-treatment predictors
(that is, regression inputs). To estimate an average treatment effect, we can post-
stratify—that is, average over the population.®

For example, suppose we have treatment variable 7' and pre-treatment control
variables z1, z9, and our regression predictors are x1, x2, T, and the interactions z; T
and zoT, so that the linear model is: y = Gy + G121 + Boxa + BT + Bax1T + BsxT +
error. The estimated treatment effect is then 83 + B4z1 + B5x2, and its average, in
a linear regression, is simply (3 + Bap1 + Bsp2, where pg and po are the averages
of 1 and x5 in the population. These population averages might be available from
another source, or else they can be estimated using the averages of z; and z3 in
the data at hand. Standard errors for summaries such as 83 + B4u1 + G542 can be
determined analytically, but it is easier to simply compute them using simulations.

Modeling interactions is important when we care about differences in the treat-
ment effect for different groups, and poststratification then arises naturally if a
population average estimate is of interest.

9.5 Observational studies

In theory, the simplest solution to the fundamental problem of causal inference is,
as we have described, to randomly sample a different set of units for each treat-
ment group assignment from a common population, and then apply the appropriate
treatments to each group. An equivalent approach is to randomly assign the treat-
ment conditions among a selected set of units. Either of these approaches ensures
that, on average, the different treatment groups are balanced or, to put it another
way, that the " and ¢! from the sample are estimating the average outcomes under
control and treatment for the same population.

In practice, however, we often work with observational data because, compared
to experiments, observational studies can be more practical to conduct and can
have more realism with regard to how the program or treatment is likely to be
“administered” in practice. As we have discussed, however, in observational studies
treatments are observed rather than assigned (for example, comparisons of smok-
ers to nonsmokers), and it is not at all reasonable to consider the observed data
under different treatments as random samples from a common population. In an
observational study, there can be systematic differences between groups of units
that receive different treatments—differences that are outside the control of the
experimenter—and they can affect the outcome, y. In this case we need to rely on
more data than just treatments and outcomes and implement a more complicated
analysis strategy that will rely upon stronger assumptions. The strategy discussed
in this chapter, however, is relatively simple and relies on controlling for confound-
ing covariates through linear regression. Some alternative approaches are described
in Chapter 10.

6 In survey sampling, stratification refers to the procedure of dividing the population into disjoint
subsets (strata), sampling separately within each stratum, and then combining the stratum
samples to get a population estimate. Poststratification is the analysis of an unstratified sample,
breaking the data into strata and reweighting as would have been done had the survey actually
been stratified. Stratification can adjust for potential differences between sample and population
using the survey design; poststratification makes such adjustments in the data analysis.



R code

182 CAUSAL INFERENCE USING DIRECT REGRESSION

Estimated effect of supplement,

Subpopulation
compared to replacement

0 5 10
Grade 1 !
Grade 2 | ———
Grade 3 ———
Grade 4 ————

Figure 9.9 Estimates, 50%, and 95% intervals for the effect of The Electric Company
as a supplement rather than a replacement, as estimated by a regression on the supple-
ment/replacement indicator also controlling for pre-test data. For each grade, the regres-
sion is performed only on the treated classes; this is an observational study embedded in
an experiment.

Electric Company example

Here we illustrate an observational study for which a simple regression analysis,
controlling for pre-treatment information, may yield reasonable causal inferences.

The educational experiment described in Section 9.3 actually had an embedded
observational study. Once the treatments had been assigned, the teacher for each
class assigned to the Electric Company treatment chose to either replace or sup-
plement the regular reading program with the Electric Company television show.
That is, all the classes in the treatment group watched the show, but some watched
it instead of the regular reading program and others got it in addition.”

The simplest starting point to analyzing these observational data (now limited to
the randomized treatment group) is to consider the choice between the two treat-
ment options—“replace” or “supplement”—to be randomly assigned conditional
on pre-test scores. This is a strong assumption but we use it simply as a starting
point. We can then estimate the treatment effect by regression, as with an actual
experiment. In the R code, we create a variable called supp that equals 0 for the
replacement form of the treatment, 1 for the supplement, and NA for the controls.
We then estimate the effect of the supplement, as compared to the replacement, for
each grade:

for (k in 1:4) {

ok <- (grade==k) & (!is.na(supp))

1m.supp <- lm (post.test ~ supp + pre.test, subset=ok)
}

The estimates are graphed in Figure 9.9. The uncertainties are high enough that
the comparison is inconclusive except in grade 2, but on the whole the pattern is
consistent with the reasonable hypothesis that supplementing is more effective than
replacing in the lower grades.

Assumption of ignorable treatment assignment

As opposed to making the same assumption as the completely randomized ex-
periment, the key assumption underlying the estimate is that, conditional on the
confounding covariates used in the analysis (here as inputs in the regression analy-
sis), the distribution of units across treatment conditions is, in essence, “random”

7 This procedural detail reveals that the treatment effect for the randomized experiment is actu-
ally more complicated than described earlier. As implemented, the experiment estimated the
effect of making the program available, either as a supplement or replacement for the current
curriculum.
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(in this case, pre-test score) with respect to the potential outcomes. To help with
the intuition here, one could envision units being randomly assigned to treatment
conditions conditional on the confounding covariates; however, of course, no actual
randomized assigment need take place.

Ignorability is often formalized by the conditional independence statement,

vyt LT|X.

This says that the distribution of the potential outcomes, (y°, y'), is the same across
levels of the treatment variable, T', once we condition on confounding covariates X.

This assumption is referred to as ignorability of the treatment assignment in the
statistics literature and selection on observables in econometrics. Said another way,
we would not necessarily expect any two classes to have had the same probability
of receiving the supplemental version of the treatment. However, we expect any
two classes at the same levels of the confounding covariates (that is, pre-treatment
variables; in our example, average pre-test score) to have had the same probability
of receiving the supplemental version of the treatment. A third way to think about
the ignorability assumption is that it requires that we control for all confounding
covariates, the pre-treatment variables that are associated with both the treatment
and the outcome.

If ignorability holds, then causal inferences can be made without modeling the
treatment assignment process—that is, we can ignore this aspect of the model as
long as analyses regarding the causal effects condition on the predictors needed to
satisfy ignorability. Randomized experiments represent a simple case of ignorabil-
ity. Completely randomized experiments need not condition on any pre-treatment
variables—this is why we can use a simple difference in means to estimate causal ef-
fects. Randomized experiments that block or match satisfy ignorability conditional
on the design variables used to block or match, and therefore these variables need
to be included when estimating causal effects.

In the Electric Company supplement/replacement example, an example of a non-
ignorable assignment mechanism would be if the teacher of each class chose the
treatment that he or she believed would be more effective for that particular class
based on unmeasured characteristics of the class that were related to their sub-
sequent test scores. Another nonignorable assignment mechanism would be if, for
example, supplementing was more likely to be chosen by more “motivated” teachers,
with teacher motivation also associated with the students’ future test scores.

For ignorability to hold, it is not necessary that the two treatments be equally
likely to be picked, but rather that the probability that a given treatment is picked
should be equal, conditional on our confounding covariates.? In an experiment, one
can control this at the design stage by using a random assignment mechanism.
In an observational study, the “treatment assignment” is not under the control of
the statistician, but one can aim for ignorability by conditioning in the analysis
stage on as much pre-treatment information in the regression model as possible.
For example, if teachers’ motivation might affect treatment assignment, it would
be advisable to have a pre-treatment measure of teacher motivation and include
this as an input in the regression model. This would increase the plausibility of
the ignorability assumption. Realistically, this may be a difficult characteristic to

8 As further clarification, consider two participants of a study for which ignorability holds. If we
define the probability of treatment participation as Pr(T = 1|X), then this probability must be
equal for these two individuals. However, suppose there exists another variable, w, that is asso-
ciated with treatment participation (conditional on X) but not with the outcome (conditional
on X). We do not require that Pr(T = 1| X, W) be the same for these two participants.
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Figure 9.10 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
received the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. The model shown in the right panel allows for an interaction between receiving the
supplement and pre-test scores.

measure, but other teacher characteristics such as years of experience and schooling
might act as partial proxies.

In general, one can never prove that the treatment assignment process in an
observational study is ignorable—it is always possible that the choice of treatment
depends on relevant information that has not been recorded. In an educational
study this information could be characteristics of the teacher or school that are
related both to treatment assignment and to post-treatment test scores. Thus,
if we interpret the estimates in Figure 9.9 as causal effects, we do so with the
understanding that we would prefer to have further pre-treatment information,
especially on the teachers, in order to be more confident in ignorability.

If we believe that treatment assignments depend on information not included in
the model, then we should choose a different analysis strategy. We discuss some
options at the end of the next chapter.

Judging the reasonableness of regression as a modeling approach, assuming
ignorability

Even if the ignorability assumption appears to be justified, this does not mean
that simple regression of our outcomes on confounding covariates and a treatment
indicator is necessarily the best modeling approach for estimating treatment effects.
There are two primary concerns related to the distributions of the confounding
covariates across the treatment groups: lack of complete overlap and lack of balance.
For instance, consider our initial hypothetical example of a medical treatment that
is supposed to affect subsequent health measures. What if there were no treatment
observations among the group of people whose pre-treatment health status was
highest? Arguably, we could not make any causal inferences about the effect of the
treatment on these people because we would have no empirical evidence regarding
the counterfactual state. Lack of overlap and balance forces stronger reliance on our
modeling than if covariate distributions were the same across treatment groups. We
provide a brief illustration in this chapter and discuss in greater depth in Chapter
10.

Suppose we are interested in the effect of a supplementary educational activity
(such as viewing The Electric Company) that was not randomly assigned. Suppose,
however, that only one predictor, pre-test score, is necessary to satisfy ignorability—
that is, there is only one confounding covariate. Suppose further, though, that those
individuals who participate in the supplementary activity tend to have higher pre-
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Figure 9.11 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
recetved the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. Plots are restricted to observations in the region where there is overlap in terms of the
pre-treatment test score across treatment and control groups. The left panel shows only the
portion of the plot in Figure 9.10 where there is overlap. The right panel shows regression
lines fit only using observations in this overlapping region.

test scores, on average, than those who do not participate. One realization of this
hypothetical scenario is illustrated in Figure 9.10. The dark line represents the
true relation between pre-test scores (z-axis) and post-test scores (y-axis) for those
who receive the supplement. The lighter line represents the true relation between
pre-test scores and post-test scores for those who do not receive the supplement.
Estimated linear regression lines are superimposed for these data. The linear model
has problems fitting the true nonlinear regression relation—a problem that is com-
pounded by the lack of overlap of the two groups in the data. Because there are no
“control” children with high test scores and virtually no “treatment” children with
low test scores, these linear models, to create counterfactual predictions, are forced
to extrapolate over portions of the space where there are no data to support them.
These two problems combine to create, in this case, a substantial underestimate of
the true average treatment effect. Allowing for an interaction, as illustrated in the
right panel, does not solve the problem.

In the region of pre-test scores where there are observations from both treatment
groups, however, even the incorrectly specified linear regression lines do not provide
such a bad fit to the data. And no model extrapolation is required, so diagnosing
this lack of fit would be possible. This is demonstrated in the left panel of Figure
9.11 by restricting the plot from the left panel of Figure 9.10 to the area of overlap.
Furthermore, if the regression lines are fit only using this restricted sample they fit
quite well in this region, as is illustrated in the right panel of Figure 9.11. Some
of the strategies discussed in the next chapter use this idea of limiting analyses to
observations with the region of complete overlap.

Ezxamining overlap in the Electric Company embedded observational study

For the Electric Company data we can use plots such as in Figure 9.10-9.11 to assess
the appropriateness of the modeling assumptions and the extent to which we are
relying on unsupported model extrapolations. For the most part, Figure 9.12 reveals
a reasonable amount of overlap in pre-test scores across treatment groups within
each grade. Grade 3, however, has some classrooms with average pre-test scores
that are lower than the bulk of the sample, all of which received the supplement. It
might be appropriate to decide that no counterfactual classrooms exist in our data
for these classrooms and thus the data cannot support causal inferences for these
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Figure 9.12 Pre-test/post-test data examining the overlap in pre-test scores across treat-
ment groups as well as the extent to which models are being extrapolated to regions where
there is no support in the data. Classrooms that watched The Electric Company as a sup-
plement are represented by the dark points and regression line; classrooms that watched
The Electric Company as a replacement are represented by the lighter points and regression
line. No interactions were included when estimating the regression lines.

classrooms. The sample sizes for each grade make it difficult to come to any firm
conclusions one way or another, however.

Therefore, we must feel confident in the (probably relatively minor) degree of
model extrapolation relied upon by these estimates in order to trust a causal inter-
pretation.

9.6 Understanding causal inference in observational studies

Sometimes the term “observational study” refers to a situation in which a specific
intervention was offered nonrandomly to a population or in which a population was
exposed nonrandomly to a well-defined treatment. The primary characteristic that
distinguishes causal inference in these settings from causal inference in randomized
experiments is the inability to identify causal effects without making assumptions
such as ignorability. (Other sorts of assumptions will be discussed in the next
chapter.)

Often, however, observational studies refer more broadly to survey data settings
where no intervention has been performed. In these settings, there are other aspects
of the research design that need to be carefully considered as well. The first is the
mapping between the “treatment” variable in the data and a policy or intervention.
The second considers whether it is possible to separately identify the effects of
multiple treatment factors. When attempting causal inference using observational
data, it is helpful to formalize exactly what the experiment might have been that
would have generated the data, as we discuss next.

Defining a “treatment” variable

A causal effect needs to be defined with respect to a cause, or an intervention, on a
particular set of experimental units. We need to be able to conceive of each unit as
being able to experience each level of the treatment variable for which causal effects
will be defined for that unit. Thus, the “effect” of height on earnings is ill-defined
without reference to a treatment that could change one’s height. Otherwise what
does it mean to define a potential outcome for a person that would occur if he or
she had been shorter or taller?

More subtly, consider the effect of single-motherhood on children’s outcomes. We
might be able to envision several different kinds of interventions that could change
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a mother’s marital status either before or after birth: changes in tax laws, partici-
pation in a marriage encouragement program for unwed parents, new child support
enforcement policies, divorce laws, and so on. These potential “treatments” vary
in the timing of marriage relative to birth and even the strength of the marriages
that might result, and consequently might be expected to have different effects on
the children involved. Therefore, this conceptual mapping to a hypothetical inter-
vention can be important for choice of study design, analysis, and interpretation of
results.

Consider, for instance, a study that examines Korean children who were randomly
assigned to American families for adoption. This “natural experiment” allows for
fair comparisons across conditions such as being raised in one-parent versus two-
parent households. However, this is a different kind of treatment altogether than
considering whether a couple should get married. There is no attempt to compare
parents who are similar to each other; instead, it is the children who are similar on
average at the outset. The treatment in question then has to do with the child’s
placement in a family. This addresses an interesting although perhaps less policy-
relevant question (at least in terms of policies that affect incentives for marriage
formation or dissolution).

Multiple treatment factors

It is difficult to directly interpret more than one input variable causally in an
observational study. Suppose we have two variables, A and B, whose effects we
would like to estimate from a single observational study. To estimate causal effects,
we must consider implicit treatments—and to estimate both effects at once, we
would have to imagine a treatment that affects A while leaving B unchanged, and
a treatment that affects B while leaving A unchanged. In examples we have seen,
it is generally difficult to envision both these interventions: if A comes before B
in time or logical sequence, then we can estimate the effect of B controlling for
A but not the reverse (because of the problem with controlling for post-treatment
variables, which we discuss in greater detail in the next section).

More broadly, for many years a common practice when studying a social problem
(for example, poverty) was to compare people with different outcomes, throwing
many inputs into a regression to see which was the strongest predictor. As opposed
to the way we have tried to frame causal questions thus far in this chapter, as the
effect of causes, this is a strategy that searches for the causes of an effect. This is
an ill-defined notion that we will avoid for exactly the kind of reasons discussed in
this chapter.”

Thought experiment: what would be an ideal randomized experiment?

If you find yourself confused about what can be estimated and how the various
aspects of your study should be defined, a simple strategy is to try to formalize the
randomized experiment you would have liked to have done to answer your causal
question. A perfect mapping rarely exists between this experimental ideal and your
data so often you will be forced instead to figure out, given the data you have, what
randomized experiment could be thought to have generated such data.

9 Also, philosophically, looking for the most important cause of an outcome is a confusing framing
for a research question because one can always find an earlier cause that affected the “cause”
you determine to be the strongest from your data. This phenomenon is sometimes called the
“infinite regress of causation.”
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For instance, if you were interested in the effect of breastfeeding on children’s
cognitive outcomes, what randomized experiment would you want to perform as-
suming no practical, legal, or moral barriers existed? We could imagine randomizing
mothers to either breastfeed their children exclusively or bottle-feed them formula
exclusively. We would have to consider how to handle those who do not adhere
to their treatment assignment, such as mothers and children who are not able to
breastfeed, and children who are allergic to standard formula. Moreover, what if
we want to separately estimate the physiological effects of the breast milk from the
potential psychological implications (to both mother and child) of nursing at the
breast and the more extended physical contact that is often associated with breast-
feeding? In essence, then, we think that perhaps breastfeeding represents several
concurrent treatments. Perhaps we would want to create a third treatment group of
mothers who feed their babies with bottles of expressed breast milk. This exercise
of considering the randomized experiment helps to clarify what the true nature of
the intervention is that we are using our treatment variable to represent.

Just as in a randomized experiment, all causal inference requires a comparison of
at least two treatments (counting “control” as a treatment). For example, consider
a study of the effect on weight loss of a new diet. The treatment (following the
diet) may be clear but the control is not. Is it to try a different diet? To continue
eating “normally”? To exercise more? Different control conditions imply different
counterfactual states and thus induce different causal effects.

Finally, thinking about hypothetical randomized experiments can help with prob-
lems of trying to establish a causal link between two variables when neither has
temporal priority and when they may have been simultaneously determined. For
instance, consider a regression of crime rates in each of 50 states using a cross sec-
tion of data, where the goal is to determine the “effect” of the number of police
officers while controlling for the social, demographic, and economic features of each
state as well as characteristics of the state (such as the crime rate) that might af-
fect decisions to increase the size of the police force. The problem is that it may be
difficult (if not impossible) to disentangle the “effect” of the size of the police force
on crime from the “effect” of the crime rate on the size of the police force.

If one is interested in figuring out policies that can affect crime rates, it might be
more helpful to conceptualize both “number of police officers” and “crime rate” as
outcome variables. Then one could imagine different treatments (policies) that could
affect these outcomes. For example, the number of police officers could be affected
by a bond issue to raise money earmarked for hiring new police, or a change in the
retirement age, or a reallocation of resources within local and state government law
enforcement agencies. These different treatments could have different effects on the
crime rate.

9.7 Do not control for post-treatment variables

As illustrated in the examples of this chapter, we recommend controlling for pre-
treatment covariates when estimating causal effects in experiments and observa-
tional studies. However, it is generally not a good idea to control for variables
measured after the treatment. In this section and the next we explain why con-
trolling for a post-treatment variable messes up the estimate of total treatment
effect, and also the difficulty of using regression on “mediators” or “intermediate
outcomes” (variables measured post-treatment but generally prior to the primary
outcome of interest) to estimate so-called mediating effects.

Consider a hypothetical study of a treatment that incorporates a variety of social
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observed potential
unit, treatment, intermediate intermediate outcomes, final
i T; outcome, z; 29 2} outcome, y;
1 0 0.5 0.5 0.7 Y1

2 1 0.5 0.8 0.5 Y2

Figure 9.13 Hypothetical example illustrating the problems with regressions that control
on a continuous intermediate outcome. If we control for z when regressing y on T, we
will be essentially making comparisons between units such as 1 and 2 above, which differ
in T but are identical in z. The trouble is that such units are mot, in fact, comparable,
as can be seen by looking at the potential outcomes, z° and z* (which can never both be
observed, but which we can imagine for the purposes of understanding this comparison).
Unit 1, which received the control, has higher potential outcomes than unit 2, which received
the treatment. Matching on the observed z inherently leads to misleading comparisons as
measured by the potential outcomes, which are the more fundamental quantity.

The coefficient 0 in regression (9.6) thus in general represents an inappropriate comparison
of units that fundamentally differ. See Figure 9.14 for a similar example with a discrete
intermediate outcome.

services including high-quality child care and home visits by trained professionals.
We label y as the child’s IQ score, z as the parenting quality, T as the randomly
assigned binary treatment, and = as a pre-treatment background variable (which
could in general be a vector). The goal here is to measure the effect of 7" on y, and
we shall explain why it is not a good idea to control for the intermediate outcome,
z, in making this estimate.

To keep things clean, we shall assume a linear regression for the intermediate
outcome:

z=0.340.2T 4+ va + error, (9.4)

with independent errors.'® We further suppose that the pre-treatment variable x
has been standardized to have mean 0. Then, on average, we would see parenting
quality at 0.3 for the controls and 0.5 for the treated parents. Thus the causal effect
of the treatment on parenting quality is 0.2. An interaction of 7' and x could be
easily added and interpreted as well if it is desired to estimate systematic variation
of treatment effects.

Similarly, a model for y given T and x—excluding z—is straightforward, with the
coefficient of T" representing the total effect of the treatment on the child’s cognitive
outcome:

regression estimating the treatment effect: y = 6T + Sz + e. (9.5)

The difficulty comes if z is added to this model. Adding z as a predictor could
improve the model fit, explaining much of the variation in y:

regression including intermediate outcome: y = 6"T + 'z + 6"z +€".  (9.6)

We add the asterisks here because adding a new predictor changes the interpretation
of each of the parameters. Unfortunately, the new coefficient 68* does not, in general,
estimate the effect of T

Figure 9.13 illustrates the problem with controlling for an intermediate outcome.

10 We use the notation ~ for the coefficient of & because we are saving 3 for the regression of y;
see model (9.5).
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The coefficient of T in regression (9.6) corresponds to a comparison of units that
are identical in x and z but differ in T". The trouble is, they will then automatically
differ in their potential outcomes, z° and z'. For example, consider two families,
one with z=0.5 but one with 7'=0 and one with 7'=1. Under the (simplifying)
assumption that the effect of T is to increase z by exactly 0.2 (recall the assumed
model (9.4)), the first family has potential outcomes 2" = 0.5, 2! = 0.7, and the
second family has potential outcomes 20 = 0.3, 2! = 0.5. Thus, given two families
with the same intermediate outcome z, the one that received the treatment has lower
underlying parenting skills. Thus, in the regression of y on (z, T, z), the coefficient of
T represents a comparison of families that differ in their underlying characteristics.
This is an inevitable consequence of controlling for an intermediate outcome.

This reasoning suggests a strategy of estimating treatment effects conditional on
the potential outcomes—in this example, including both 2" and z!, along with 7" and
x, in the regression. The practical difficulty here (as usual) is that we observe at most
one potential outcome for each observation, and thus such a regression would require
imputation of 2% or z! for each case (perhaps, informally, by using pre-treatment
variables as proxies for 2% and z!), and correspondingly strong assumptions.

9.8 Intermediate outcomes and causal paths

Randomized experimentation is often described as a “black box” approach to causal
inference. We see what goes into the box (treatments) and we see what comes out
(outcomes), and we can make inferences about the relation between these inputs
and outputs, without the ability to see what happens inside the box. This section
discusses what happens when we use standard techniques to try to ascertain the
role of post-treatment, or mediating variables, in the causal path between treatment
and outcomes. We present this material at the end of this chapter because the
discussion relies on concepts from the analysis of both randomized experiments
and observational studies.

Hypothetical example of a binary intermediate outcome

Continuing the hypothetical experiment on child care, suppose that the randomly
assigned treatment increases children’s 1Q points after three years by an average
of 10 points (compared to the outcome under usual care). We would additionally
like to know to what extent these positive results were the result of improved
parenting practices. This question is sometimes phrased as: “What is the ‘direct’
effect of the treatment, net the effect of parenting?” Does the experiment allow us
to evaluate this question? The short answer is no. At least not without making
further assumptions.

Yet it would not be unusual to see such a question addressed by simply running
a regression of the outcome on the randomized treatment variable along with a pre-
dictor representing (post-treatment) “parenting” added to the equation; recall that
this is often called a mediating variable or mediator. Implicitly, the coefficient on
the treatment variable then creates a comparison between those randomly assigned
to treatment and control, within subgroups defined by post-treatment parenting
practices. Let us consider what is estimated by such a regression.

For simplicity, assume these parenting practices are measured by a simple catego-
rization as “good” or “poor.” The simple comparison of the two groups can mislead,
because parents who demonstrate good practices after the treatment is applied are
likely to be different, on average, from the parents who would have been classified
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Parenting quality  Child’s IQ score
after assigned to  after assigned to  Proportion

Parenting potential control treat control  treat of sample
Poor parenting either way Poor Poor 60 70 0.1
Good parenting if treated Poor Good 65 80 0.7
Good parenting either way = Good Good 90 100 0.2

Figure 9.14 Hypothetical example illustrating the problems with regressions that control
on intermediate outcomes. The table shows, for three categories of parents, their poten-
tial parenting behaviors and the potential outcomes for their children under the control
and treatment conditions. The proportion of the sample falling into each category is also
provided. In actual data, we would not know which category was appropriate for each in-
dividual parent—it is the fundamental problem of causal inference that we can observe
at most one treatment condition for each person—but this theoretical setup is helpful for
understanding the properties of statistical estimates. See Figure 9.13 for a similar ezample
with a continuous intermediate outcome.

as having good parenting practices even in the absence of the treatment. There-
fore such comparisons, in essence, lose the advantages originally imparted by the
randomization and it becomes unclear what such estimates represent.

Regression controlling for intermediate outcomes cannot, in general, estimate
“mediating” effects

Some researchers who perform these analyses will claim that these models are still
useful because, if the estimate of the coeflicient on the treatment variable goes to
zero after including the mediating variable, then we have learned that the entire
effect of the treatment acts through the mediating variable. Similarly, if the treat-
ment effect is cut in half, they might claim that half of the effect of the treatment
acts through better parenting practices or, equivalently, that the effect of treat-
ment net the effect of parenting is half the total value. This sort of conclusion is
not generally appropriate, however, as we illustrate with a hypothetical example.

Hypothetical scenario with direct and indirect effects. Figure 9.14 displays poten-
tial outcomes of the children of the three different kinds of parents in our sample:
those who will demonstrate poor parenting practices with or without the inter-
vention, those whose parenting will get better if they receive the intervention, and
those who will exhibit good parenting practices with or without the intervention.
We can think of these categories as reflecting parenting potential. For simplicity, we
have defined the model deterministically, with no individual variation within the
three categories of family.

Here the effect of the intervention is 10 IQ points on children whose parents’
parenting practices were unaffected by the treatment. For those parents who would
improve their parenting due to the intervention, the children get a 15-point improve-
ment. In some sense, philosophically, it is difficult (some would say impossible) to
even define questions such as “what percentage of the treatment effect can be at-
tributed to improved parenting practices” since treatment effects (and fractions
attributable to various causes) can differ across people. How can we ever say for
those families that have good parenting, if treated, what portion of their treatment
effect can be attributed to differences in parenting practices as compared to the ef-
fects experienced by the families whose parenting practices would not change based
on their treatment assignment? If we assume, however, that the effect on children
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due to sources other than parenting practices stays constant over different types
of people (10 points), then we might say that, at least for those with the poten-
tial to have their parenting improved by the intervention, this improved parenting
accounts for about (15 — 10)/15 = 1/3 of the effect.

A regression controlling for the intermediate outcome does not generally work.
However, if one were to try to estimate this effect using a regression of the outcome
on the randomized treatment variable and observed parenting behavior, the coeffi-
cient on the treatment indicator will be —1.5, falsely implying that the treatment
has some sort of negative “direct effect” on IQ scores!

To see what is happening here, recall that this coefficient is based on comparisons
of treated and control groups within groups defined by observed parenting behavior.
Consider, for instance, the comparison between treated and control groups within
those observed to have poor parenting behavior. The group of parents who did
not receive the treatment and are observed to have poor parenting behavior is a
mixture of those who would have exhibited poor parenting either way and those
who exhibited poor parenting simply because they did not get the treatment. Those
in the treatment group who exhibited poor parenting are all those who would have
exhibited poor parenting either way. Those whose poor parenting is not changed
by the intervention have children with lower test scores on average—under either
treatment condition—than those whose parenting would have been affected by the
intervention.

The regression controlling for the intermediate outcome thus implicitly compares
unlike groups of people and underestimates the treatment effect, because the treat-
ment group in this comparison is made up of lower-performing children, on average.
A similar phenomenon occurs when we make comparisons across treatment groups
among those who exhibit good parenting. Those in the treatment group who demon-
strate good parenting are a mixture of two groups (good parenting if treated and
good parenting either way) whereas the control group is simply made up of the
parents with the highest-performing children (good parenting either way). This es-
timate does not reflect the effect of the intervention net the effect of parenting. It
does not estimate any causal effect. It is simply a mixture of some nonexperimental
comparisons.

This example is an oversimplification, but the basic principles hold in more com-
plicated settings. In short, randomization allows us to calculate causal effects of the
variable randomized, but not other variables unless a whole new set of assumptions
is made. Moreover, the benefits of the randomization for treatment effect estimation
are generally destroyed by including post-treatment variables. These assumptions
and the strategies that allow us to estimate the effects conditional on intermediate
outcomes in certain situations will be discussed at the end of Chapter 10.

What can be estimated: principal stratification

We noted earlier that questions such as “What proportion of the treatment effect
works through variable A?” are in some sense, inherently unanswerable. What can
we learn about the role of intermediate outcomes or mediating variables? As we
discussed in the context of Figure 9.14, treatment effects can vary depending on
the extent to which the mediating variable (in this example, parenting practices) is
affected by the treatment. The key theoretical step here is to divide the population
into categories based on their potential outcomes for the mediating variable—what
would happen under each of the two treatment conditions. In statistical parlance,
these categorizations are sometimes called principal strata. The problem is that
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the principal stratum labels are generally unobserved. It is theoretically possible to
statistically infer principal-stratum categories based on covariates, especially if the
treatment was randomized—because then at least we know that the distribution
of principal strata is the same across the randomized groups. In practice, how-
ever, this reduces to making the same kinds of assumptions as are made in typical
observational studies when ignorability is assumed.

Principal strata are important because they can define, even if only theoreti-
cally, the categories of people for whom the treatment effect can be estimated from
available data. For example, if treatment effects were nonzero only for the study par-
ticipants whose parenting practices had been changed, and if we could reasonably
exclude other causal pathways, even stronger conclusions could be drawn regard-
ing the role of this mediating variable. We discuss this scenario of instrumental
variables in greater detail in Section 10.5.

Intermediate outcomes in the context of observational studies

If trying to control directly for mediating variables is problematic in the context
of randomized experiments, it should come as no surprise that it generally is also
problematic for observational studies. The concern is nonignorability—systematic
differences between groups defined conditional on the post-treatment intermediate
outcome. In the example above if we could control for the true parenting potential
designations, the regression would yield the correct estimate for the treatment effect
if we are willing to assume constant effects across groups (or willing to posit a model
for how effects change across groups). One conceivably can obtain the same result
by controlling sufficiently for covariates that adequately proxy this information.

In observational studies, researchers often already know to control for many pre-
dictors. So it is possible that these predictors will mitigate some of the problems
we have discussed. On the other hand, studying intermediate outcomes in an ob-
servational study involves two ignorability problems to deal with rather than just
one, making it all the more challenging to obtain trustworthy results.

Well-switching example. As an example where the issues discussed in this and
the previous section come into play, consider one of the logistic regressions from
Chapter 5:

Pr(switch) = logit™*(—0.21 — 0.90 - dist100 4 0.47 - arsenic + 0.17 - educ4),

predicting the probability that a household switches drinking-water wells as a func-
tion of distance to the nearest safe well, arsenic level of the current well, and edu-
cation of head of household.

This model can simply be considered as data description, but it is natural to
try to interpret it causally: being further from a safe well makes one less likely to
switch, having a higher arsenic level makes switching more likely, and having more
education makes one more likely to switch. Each of these coefficients is interpreted
with the other two inputs held constant—and this is what we want to do, in isolating
the “effects” (as crudely interpreted) of each variable. For example, households that
are farther from safe wells turn out to be more likely to have high arsenic levels, and
in studying the “effect” of distance, we would indeed like to compare households that
are otherwise similar, including in their arsenic level. This fits with a psychological
or decision-theoretic model in which these variables affect the perceived costs and
benefits of the switching decision (as outlined in Section 6.8).

However, in the well-switching example as in many regression problems, addi-
tional assumptions beyond the data are required to justify the convenient interpre-
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tation of multiple regression coefficients as causal effects—what would happen to y
if a particular input were changed, with all others held constant—and it is rarely
appropriate to give more than one coefficient such an interpretation, and then only
after careful consideration of ignorability. Similarly, we cannot learn about causal
pathways from observational data without strong assumptions.

For example, a careful estimate of the effect of a potential intervention (for exam-
ple, digging new, safe wells in close proximity to existing high-arsenic households)
should include, if not an actual experiment, a model of what would happen in the
particular households being affected, which returns us to the principles of observa-
tional studies discussed earlier in this chapter.

9.9 Bibliographic note

The fundamental problem of causal inference and the potential outcome notation
were introduced by Rubin (1974, 1978). Related earlier work includes Neyman
(1923) and Cox (1958). For other approaches to causal inference, see Pearl (2000)
along with many of the references in Section 10.8.

The stable unit treatment value assumption was defined by Rubin (1978); see
also Sobel (2006) for a more recent discussion in the context of a public policy in-
tervention and evaluation. Ainsley, Dyke, and Jenkyn (1995) and Besag and Higdon
(1999) discuss spatial models for interference between units in agricultural experi-
ments. Gelman (2004d) discusses treatment interactions in before/after studies.

Campbell and Stanley (1963) is an early presentation of causal inference in exper-
iments and observational studies from a social science perspective; see also Achen
(1986) and Shadish, Cook, and Campbell (2002). Rosenbaum (2002b) and Imbens
(2004) present overviews of inference for observational studies. Dawid (2000) offers
another perspective on the potential-outcome framework. Leamer (1978, 1983) ex-
plores the challenges of relying on regression models for answering causal questions.

Modeling strategies also exist that rely on ignorability but loosen the relatively
strict functional form imposed by linear regression. Examples include Hahn (1998),
Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder (2003), and Hill
and McCulloch (2006).

The example regarding the Korean babies up for adoption was inspired by Sac-
erdote (2004). The Electric Company experiment is described by Ball and Bogatz
(1972) and Ball et al. (1972).

Rosenbaum (1984) provides a good discussion of the dangers outlined in Section
9.8 involved in trying to control for post-treatment outcomes. Raudenbush and
Sampson (1999), Rubin (2000), and Rubin (2004) discuss direct and indirect effects
for multilevel designs. We do not attempt here to review the vast literature on
structural equation modeling; Kenny, Kashy, and Bolger (1998) is a good place to
start.

The term “principal stratification” was introduced by Frangakis and Rubin (2002);
examples of its application include Frangakis et al. (2003) and Barnard et al. (2003).
Similar ideas appear in Robins (1989, 1994).

9.10 Exercises

1. Suppose you are interested in the effect of the presence of vending machines in
schools on childhood obesity. What randomized experiment would you want to
do (in a perfect world) to evaluate this question?

2. Suppose you are interested in the effect of smoking on lung cancer. What ran-
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domized experiment could you plausibly perform (in the real world) to evaluate
this effect?

3. Suppose you are a consultant for a researcher who is interested in investigating
the effects of teacher quality on student test scores. Use the strategy of mapping
this question to a randomized experiment to help define the question more clearly.
Write a memo to the researcher asking for needed clarifications to this study
proposal.

4. The table below describes a hypothetical experiment on 2400 persons. Each row
of the table specifies a category of person, as defined by his or her pre-treatment
predictor x, treatment indicator T', and potential outcomes y°, y*. (For simplicity,
we assume unrealistically that all the people in this experiment fit into these eight
categories.)

Category  # persons in category = T yo y1
1 300 0 0 4 6
2 300 1 0 4 6
3 500 0 1 4 6
4 500 1 1 4 6
5 200 0 0 10 12
6 200 1 0 10 12
7 200 0 1 10 12
8 200 1 1 10 12

In making the table we are assuming omniscience, so that we know both 3° and
y! for all observations. But the (nonomniscient) investigator would only observe
x, T, and y? for each unit. (For example, a person in category 1 would have
x=0,T=0,y=4, and a person in category 3 would have =0,T=1,y=6.)

(a) What is the average treatment effect in this population of 2400 persons?

(b) Is it plausible to believe that these data came from a randomized experiment?
Defend your answer.

(c¢) Another population quantity is the mean of y for those who received the
treatment minus the mean of y for those who did not. What is the relation
between this quantity and the average treatment effect?

(d) For these data, is it plausible to believe that treatment assignment is ignorable
given sex? Defend your answer.

5. For the hypothetical study in the previous exercise, figure out the estimate and
the standard error of the coefficient of T" in a regression of y on 7" and .

6. You are consulting for a researcher who has performed a randomized trial where
the treatment was a series of 26 weekly therapy sessions, the control was no ther-
apy, and the outcome was self-report of emotional state one year later. However,
most people in the treatment group did not attend every therapy session. In fact
there was a good deal of variation in the number of therapy sessions actually
attended. The researcher is concerned that her results represent “watered down”
estimates because of this variation and suggests adding in another predictor to
the model: number of therapy sessions attended. What would you advise her?

7. Gain-score models: in the discussion of gain-score models in Section 9.3, we
noted that if we include the pre-treatment measure of the outcome in a gain
score model, the coefficient on the treatment indicator will be the same as if we
had just run a standard regression of the outcome on the treatment indicator
and the pre-treatment measure. Show why this is true.
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8. Assume that linear regression is appropriate for the regression of an outcome,
1y, on treatment indicator, 7', and a single confounding covariate, x. Sketch hy-
pothetical data (plotting y versus z, with treated and control units indicated
by circles and dots, respectively) and regression lines (for treatment and control
group) that represent each of the following situations:

(a) No treatment effect,
(b) Constant treatment effect,
(¢) Treatment effect increasing with z.

9. Consider a study with an outcome, y, a treatment indicator, T', and a single con-
founding covariate, . Draw a scatterplot of treatment and control observations
that demonstrates each of the following:

(a) A scenario where the difference in means estimate would not capture the true
treatment effect but a regression of y on z and T would yield the correct
estimate.

(b) A scenario where a linear regression would yield the wrong estimate but a
nonlinear regression would yield the correct estimate.

10. The folder sesame contains data from an experiment in which a randomly se-
lected group of children was encouraged to watch the television program Sesame
Street and the randomly selected control group was not.

(a) The goal of the experiment was to estimate the effect on child cognitive devel-
opment of watching more Sesame Street. In the experiment, encouragement
but not actual watching was randomized. Briefly explain why you think this
was done. (Hint: think of practical as well as statistical reasons.)

(b) Suppose that the investigators instead had decided to test the effectiveness
of the program simply by examining how test scores changed from before the
intervention to after. What assumption would be required for this to be an
appropriate causal inference? Use data on just the control group from this
study to examine how realistic this assumption would have been.

11. Return to the Sesame Street example from the previous exercise.

(a) Did encouragement (the variable viewenc in the dataset) lead to an increase
in post-test scores for letters (postlet) and numbers (postnumb)? Fit an
appropriate model to answer this question.

(b) We are actually more interested in the effect of watching Sesame Street regu-
larly (regular) than in the effect of being encouraged to watch Sesame Street.
Fit an appropriate model to answer this question.

(¢) Comment on which of the two previous estimates can plausibly be interpreted
causally.

12. Messy randomization: the folder cows contains data from an agricultural exper-
iment that was conducted on 50 cows to estimate the effect of a feed additive on
six outcomes related to the amount of milk fat produced by each cow.

Four diets (treatments) were considered, corresponding to different levels of the
additive, and three variables were recorded before treatment assignment: lacta-
tion number (seasons of lactation), age, and initial weight of cow.

Cows were initially assigned to treatments completely at random, and then the
distributions of the three covariates were checked for balance across the treat-
ment groups; several randomizations were tried, and the one that produced the
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13.

14.

“best” balance with respect to the three covariates was chosen. The treatment
assignment is ignorable (because it depends only on fully observed covariates
and not on unrecorded variables such as the physical appearances of the cows
or the times at which the cows entered the study) but unknown (because the
decisions whether to rerandomize are not explained).

We shall consider different estimates of the effect of additive on the mean daily
milk fat produced.

(a) Consider the simple regression of mean daily milk fat on the level of additive.
Compute the estimated treatment effect and standard error, and explain why
this is not a completely appropriate analysis given the randomization used.

(b) Add more predictors to the model. Explain your choice of which variables to
include. Compare your estimated treatment effect to the result from (a).

(c) Repeat (b), this time considering additive level as a categorical predictor
with four letters. Make a plot showing the estimate (and standard error) of
the treatment effect at each level, and also showing the inference the model
fit in part (b).

The folder congress has election outcomes and incumbency for U.S. congres-
sional election races in the 1900s.

(a) Take data from a particular year, ¢, and estimate the effect of incumbency
by fitting a regression of v; ¢, the Democratic share of the two-party vote in
district ¢, on v; 4 (the outcome in the previous election, two years earlier), I;
(the incumbency status in district 7 in election ¢, coded as 1 for Democratic
incumbents, 0 for open seats, —1 for Republican incumbents), and P;; (the
incumbent party, coded as 1 if the sitting congressmember is a Democrat and
—1 if he or she is a Republican). In your analysis, include only the districts
where the congressional election was contested in both years, and do not pick
a year ending in “2.” (District lines in the United States are redrawn every ten
years, and district election outcomes v;; and v; o are not comparable across
redistrictings, for example, from 1970 to 1972.)

(b) Plot the fitted model and the data, and discuss the political interpretation of
the estimated coefficients.

(c) What assumptions are needed for this regression to give a valid estimate of the
causal effect of incumbency? In answering this question, define clearly what
is meant by incumbency as a “treatment variable.”

See Erikson (1971), Gelman and King (1990), Cox and Katz (1996), Levitt and
Wolfram (1997), Ansolabehere, Snyder, and Stewart (2000), Ansolabehere and
Snyder (2002), and Gelman and Huang (2006) for further work and references
on this topic.

Causal inference based on data from individual choices: our lives involve trade-
offs between monetary cost and physical risk, in decisions ranging from how
large a car to drive, to choices of health care, to purchases of safety equipment.
Economists have estimated people’s implicit balancing of dollars and danger by
comparing different jobs that are comparable but with different risks, fitting re-
gression models predicting salary given the probability of death on the job. The
idea is that a riskier job should be compensated with a higher salary, with the
slope of the regression line corresponding to the “value of a statistical life.”

(a) Set up this problem as an individual choice model, as in Section 6.8. What
are an individual’s options, value function, and parameters?
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(b) Discuss the assumptions involved in assigning a causal interpretation to these
regression models.

See Dorman and Hagstrom (1998), Costa and Kahn (2002), and Viscusi and
Aldy (2002) for different perspectives of economists on assessing the value of a
life, and Lin et al. (1999) for a discussion in the context of the risks from radon
exposure.



