
CHAPTER 18

Likelihood and Bayesian inference and
computation

Most of this book concerns the interpretation of regression models, with the un-
derstanding that they can be fit to data fairly automatically using R and Bugs.
However, it can be useful to understand some of the theory behind the model fit-
ting, partly to connect to the usual presentation of these models in statistics and
econometrics.

This chapter outlines some of the basic ideas of likelihood and Bayesian inference
and computation, focusing on their application to multilevel regression. One point
of this material is to connect multilevel modeling to classical regression; another is
to give enough insight into the computation to allow you to understand some of
the practical computational tips presented in the next chapter.

18.1 Least squares and maximum likelihood estimation

We first present the algebra for classical regression inference, which is then gener-
alized when moving to multilevel modeling. We present the formulas here without
derivation; see the references listed at the end of the chapter for more.

Least squares

The classical linear regression model is yi = Xiβ + ǫi, where y and ǫ are (column)
vectors of length n, X is a n × k matrix, and β is a vector of length k. The vector
β of coefficients is estimated so as to minimize the errors ǫi. If the number of data
points n exceeds the number of predictors1 k, it is not generally possible to find
a β that gives a perfect fit (that would be yi = Xiβ, with no error, for all data

points i = 1, . . . , n), and the usual estimation goal is to choose the estimate β̂ that

minimizes the sum of the squares of the residuals ri = yi − Xiβ̂. (We distinguish

between the residuals ri = yi − Xiβ̂ and the errors ǫi = yi − Xiβ.) The sum of

squared residuals is SS =
∑n

i=1(yi − Xiβ̂)2; the β̂ that minimizes it is called the
least squares estimate and can be written in matrix notation as

β̂ = (XtX)−1Xty. (18.1)

We rarely work with this expression directly, since it can be computed directly in
the computer (for example, using the lm() command in R).

The errors ǫ come from a distribution with mean 0 and variance σ2. This standard
deviation can be estimated from the residuals, as

σ̂2 =
1

n − k
SS =

1

n − k

n∑

i=1

(yi − Xiβ̂)2, (18.2)

with n−k rather than n−1 in the denominator to adjust for the estimation of the

1 The constant term, if present in the model, counts as one of the predictors; see Section 3.4.

387

388 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

k-dimensional parameter β. (Since β is estimated to minimize the sum of squared
residuals, SS will be, on average, lower by a factor of n−k

n than the sum of squared
errors.)

Maximum likelihood

As just described, least squares estimation assumes linearity of the model and inde-
pendence of the errors. If we further assume that the errors are normally distributed,
so that yi ∼ N(Xiβ, σ2) for each i, the least squares estimate β̂ is also the maximum
likelihood estimate. The likelihood of a regression model is defined as the probability
of the data given the parameters and inputs; thus, in this example,

p(y|β, σ, X) =

n∏

i=1

N(yi|Xiβ, σ2), (18.3)

where N(·|·, ·) represents the normal probability density function, N(y|m, σ2) =
1√
2πσ

exp
(
− 1

2

(
y−m

σ

)2
)
. The model can also be written in vector-matrix notation as

y ∼ N(Xβ, σ2In), where In is the n-dimensional identity matrix. Giving a diagonal
covariance matrix to this multivariate normal distribution implies independence of
the errors.

Expression (18.3) is a special case of the general expression for the likelihood of
n independent measurements given a vector parameter θ and predictors X :

p(y|θ, X) =

n∏

i=1

p(yi|θ, Xi). (18.4)

The maximum likelihood estimate is the vector θ for which this expression is max-
imized, given data X, y. (In classical least squares regression, θ corresponds to the
vector of coefficients β, along with the error scale, σ.) In general, we shall use the
notation p(y|θ) for the likelihood as a function of parameter vector θ, with the
dependence on the predictors X implicit.

The likelihood can then be written as

p(y|β, σ, X) = N(y|Xβ, σ2In). (18.5)

Using the standard notation for the multivariate normal distribution with mean
vector m and covariance matrix Σ, this becomes

N(y|m, Σ) = (2π)−n/2|Σ|−1/2 exp

(
−

1

2
(y − m)tΣ−1(y − m)

)
.

Expressions (18.3) and (18.5) are equivalent and are useful at different times when
considering generalizations of the model.

A careful study of (18.3) or (18.5) reveals that maximizing the likelihood is
equivalent to minimizing the sum of squared residuals; hence the least squares
estimate β̂ can be viewed as a maximum likelihood estimate under the normal
model.

There is a small twist in fitting regression models, in that the maximum likelihood

estimate of σ is
√

1
n

∑n
i=1(yi − Xiβ̂)2, with 1

n instead of 1
n−k . The estimate with

1
n−k is generally preferred: the maximum likelihood estimate of (β, σ) simply takes
the closest fit and needs to be adjusted to account for the fitting of k regression
coefficients.

LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATION 389

Weighted least squares

The least squares estimate counts all n data points equally in minimizing the sum
of squares. If some data are considered more important than others, this can be
captured in the estimation by minimizing a weighted sum of squares, WSS =∑n

i=1 wi(yi − Xiβ̂)2, so that points i with larger weights wi count more in the
optimization. The weighted least squares estimate is

β̂WLS = (XtWX)−1XtWy, (18.6)

where W is the diagonal matrix whose elements are the weights wi.
Weighted least squares is equivalent to maximum likelihood estimation of β in

the normal regression model

yi ∼ N(Xiβ, σ2/wi), (18.7)

with independent errors with variances inversely proportional to the weights. Points
with high weights have low error variances and are thus expected to lie closer to
the fitted regression function.

Weighted least squares can be further generalized to fit data with correlated
errors; if the data are fit by the model y ∼ N(Xβ, Σ), then the maximum like-

lihood estimate is β̂ = (XtΣ−1X)−1XtΣ−1y and minimizes the expression (y −
Xβ)tΣ−1(y − Xβ), which can be seen as a generalization of the “sum of squares”
concept.

Generalized linear models

Classical linear regression can be motivated in a purely algorithmic fashion (as
“least squares”) or as maximum likelihood inference under a normal model. With
generalized linear models, the algorithmic justification is usually set aside, and
maximum likelihood is the starting point. We illustrate with the two most important
examples.

Logistic regression. For binary logistic regression with data yi = 0 or 1, the likeli-
hood is

p(y|β, X) =

n∏

i=1

{
logit−1(Xiβ) if yi = 1

1 − logit−1(Xiβ) if yi = 0,

which can be written more compactly, but equivalently, as

p(y|β, X) =

n∏

i=1

(
logit−1(Xiβ)

)yi
(
1 − logit−1(Xiβ)

)1−yi
.

To find the β that maximizes this expression, we can compute the derivative
dp(y|β, X)/dβ of the likelihood (or, more conveniently, the derivative of the log-
arithm of the likelihood), set this derivative equal to 0, and solve for β. There is
no closed-form solution, but the maximum likelihood estimate can be found us-
ing an iteratively weighted least squares algorithm, each step having the form of a
weighted least squares computation, with the weights changing at each step.

Not just a computational trick, iteratively weighted least squares can be under-
stood statistically as a series of steps approximating the logistic regression like-
lihood by a normal regression model applied to transformed data. We shall not
discuss this further here, however. We only mentioned the algorithm to give a sense
of how likelihood functions are used in classical estimation.

390 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

9.6 9.7 9.8

likelihood, p(β0|y)

β0

9.6 9.7 9.8

estimate ± s.e.

β0

β̂0

− s.e. + s.e.

9.6 9.7 9.8

1000 random draws of β0

β0

Figure 18.1 (a) Likelihood function for the parameter β0 in the trivial linear regression y =
β0 + error, of log earnings yi. (b) Mode of the likelihood function and range indicating ±1
standard error as computed from the inverse-second-derivative-matrix of the log likelihood
at the mode. (c) 1000 random simulation draws from the normal distribution with this
mean and standard deviation, representing the distribution of uncertainty in the inference
for β0. The simulations have been vertically jittered to make them visible. (For this one-
dimensional problem it would be better to display the simulations as a histogram; we use
a dotplot here for compatability with the scatterplot of the two-dimensional simulations in
Figures 18.2–18.3.)

Poisson regression. For Poisson regression (6.3), the likelihood is

p(y|β, X, u) =
n∏

i=1

Poisson
(
yi

∣∣uie
Xiβ

)
,

where each factor has the Poisson probability density function: Poisson(y|m) =
1
y!m

ye−m.

18.2 Uncertainty estimates using the likelihood surface

In maximum likelihood estimation, the likelihood function can be viewed as a “hill”
with β̂ identifying the location of the top of the hill—that is, the mode of the
likelihood function. We illustrate with two simple regression examples.

One-parameter example: linear regression with just a constant term

Figure 18.1 demonstrates likelihood estimation for the simple problem of regression
with only a constant term; that is, inference for β0 in the model yi = β0 + ǫi, i =
1, . . . , n, for the earnings data from Chapter 2. In this example, β0 corresponds to
the average log earnings in the population represented by the survey. For simplicity,
we shall assume that σ, the standard deviation of the errors ǫi, is known and equal
to the sample standard deviation of the data.

Figure 18.1a plots the likelihood function for β0. The peak of the function is
the maximum likelihood estimate, which in this case is simply ȳ, the average log
earnings reported in the sample. The range of the likelihood function tells us that it
would be extremely unlikely for these data to occur if the true β0 were as low as 9.6
or as high as 9.8. Figure 18.1b shows the maximum likelihood estimate ±1 standard
error, and Figure 18.1c displays 1000 random draws from the normal distribution
representing uncertainty in β0.

Two-parameter example: linear regression with two coefficients

Figure 18.2 illustrates the slightly more complicated case of a linear regression
model with two coefficients (corresponding to a constant term and a linear predic-

UNCERTAINTY ESTIMATES USING THE LIKELIHOOD SURFACE 391

likelihood, p(β0,β1|y)

β0

β1

4 5 6 7

0.
04

0.
06

0.
08

(β̂0, β̂1) and std errors

β0

β 1

4 5 6 7

0.
04

0.
06

0.
08

1000 random draws of (β0, β1)

β0

β 1

Figure 18.2 (a) Likelihood function for the parameters β0, β1 in the linear regression
y = β0 + β1x + error, of log earnings, yi, on heights, xi. (The spiky pattern of the three-
dimensional plot is an artifact of the extreme correlation of the distribution.) (b) Mode of
the likelihood function (that is, the maximum likelihood estimate (β̂0, β̂1)) and ellipse sum-
marizing the inverse-second-derivative-matrix of the log likelihood at the mode. (c) 1000
random simulation draws from the normal distribution centered at (β̂0, β̂1) with variance
matrix equal to the inverse of the negative second derivative of the log likelihood.

likelihood, p(β0,β1|y)

β0

β1

9.6 9.7 9.8

0.
04

0.
06

0.
08

(β̂0, β̂1) and std errors

β0

β 1

9.6 9.7 9.8

0.
04

0.
06

0.
08

1000 random draws of (β0, β1)

β0

β 1

Figure 18.3 (a) Likelihood function, (b) mode and uncertainty ellipse, and (c) 1000 sim-
ulation draws of the regression coefficients for the model y = β0 + β1z + error, of log
earnings, yi, on mean-centered heights, zi = xi − x̄. The inferences for the parameters
β0, β1 are now independent. Compare to Figure 18.2.

tor). (Strictly speaking this model has three parameters—β0, β1, and σ—but for
simplicity we display the likelihood of β0, β1 conditional on the estimated σ̂.)

Figure 18.2a shows the likelihood as a function of (β0, β1). The area with highest
likelihood surrounding the peak can be represented by an ellipse as is shown in
Figure 18.2b. Figure 18.2c displays 1000 random draws from the normal distribution
with covariance matrix represented by this ellipse. The shape of the uncertainty
ellipse, or equivalently the correlation of the simulation draws, tells us something
about the information available about the two parameters. For example, the data
are consistent with β0 being anywhere between 4.5 and 7.2, and with β1 being
anywhere between 0.04 and 0.08. However, the inferences for these two parameters
are correlated: if β0 is 4.5, then β1 must be near 0.08, and if β0 is 7, then β1 must
be near 0.04. To understand this inferential correlation, see Figure 4.1 on page 54:
the regression line must go through the cloud of points, which is far from the y-axis.
Lines of higher slope (for which β1 is higher) intersect the y-axis at a lower value
(and thus have lower values of β0), and vice versa.

It is convenient to reparameterize the model so that the inferences for the in-
tercept and slope coefficients are uncorrelated. We can do this by replacing the
predictor xi by its mean-centered values, zi = xi − x—that is, height relative to
the average height in the sample. Figure 18.3 shows the likelihood function and
simulations for the coefficients in the regression of y = β0 + β1z + error.

392 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

Nonidentified parameters and the likelihood function

In maximum likelihood inference, parameters in a model are nonidentified if they
can be changed without affecting the likelihood. Continuing with the “hill” analogy,
nonidentifiability corresponds to a “ridge” in the likelihood—that is, a direction in
parameter space in which the likelihood is flat. This occurs, for example, when
predictors in a classical regression are collinear.

Summarizing uncertainty about β and σ using the variance matrix from a fitted

regression

We summarize the fit of a model y = Xβ + ǫ by a least squares estimate β̂ =
(XtX)−1Xty and a variance matrix (or covariance matrix) of estimation,

Vβ = (XtX)−1σ2. (18.8)

We represent the uncertainty in the estimated β vector using the normal distribution
with mean β̂ and variance matrix Vβ . Figures 18.1–18.3 show examples of the

estimated N(β̂, Vβ) distribution in one and two dimensions.
Expression (18.8) depends on the unknown σ2, which we can estimate most sim-

ply with σ̂2 from (18.2) on page 387. To better capture uncertainty, we first compute
σ̂2 and then sample σ2 = σ̂2(n− k)/X2

n−k, where X2
n−k represents a random draw

from the χ2 distribution with n− k degrees of freedom. These steps are performed
by the sim() function we have written in R, as we describe next.

18.3 Bayesian inference for classical and multilevel regression

Bayesian inference for classical regression

In Bayesian inference, the likelihood is multiplied by a prior distribution, and infer-
ences are typically summarized by random draws from this product, the posterior

distribution.
The simplest form of Bayesian inference uses a uniform prior distribution, so that

the posterior distribution is the same as the likelihood function (when considered
as a function of the parameters), as pictured, for example, in the left graphs in Fig-
ures 18.1–18.3. The random draws shown in the rightmost graphs in these figures
correspond to random draws from the posterior distribution, assuming a uniform
prior distribution. In this way, informal Bayesian inference is represented as dis-
cussed in Section 7.2, using the simulations obtained from the sim() function in
R (which draws from the normal distribution with mean β̂ and standard deviation
Vβ). This is basically a convenient way to summarize classical regression, especially
for propagating uncertainty for predictions.

Informative prior distributions in a single-level regression

Bayesian inference can also be used to add numerical information to a regression
model. Usually we shall do this using a multilevel model, but we illustrate here with
the simpler case of a specified prior distribution—the regression of log earnings on
height, shown in Figures 18.2 and 18.3. Suppose we believed that β1 was probably
between 0 and 0.05—that is, a predicted difference of between 0 and 5% in earnings
per inch of height. We could code this as a normal prior distribution with mean
2.5% and standard deviation 2.5%, that is, β1 ∼ N(0.025, 0.0252).

Mathematically, this prior distribution can be incorporated into the regression

BAYES FOR CLASSICAL AND MULTILEVEL REGRESSION 393

by treating it as an additional “data point” of 0.025, measured directly on β2,
with a standard deviation of 0.025. This in turn can be computed using a weighted
regression of an augmented data vector y∗ on an augmented predictor matrix X∗

with augmented weight vector w∗. These are defined as follows:

y∗ =





y1

y2

...
yn

0.025




, X∗ =





1 x1

1 x2

...
...

1 xn

0 1




, w∗ =





1
1
...
1

σ2
y/0.0252




. (18.9)

We have added the prior information as a new data point and given it a weight of
the data variance (which can be estimated from the classical regression) divided by
the prior variance. This weighting makes sense:

• If σy > 0.025, then the prior distribution is more informative than any data
point, and so the prior “data point” will be given a high weight.

• If σy = 0.025, then the prior distribution has the same information as one data
point and so is given equal weight.

• If σy < 0.025, then the prior distribution has less information than a single data
point and so gets a lower weight.

We rarely use formulation (18.9) directly, but similar ideas apply with multilevel
models, in which the group-level model for parameters αj and βj can be interpreted
as prior information.

Collinearity and Bayesian regression

In the matrix-algebra language of (18.1) and (18.6), the Bayesian estimate—the
least squares estimate of the augmented regression based on (18.9)—contains the
expression Xt

∗Diag(w∗)X∗, which is simply XtX with an added term corresponding
to the prior information. With collinear predictors, the original XtX is noninvert-
ible, but the new Xt

∗Diag(w∗)X∗ might be invertible, depending on the structure
of the new information.

For example, in a classical varying-intercept model, we would include only J−1
group indicators as predictors, because a regression that included the constant term
along with indicators for all J groups would be collinear and nonidentifiable. But the
multilevel model has the effect of adding a prior distribution for the J coefficients
of the group indicators, thus adding a term to XtX which makes the new matrix
invertible, even with the constant term included as well.

Simple multilevel model with no predictors

Bayesian inference achieves partial pooling for multilevel models by treating the
group-level model as defining prior distributions for varying intercepts and slopes.

We begin by working through the algebra for the radon model with no individual-
or group-level predictors, simply measurements within counties:

yi ∼ N(αj[i], σ
2
y) for i = 1, . . . , n

αj ∼ N(µα, σ2
α) for j = 1, . . . , J. (18.10)

We label the number of houses in county j as nj (so that Lac Qui Parle County
has nj = 2, Aitkin County has nj = 4, and so forth; see Figure 12.2 on page 255).

394 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

Sample size in group, nj Estimate, α̂j

nj = 0 α̂j = µα (complete pooling)
nj < σ2

y/σ2
α α̂j closer to µα

nj = σ2
y/σ2

α α̂j = 1
2 ȳj + 1

2µα

nj > σ2
y/σ2

α α̂j closer to ȳj

nj = ∞ α̂j = ȳj (no pooling)

Figure 18.4 Summary of partial pooling of multilevel estimates as a function of group size.

Complete-pooling and no-pooling estimates. As usual, we begin with the classical
estimates. In complete pooling, all counties are considered to be equivalent, so that
α1 = α2 = · · · = αJ = µα, and the model reduces to yi ∼ N(µα, σ2

y) for all
measurements y. The estimate of µα, and thus of all the individual αj ’s, is then
simply ȳ, the average of the n measurements in the data.

In the no-pooling model, each county is estimated alone, so that each αj is
estimated by ȳj , the average of the measurements in county j.

Multilevel inference if the hyperparameters were known. The multilevel model
(18.10) has data-level regression coefficients α1, . . . , αJ and hyperparameters µα,
σy , and σα. In multilevel estimation, we perform inference for both sets of param-
eters. To explain how to do this, we first work out the inferences for each set of
parameters separately.

The key step of multilevel inference is estimation of the data-level regression
coefficients given the data and hyperparameters—that is, acting as if the hyperpa-
rameters were known. As discussed in the regression context in Section 12.2, the
estimate of each αj will be a compromise between ȳj and µα, the unpooled estimate
in county j and the average over all the counties.

Given the hyperparameters, the inferences for the αj ’s follow independent normal
distributions, which we can write as

αj |y, µα, σy, σα ∼ N(α̂j , Vj), for j = 1, . . . , J, (18.11)

where the estimate and variance of estimation are

α̂j =

nj

σ2
y
ȳj + 1

σ2
α
µα

nj

σ2
y

+ 1
σ2

α

, Vj =
1

nj

σ2
y

+ 1
σ2

α

. (18.12)

The notation “αj|y, µα, σy , σα ∼” in (18.11) can be read as, “αj , given data, µα,
σy , and σα, has the distribution . . . ,” indicating that this is the estimate with the
hyperparameters assumed known.

The estimate α̂j in (18.12) can be interpreted as a weighted average of ȳj and µα,
with relative weights depending on the sample size in the county and the variance
at the data and group levels. As shown in Figure 18.4, the key parameter is the
variance ratio, σ2

y/σ2
α. For counties j for which nj = σ2

y/σ2
α, then the weights in

(18.12) are equal, and α̂j = 1
2 ȳj + 1

2µα. If nj is greater than the variance ratio, then
α̂j is closer to ȳj ; and if nj is less then the variance ratio, then α̂j is closer to µα.

Crude inference for the hyperparameters. Given the data-level regression coeffi-
cients αj , how can we estimate the hyperparameters, σy, µα, σα in the multilevel
model (18.10)?

BAYES FOR CLASSICAL AND MULTILEVEL REGRESSION 395

0 2 4

LAQ QUI PARLE: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

KOOCHICHING: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

CLAY: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

RAMSEY: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

Figure 18.5 Likelihood, prior distribution, and posterior distribution for the intercept pa-
rameter αj for the simple radon model (with no county-level predictors) in four different
counties j in Minnesota with a range of sample sizes in the data. As the sample size in the
county increases, the likelihood becomes more informative (see Figure 12.4 on page 257).

• The natural estimate of the data variance σ2
y is simply the residual variance:

σ̂2
y =

1

n

n∑

i=1

(yi − αj[i])
2. (18.13)

• The mean µα from the group-level model in (18.10) can be estimated by the
average of the county intercepts αj :

µ̂α =
1

J

J∑

j=1

αj , (18.14)

with an estimation variance of 1
J σ2

α.

• The group-level variance σ2
α can be estimated by

σ̂2
α =

1

J

J∑

j=1

(αj − µα)2. (18.15)

Unfortunately, the county parameters αj are not themselves known, so we cannot
directly apply the above formulas. We can, however, use an iterative algorithm that
alternately estimates the αj ’s and the hyperparameters, as we describe next.

Individual predictors but no group-level predictors

We next consider the varying-intercept model (12.2) from page 256: yi ∼ N(αj[i] +
βxi, σ

2
y), where j[i] is the county containing house i. The basic varying-intercept

model (12.3) is αj ∼ N(µα, σ2
α)—that is, a normal prior distribution for each αj

that is common to all counties j. (The hyperparameters µα, σα must themselves be
estimated from the data, but we shall set this issue aside for a moment and just
treat them as known.)

The top row of Figure 18.5 shows the likelihood for αj in four of the counties.

396 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

0 2 4

LAQ QUI PARLE: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

KOOCHICHING: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

CLAY: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

0 2 4

RAMSEY: likelihood

αj

0 2 4

prior dist.

αj

0 2 4

posterior dist.

αj

Figure 18.6 Likelihood, prior distribution, and posterior distribution for the intercept pa-
rameter αj in four counties for the radon model that includes uranium as a county-level
predictor. The prior distributions for the counties now differ because of their varying ura-
nium levels (see Figure 12.6 on page 266). Compare to Figure 18.5.

For each county j, the likelihood indicates the range of values of αj that are most
consistent with the data in that county. The four counties are displayed in increasing
order of sample size; the likelihood is more informative as sample size increases. The
second row of Figure 18.5 shows the N(µα, σ2

α) prior distribution, which is the same
for the four counties. In this context the “prior distributions” do not represent
information occurring before the data have been seen; rather, they convey the
information about the distribution of the αj ’s among the counties, which is relevant
for estimating each individual αj .

The bottom row of Figure 18.5 displays the posterior distributions, which com-
bine the information from the likelihoods and prior distributions. The posterior
distribution for each county is centered at a point between the maximum likelihood
estimate and the maximum of the prior distribution—a weighted average of likeli-
hood and prior estimates—falling closer to the prior distribution when sample sizes
are small and closer to the likelihood when sample sizes are large.

Including group-level predictors

We now move to the radon model including uranium as a county-level predictor.
Figure 18.6 displays the likelihood, prior distributions, and posterior distributions
for four counties. In this case, the prior distributions for county j is normal with
mean γ0 + γ1uj and variance σ2

α. The county uranium levels uj vary, and so the
prior distributions vary also, as can be seen in the second row of Figure 18.6.

Multilevel regression as least squares with augmented data

To understand the matrix algebra of multilevel regression, we continue with the
data-augmentation idea illustrated in (18.9) on page 393. Starting with classical
weighted least squares with data vector y = (y1, . . . , yn), an n× k predictor matrix
X , and data weights w = (w1, . . . , wn), we define Wy = Diag(w1, . . . , wn), which is

GIBBS SAMPLER FOR MULTILEVEL LINEAR MODELS 397

a matrix proportional to the inverse data variances in the model. The model is

y ∼ N(Xβ, Σy),

where Σy = σ2W−1
y . The vector of regression coefficients is estimated by weighted

least squares as β̂wls = (XtWyX)−1XtWyy, and the corresponding variance matrix
is Vβ = (XtWyX)−1σ2. We refer to this as “the regression of y on X with weight
matrix Wy .” (This reduces to classical unweighed regression if the weights are all
equal to 1, so that Wy is the identity matrix.)

To fit multilevel models in this framework, we work with the formulation as
a large regression model, as in the discussion following (12.10) on page 264. We
illustrate with the flight simulator model (13.9) on page 289. Here, β is a vector
of length 14: the mean parameter, followed by 5 treatment effects and 8 airport
effects. In the notation of (13.9), β = (α0, γ1, . . . , γ5, δ1, . . . , δ8). We define µβ and
Σβ as the mean and variance of β in the prior distribution: β ∼ N(µβ , Σβ). Finally,
we define the weight matrix Wβ as the inverse-variance of β, scaled by the data
variance: Wβ = σ2

yΣ−1
β .

For the flight simulator example, µβ is a vector of 14 zeroes, and Wβ is a diagonal
matrix with diagonal entries , followed by σ2

y/σ2
γ five times, followed by σ2

y/σ2
δ eight

times. The first element of the diagonal of Wβ is zero because our model specifies no
information about the parameter α0; the other elements indicate the information
in the model about each multilevel parameter, compared to the information in each
data point.

The multilevel model can be expressed as a least squares regression of y∗ on X∗

with weight matrix W∗, where

y∗ =

(
y
µβ

)
, X∗ =

(
X
Ik

)
, W∗ =

(
Wy 0
0 Wβ

)
. (18.16)

The augmented data correspond to the extra information in the model for β. The
augmentation has the effect of partially pooling the least squares estimate of β in
the direction of its mean vector µβ , and can be viewed as a matrix generalization
of (18.12).

18.4 Gibbs sampler for multilevel linear models

Gibbs sampling is the name given to a family of iterative algorithms that are used
by Bugs (“Bayesian inference using Gibbs sampling”) and other programs to fit
Bayesian models. The basic idea of Gibbs sampling is to partition the set of unknown
parameters and then estimate them one at a time, or one group at a time, with
each parameter or group of parameters estimated conditional on all the others. The
algorithm is effective because, in a wide range of problems, estimating separate
parts of a model is relatively easy, even if it is difficult to see how to estimate all
the parameters at once.

Figure 18.7 illustrates the Gibbs sampler for a simple example. In general, the
algorithm proceeds as follows:

1. Choose some number nchains of parallel simulation runs (typically a small number
such as 3). For each of the chains:

(a) Start with initial values for all the parameters. These should be dispersed
(as pictured by the solid squares in Figure 18.7); for convenience we typically
use simple random numbers, as discussed in Chapter 16 in the context of
implementing models in Bugs.

398 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

-4 -2 0 2 4

-4
-2

0
2

4

-4 -2 0 2 4

-4
-2

0
2

4

-4 -2 0 2 4

-4
-2

0
2

4

... ...
. .

..

..
. .

. .. .

..

..

. .
. .

... ...

..

..
..
... .

... .
..

....

. .. .
..

..
... .

. .

..
. .. .

..
..... .

. .

..
. .

..

....

..
. ...

. .

. ...
. .

..

..
. ...

. .

..
. .

. .
..

....
. .

. .
. .

....
. .

. .

. .

..

..

. .

. .

. .

... ...
... .

....
....

. .
. .

. .

..
..

..

. .

..
..

..

. .

.

..
. .

. .

..

. ...
..

..

..
. .

. .
..

. .

... .

. .

. ...

....

. .

. .

..

..

.. ..

. ...

..
. .

..

.
. ...
. .

... .
..

..

..
. .. .

..
. .

..

. .

. ...
..

..

..

. .

..
. .

..

..

. .

. ...

..

. ...

..
..

. .

. .
. ...

....

. .

. .
... .

. .

. .

..

. .

..

..
..
....

. .

..

..

..

..

..

. .
..

. .
. .

. .

..

..

..
. .

..
... .

..

. .

..

. ...

. .

. .
. ...

. .
....

...

. .
..

..

. ...

. .

. .

..

..

..

..

. .
. .

..

. .
. .

..

. .
..

. .

..
..

..

....

..

. .

..

. .

..

..
. .

. .

..

..

. .

. .
......

... .

. .
..

. .
..

. .

....
. .
..
..

. .

..

..
. .. .

..
. .

..

..
. .

. .

..
..

. .

. .
..

..

..
..

. .

..... .
. .

....
. .

... ...
..

..

..

..

. .

. .

. .

..

. .

. ...

..
..

. .

..
..

. .
. .

..
.

....
. .

..

..
... .

. .. .
... .

..

..

..

..

..

. .

. .

..
..

. .

.

..

..
. .

..
..
..

. ...
. .

. ...
... .

..

. .

..

..
..

..

. .

. .. .

. .

..

..

..

....
. .

. ...

..

. .

... .

. .
. .

..

. .
..

..

. .

..
. .

..
..
. .

..
. .

..

. .
..

..
. .

. .
..

..

..

..

..

. .

. .
..... .. .

... .
..

......
. .

..

. .. .

. .
. .

..

... .

..
..

. .

..
. .

..

. .
..

. .

. .
..

. .. .

..

..

..

..

....
. .

... .

. .
..

. ...
..

. .

..

..... ...

..

. .

. .
..
..

. .
..

. .
..

. ...

...
..

. .
. .

..

..
...

.

. .

. .

. .

. .
..

. ...
. .

..

..

Figure 18.7 Four independent sequences of the Gibbs sampler for a simple example with
two parameters. Initial values of the nchains = 4 sequences are indicated by solid squares.
(a) First 10 iterations, showing the component-by-component updating of the Gibbs itera-
tions. (b) After 500 iterations, when the sequences have reached approximate convergence.
(c) The points from the second halves of the sequences.

(b) Choose some number niter of iterations (typically a somewhat large number
such as 1000). For each iteration:

Update the parameters, or batches of parameters, one at a time. For each
parameter or batch, take a random simulation draw given the data and the
current estimate of all the other parameters. (We illustrate with some exam-
ples below.)

2. Evaluate the mixing of the simulated chains using the R̂ summary, which we
have already discussed in Section 16.4 in the context of interpreting the output
from Bugs models.

3. If convergence is poor, run longer or alter the model, following the advice in
Section 16.9.

The key part of this algorithm is the sequential updating step. Bugs performs it
automatically, but here we will show how to compute Gibbs updates “manually” in
R for multilevel linear regressions. Our purpose is not to set you up to program these
yourself but rather to give enough insight that you can understand roughly how
Bugs works, and thus better diagnose and fix problems when Bugs is not working
so well.

We present in this section the steps of Gibbs sampling for a series of multilevel
linear regressions: first a model with no predictors, then including a predictor at
the individual level, then adding one at the group level.

The basic Gibbs sampler structure described here works for multilevel regres-
sions, with the new twist that the regression coefficients can be estimated using an
adaptation of classical least squares regression. (Model (18.10) can be considered
as a special case of regression with only an intercept and no slope parameters, but
this case is so simple that least squares matrix computations were not required.)

Gibbs sampler for a multilevel model with no predictors

We first go through the steps of the Gibbs sampler—mathematically and as pro-
grammed in R—for the multilevel model (18.10) with data in groups and no pre-
dictors.

The Gibbs sampler starts with initial values for all the parameters and then
updates the parameters in turn, giving each a random estimate based on the data
and the current guess of the other parameters in the model. For the simple model
we are considering here, the Gibbs updating steps are:

GIBBS SAMPLER FOR MULTILEVEL LINEAR MODELS 399

1. Update α: For j = 1, . . . , J , compute α̂j and Vj from (18.12) and then draw αj

from the normal distribution with mean α̂j and variance Vj .

2. Update µα: Compute µ̂α from (18.14) and then draw µα from the normal dis-
tribution with mean µ̂α and variance σ2

α/J .

3. Update σy: Compute σ̂2
y from (18.13) and then draw σ2

y = σ̂2
y/X2

n−1, where X2
n−1

is a random draw from a χ2 distribution with n − 1 degrees of freedom.

4. Update σα: Compute σ̂2
α from (18.15) and then draw σ2

α = σ̂2
α/X2

J−1, where
X2

J−1 is a random draw from a χ2 distribution with J − 1 degrees of freedom.

Each of these steps should seem reasonable; however, the details (such as the χ2

distributions and their degrees of freedom) are not particularly intuitive and must be
derived using probability calculations that are beyond the scope of this book. Each
step uses random simulations rather than point estimates so that the procedure
captures the inferential uncertainty about the parameters.

Iterating the above four steps produces a “chain” of simulation draws—a sequence
of simulations α1, . . . , αJ ; σy; µα; α1, . . . , αJ ; σy ; µα; and so forth. Looking at any
single one of these parameters, we have a sequence of simulations that, if the chain
is run long enough, captures the range of uncertainty in the estimation of that
parameter. We start several chains with random initial values and then run until
the chains have mixed (see Figure 16.2 on page 357).

Programming the Gibbs sampler in R

When Bugs fits model (18.10), it performs a series of computations that are similar
to the steps just given. To understand in more detail, we program them here in R.
For many applications, we can simply use Bugs, but when computational speed is
a concern (for example, with large datasets), or for some complicated models (for
example, the social networks model in Section 15.3), it can be necessary to code
the Gibbs sampler directly.

We program the Gibbs sampler in three steps: setting up the data, writing func-
tions for the individual parameter updates, and writing a loop for the actual com-
putation. For the radon example, we have already set up the data vector y and
the vector of county indexes county, and we are ready to program the parameter
updates.

R codea.update <- function() {

a.new <- rep (NA, J)

for (j in 1:J){

n.j <- sum (county==j)

y.bar.j <- mean (y[county==j])

a.hat.j <- ((n.j/sigma.y^2)*ybar.j + (1/sigma.a^2)*mu.a)/

(n.j/sigma.y^2 + 1/sigma.a^2)

V.a.j <- 1/(n.j/sigma.y^2 + 1/sigma.a^2)

a.new[j] <- rnorm (1, a.hat.j, sqrt(V.a.j))

}

return (a.new)

}

mu.a.update <- function() {

mu.a.new <- rnorm (1, mean(a), sigma.a/sqrt(J))

return (mu.a.new)

}

sigma.y.update <- function() {

sigma.y.new <- sqrt(sum((y-a[county])^2)/rchisq(1,n-1))

400 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

return (sigma.y.new)

}

sigma.a.update <- function() {

sigma.a.new <- sqrt(sum((a-mu.a)^2)/rchisq(1,J-1))

return (sigma.a.new)

}

These functions have empty argument lists (for example, sigma.a.update uses
α, µα, and J , but these variables are not passed to as arguments in the function
call) because we find it convenient to define all variables globally when putting
the functions together. Passing functions through argument lists is cleaner in a
programming sense but in this context can lead to confusion when models get
altered, with parameters added and removed.

Another approach to programming these Gibbs updates would be to write general
updating functions for the normal and inverse-χ2 distributions and to call these by
passing arguments through the functions.

In any case, having created the updating functions, we now create the space for
three independent chains of length 1000 and give names to the parameters that
will be saved in a large array, sims, that will contain posterior simulation draws for
α, µα, σy, σα:

R code n.chains <- 3

n.iter <- 1000

sims <- array (NA, c(n.iter, n.chains, J+3))

dimnames (sims) <- list (NULL, NULL,

c (paste ("a[", 1:J, "]", sep=""), "mu.a", "sigma.y", "sigma.a"))

This last bit looks confusing; after running the command in R, it is helpful to type
dimnames(sims) to see what this name object looks like, and to type sims[1:5,1,]
to see how the names attach themselves to the sims object (or, in this case, the
first five steps of the first chain of the sims object).

We are now ready to run the Gibbs sampler, first initializing µα, σy , σα with
random values set crudely based on the range of the data—we need not initialize α
because it is updated in the first step in the loop—and then simulating three chains
for 1000 iterations each:

R code for (m in 1:n.chains){

mu.a <- rnorm (1, mean(y), sd(y))

sigma.y <- runif (1, 0, sd(y))

sigma.a <- runif (1, 0, sd(y))

for (t in 1:n.iter){

a <- a.update ()

mu.a <- mu.a.update ()

sigma.y <- sigma.y.update ()

sigma.a <- sigma.a.update ()

sims[t,m,] <- c (a, mu.a, sigma.y, sigma.a)

}

}

We then summarize the simulations—view the inferences and check convergence—
by using the as.bugs.array function to convert them to a Bugs object:

R code sims.bugs <- as.bugs.array (sims)

plot (sims.bugs)

GIBBS SAMPLER FOR MULTILEVEL LINEAR MODELS 401

Gibbs sampler for a multilevel model with regression predictors

We can easily adapt the above algorithm to include predictors at the individual
and group levels. Consider the model

yi ∼ N(αj[i] + Xiβ, σ2
y) for i = 1, . . . , n

αj ∼ N(Ujγ, σ2
α) for j = 1, . . . , J,

where X is a matrix of individual-level predictors (without a constant term), U
is a matrix of group-level predictors (including a constant term), and β and γ are
vectors of coefficients.

After initializing the parameters α, β, γ, σy , σα with random numbers (constrain-
ing the σ parameters to be positive), the Gibbs sampler can be implemented as
follows:

1. Update α: It is simplest to use the reexpression, αj = Uj +ηj; the ηj ’s are group-
level errors that are partially pooled toward their mean of 0. We apply (18.12)
to suitably adjusted data y, correcting for individual- and group-level predictors.
For each data point, compute ytemp

i = yi − Xiβ − Uj[i]γ. Then for j = 1, . . . , J ,
compute η̂j and Vj from (18.12)—but using ytemp in place of y—and draw ηj

from the normal distribution with mean η̂j and variance Vj . We complete the
updating step by setting each αj to Ujγ + ηj .

2. Update β: For each data point, compute ytemp
i = yi − αj[i]. Then regress ytemp

on X to obtain an estimate β̂ and covariance matrix Vβ , inserting σy for σ in

equation (18.8). Now draw β from the N(β̂, Vβ) distribution.

3. Update γ: Regress α on U (this is a regression with J data points) to obtain an
estimate γ̂ and covariance matrix Vγ , inserting σα for σ in (18.8). Now draw γ
from the N(γ̂, Vγ) distribution.

4. Update σy: Compute σ̂2
y = 1

n

∑n
i=1(yi − αj[i] − Xiβ)2 and then draw σ2

y =
σ̂2

y/X2
n−1, where X2

n−1 is a random draw from a χ2 distribution with n − 1
degrees of freedom.

5. Update σα: Compute σ̂2
α = 1

J

∑J
i=1(αj − Ujγ)2 and then draw σ2

α = σ̂2
α/X2

J−1,
where X2

J−1 is a random draw from a χ2 distribution with J − 1 degrees of
freedom.

This algorithm combines partial pooling (step 1) with classical regression estima-
tion of coefficients (steps 2 and 3) and standard errors (steps 4 and 5). It all works
to summarize uncertainty because the parameters are updated iteratively, leading
to an inference that includes all aspects of the model.

Programming in R involves writing functions for each of the five steps:

R codea.update <- function() {

y.temp <- y - X%*%b - U[county]%*%g

eta.new <- rep (NA, J)

for (j in 1:J){

n.j <- sum (county==j)

y.bar.j <- mean (y.temp[county==j])

eta.hat.j <- ((n.j/sigma.y^2)*y.bar.j/

(n.j/sigma.y^2 + 1/sigma.a^2))

V.eta.j <- 1/(n.j/sigma.y^2 + 1/sigma.a^2)

eta.new[j] <- rnorm (1, eta.hat.j, sqrt(V.eta.j))

}

a.new <- U%*%g + eta.new

return (a.new)

402 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

}

b.update <- function() {

y.temp <- y - a[county]

lm.0 <- lm (y.temp ~ X)

b.new <- sim (lm.0, n.sims=1)

return (b.new)

}

g.update <- function() {

lm.0 <- lm (a ~ U)

g.new <- sim (lm.0, n.sims=1)

return (g.new)

}

sigma.y.update <- function() {

sigma.y.new <- sqrt(sum((y-a[county]-X%*%b)^2)/rchisq(1,n-1))

return (sigma.y.new)

}

sigma.a.update <- function() {

sigma.a.new <- sqrt(sum((a-U%*%g)^2)/rchisq(1,J-1))

return (sigma.a.new)

}

(In the calls to lm() in the b.update and g.update functions, we have specified the
predictors in matrix form rather than as a formula listing the individual predictor
names.)

Now that the updating functions have been written, the Gibbs sampler can be
programmed and run as in the example earlier in this section, simply expanding to
include the new parameters.

The Gibbs sampler as a general way of working with multilevel models

On page 239 we discussed the simple two-step procedure of first regressing y on X
and group indicators to estimate β and the αj ’s, then regressing the estimated αj ’s
on U to estimate γ. Multilevel modeling, in its Gibbs implementation, can be seen
as a generalization of two-step regression in which the αj ’s are estimated more ac-
curately using partial pooling. Similarly, in more complicated multilevel structures,
it often makes sense to program a Gibbs sampler in a way that alternately performs
group-level regressions and separate inferences within each group.

If we were to start with a simple no-pooling, complete-pooling, or two-step analy-
sis, and then gradually improve it to account for estimation uncertainty in each step,
iterating to allow inferences to be based on the latest estimate for each parameter,
then we would end up with a Gibbs sampler.

18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler:

the case of censored data

We illustrate some of the ideas of likelihood and Bayesian inference for a censored-

data model. We begin with a regression of weight (in pounds) on height (in inches),
using data from a random sample of Americans. Before fitting, we center the height
variable (c.height <- height - mean(height)) so that we can better interpret
the intercept as well as the slope of the regression:

R output lm(formula = weight ~ c.height)

coef.est coef.se

(Intercept) 156.1 0.6

LIKELIHOOD, BAYES, AND GIBBS FOR CENSORED DATA 403

weight measurement
F

re
qu

en
cy

100 150 200

0
10

0
20

0

height

w
ei

gh
t m

ea
su

re
m

en
t

60 70 80

10
0

15
0

20
0

Figure 18.8 (a) Histogram of weights as recorded on a hypothetical scale that censors mea-
surements at 200; (b) Plot of (jittered values of) measured weight versus height in a sample
of adults. The relation between height and weight is clear for low heights but becomes more
difficult to follow at the high end, where the censoring becomes more frequent.

c.height 4.9 0.2

n = 1984, k = 2

residual sd = 28.6, R-Squared = 0.30

Censoring

Now imagine that weights had been measured on a scale that was limited to a
maximum of 200, so that any weights greater than 200 were recorded as “200+”
with the superscript indicating the censoring. We artificially perform this censoring
on the survey data:

R codeC <- 200

censored <- weight >= C

y <- ifelse (censored, C, weight)

From here on, we suppose that the censored variable, y, is what was observed, with
the true weight only known if y < 200. Figure 18.8a shows the measured weights
y, and Figure 18.8b shows weight plotted against height.

Naive regression estimate excluding the censored data

The two simple (but wrong) analyses of these data are to ignore the censored
measurements, or to include them as measurements of 200. Here is the regression
discarding the measurements of 200+:

R outputlm(formula = y ~ c.height, subset = y<200)

coef.est coef.se

(Intercept) 148.7 0.5

c.height 3.8 0.1

n = 1739, k = 2

residual sd = 20.5, R-Squared = 0.31

Both the intercept and slope are too low, which makes sense given Figure 18.8b.
This analysis excludes the largest values of weight and thus underestimates the
average weight in the population. Also, more data are censored at the high end of
heights, so the slope is underestimated too.

Naive regression estimate imputing the censoring point

Another simple but wrong approach is to simply code the 200+ measurements as
200, which yields the following regression fit:

404 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

R output lm(formula = y ~ c.height)

coef.est coef.se

(Intercept) 153.6 0.5

c.height 4.3 0.1

n = 1984, k = 2

residual sd = 23.8, R-Squared = 0.32

Once again, this underestimates both the intercept (by using y = 200 in cases
where we know the true weight is at least 200) and also the slope (because more of
this bias occurs for taller persons).

Likelihood function accounting for the censoring. A better way to account for the
censoring is to include it explicitly in the likelihood function. We write the censoring
formally as

yi =

{
zi if zi ≤ 200
200+ if zi > 200,

(18.17)

with a linear regression for the true weights zi given heights xi:

yi ∼ N(a + bxi, σ
2). (18.18)

For the uncensored data points, the likelihood is simply the normal distribu-
tion, N(yi|a + bxi, σ

2), as in (18.3) on page 388. For a censored measurement, the
likelihood is

Pr(y = 200+) = Pr(zi ≥ 200) =

∫ ∞

200

N(zi | a + bxi, σ
2) = Φ

(
a + bxi − zi

σ

)
,

where Φ is the normal cumulative distribution function (which can be computed
using the pnorm() function in R).

The likelihood of all the data is then

p(y|β, σ, x) =

n∏

i=1

p(yi|β, σ, xi), (18.19)

where the individual factors of the likelihood are

p(yi|β, σ, X) =

{
N(yi|a + bxi, σ

2) if yi < 200
Φ((a + bxi − 200)/σ) if yi = 200+.

(18.20)

We shall clarify this expression (we hope) by programming it in R.

Maximum likelihood estimate using R

We shall first program the likelihood function in R and then call an optimization
routine to find the maximum. In programming the likelihood, it is convenient to
express the unknown parameters (in this case, a, b, and σ) as a vector, and then
include the data and censoring point as additional arguments to the function. The
following function computes the logarithm of the likelihood by evaluating (18.20)
one data point at a time and then adding these values (which, on the log scale, is
equivalent to the multiplication in (18.19)):

R code Loglik <- function (parameter.vector, x, y, C) {

a <- parameter.vector[1]

b <- parameter.vector[2]

sigma <- parameter.vector[3]

ll.vec <- ifelse (y<C, dnorm (y, a + b*x, sigma, log=TRUE),

pnorm ((a + b*x - C)/sigma, log=TRUE))

LIKELIHOOD, BAYES, AND GIBBS FOR CENSORED DATA 405

return (sum (ll.vec))

}

We have used the log=TRUE options of the dnorm() and pnorm() functions so that
R automatically computes the logarithms of these probabilities. It is more compu-
tationally stable to compute probabilities on the log scale and only exponentiate at
the end of the calculations.

To find the values of a, b, σ that maximize the log likelihood, we use the optim()

function in R, which requires initial values (for which we simply use uniformly
distributed random numbers) and some specifications:2

R codeinits <- runif (3)

mle <- optim (inits, Loglik, lower=c(-Inf,-Inf,1.e-5),

method="L-BFGS-B", control=list(fnscale=-1), x=c.height,

y=weight.censored, C=200)

We check by typing print(mle$convergence) (which should take on the value 0;
type ?optim in R for more details) and then typing

R codemle$par

to find the vector of maximum likelihood estimates, which in this case are 155, 4.8,
and 26.5 (corresponding to â, b̂, and σ̂, respectively).

Fitting the censored-data model using Bugs

Bugs model. Another way of fitting the censoring model, more consistent with the
general approach of this book, is to write it in Bugs. The trick here is to express
the model in terms of the true weights, zi as defined in (18.17), which follow the
regression model (18.18). For the censored data (the measurements yi = 200+, the
true weights are unobserved but are constrained to fall in the range (200,∞). In
Bugs, we express this constraint as a lower bound of 200 as follows:

Bugs codemodel {

for (i in 1:n){

z.lo[i] <- C*equals(y[i],C)

z[i] ~ dnorm (z.hat[i], tau.y) I(z.lo[i],)

z.hat[i] <- a + b*x[i]

}

a ~ dnorm (0, .0001)

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

}

The I(z.lo[i],) factor constrains the distribution for z[i] to be above z.lo[i],3

and this lower bound has been defined using equals to equal C (that is, 200) for
censored observations and 0 otherwise.4

2 In addition to specifying the vector of initial values and the name of the function to be optimized,
we need to constrain σ to be positive—this is done by assigning a vector of lower limits to all
three parameters, with empty −∞ limits set for a and b. We then must set method="L-BFGS-B",
which is the “box constraint” algorithm that allows for bounds on the parameters. Setting
control=list(fnscale=-1) tells optim() to find a maximum, rather than a minimum, of the
specified function. Finally, we must specify the values of the other inputs to the Loglik()
function, which in this case are x, y, and C.

3 The factor I(,z.hi[i]) would restrict the distribution to be lower than some value z.hi[i],
and I(z.lo[i],z.hi[i]) would constrain to a finite range; see the models in Sections 6.5 and
17.7 for other examples of constrained distributions.

4 A lower bound of zero is fine given that true weights are always positive. If there were no
such natural bound—for example, if we were modeling log(weights)—then one could use an

406 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

Fitting the Bugs model from R. To fit the model in Bugs, we must first define z,
which equals the weight when observed and is missing otherwise:

R code z <- ifelse (censored, NA, weight.censored)

We then set up the bugs() call as usual:

R code data <- list (x=c.height, y=weight.censored, z=z, n=n, C=C)

inits <- function() {

list (a=rnorm(1), b=rnorm(1), sigma.y=runif(1))}

params <- c ("a", "b", "sigma.y")

censoring.1 <- bugs (data, inits, params, "censoring.bug", n.iter=100)

Reproducing some of the output from print(censoring.1):

R output mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a 155.3 0.6 154.2 154.9 155.4 155.8 156.4 1 150

b 4.8 0.2 4.5 4.7 4.7 4.9 5.2 1 150

sigma.y 26.5 0.5 25.7 26.1 26.5 26.8 27.3 1 150

This inference is essentially the same as the maximum likelihood estimate—which
makes sense, given that the sample size is large and the number of parameters is
small—but are clearly different from the naive estimates excluding the censored
data (b̂ = 3.8±0.1) and (b̂ = 4.3±0.1). The censoring model appropriately imputes
the missing values, which we know lie above 200.

Gibbs sampler

Yet another way to fit this model is by programming a Gibbs sampler in R, as
follows:

1. Impute crude starting values for the missing data—the true weights zi corre-
sponding to measurements y = 200+.

2. Iterate the following two steps:

(a) Run a regression of z (including the imputed values) on x and take a random
draw from the uncertainty distribution of the parameters a, b, σ.

(b) Use the estimated a, b, σ to create random imputations of the missing data.

For this problem, there is no real reason to program these steps; as we have just
seen, the model is easy to fit in Bugs. This is, however, a good example to illustrate
the way the Gibbs sampler handles uncertainty about missing data. We shall give
the algebra and R code for each of the above steps.

Crude starting values. We simply impute a random value between C and 2C (in
our example, 200 and 400 pounds) for each of the missing weights:

R code n.censored <- sum (censored)

z[censored] <- runif (n.censored, C, 2*C)

Regression if the exact weights were known. We fit a regression and then draw one
simulation value for the parameters a, b, σ:

R code x <- c.height

lm.1 <- lm (z ~ x)

sim.1 <- sim (lm.1, n.sims=1)

a <- sim.1$beta[1]

b <- sim.1$beta[2]

sigma <- sim.1$sigma

assignment such as z.lo[i] <- -1.E5 + (1.E5+C)*equals(y[i],C) to set an extremely low
bound for uncensored cases.

LIKELIHOOD, BAYES, AND GIBBS FOR CENSORED DATA 407

Imputing the missing values given the fitted regression. The predictive distribution
for any particular censored value i is normal with mean a + bxi and standard
deviation σ, but constrained to be at least 200. We can write an R function to draw
from this constrained distribution:

R codernorm.trunc <- function (n, mu, sigma, lo=-Inf, hi=Inf) {

p.lo <- pnorm (lo, mu, sigma)

p.hi <- pnorm (hi, mu, sigma)

u <- runif (n, p.lo, p.hi)

return (qnorm (u, mu, sigma))

}

This function first locates the constraint points (set by default to (−∞,∞) if no
constraints are given) in the specified distribution, then draws a sample within these
probabilities, and finally transforms back to the original scale. We have written the
function to take n independent draws, by analogy to the rnorm() function (type
?rnorm in R for details); this is not the same n that is the length of the data vector
y.

We can then use this function to sample the missing zi’s given their predictors
xi:

R codez[censored] <- rnorm.trunc (n.censored, a + b*x[censored], sigma, lo=C)

Gibbs sampler: putting it together in a loop. We can now produce a Gibbs sampler.
We first set up a space for 3 chains of 100 iterations each, saving 3 + ncensored

parameters corresponding to a, b, σ, and the unobserved zi’s:

R coden.chains <- 3

n.iter <- 100

sims <- array (NA, c(n.iter, n.chains, 3 + n.censored))

dimnames (sims) <- list (NULL, NULL,

c ("a", "b", "sigma", paste ("z[", (1:n)[censored], "]", sep="")))

We then program a Gibbs sampler, looping over the 3 chains: each chain starts with
random initial values, then a loop through 100 iterations, first updating a, b, σ and
then updating the censored components of z, and saving all these parameters at
the end of each iteration.

R codefor (m in 1:n.chains){

z[censored] <- runif (n.censored, C, 2*C) # random initial values

for (t in 1:n.iter){

lm.1 <- lm (z ~ x)

sim.1 <- sim (lm.1, n.sims=1)

a <- sim.1$beta[1]

b <- sim.1$beta[2]

sigma <- sim.1$sigma

z[censored] <- rnorm.trunc (n.censored, a + b*x[censored], sigma, lo=C)

sims[t,m,] <- c (a, b, sigma, z[censored])

}

}

Finally, we check the convergence:

R codesims.bugs <- as.bugs.array (sims)

print (sims.bugs)

yielding:

408 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

-4 -2 0 2 4

-4
-2

0
2

4

-4 -2 0 2 4

-4
-2

0
2

4

-4 -2 0 2 4

-4
-2

0
2

4

.

.

.
.. .. .

. .. .
. .

.
...

.

.. .
.
....
...

...
.

.
..

.

...

.
....

..

.
. .
.. .

.
.

.

.
.
..

. . .
.
.

.
.

. .. .
.. .

....
.
.
..

...
. .

.
..

.. .
.

. .
.

.

.

. .
. ..

.
.

. . .
.

...
..

.
.
... .
.
.

.

.
..

...
.
.
..

....
.
... .

. ..
.. .

..
..

.
.....

.

.

.. ..
.

..... ...
.

.. .
.

.
.

....
... . .
.

...

....
.

..
. .

.
...

.

..
. ..

.....
. .

. . .
.

.
. ..

.
.
...
...

.. .
...
...

.
.
.

..

..
..
.

...
.. .

. . .
. .

. .
.

. ..
..
.

. ..
.
.

.
..

.

..

.......
.

.
. .

...
.

. . .
....

. .
.. .

. .
..

.
.

.
..

. ..
.
. ..

. ..

.
..

.
.

. .

.
..

.
.

.
.

....
...
... ..

.
..

.
. . .

.
...

.
...

. ..
.
..

..
.

. .
..

... .
.. .

..
...

.
..

.
..

..
.
.

.
..

.
.... .

.
..

. . .
. .

.
..
..

.
... . ..

.. ..

.
.. .

... .

... .
.

...
...

.
.....

..

.. . ..

.
.

..... .
..
.
.

...
..

.

... ...
.

..
. ...

.
.

....
..

...
. .
. .

.
. . .

.
...

.
. . .

..
.

...
.

.
.

.
.

.. .
.......

.. .

.
..

.
.
...

.. .

...
.

.
.
.

.
.

.
...

.
.... .

.
.

.
.
.
. ..

.
.

..
.

. ..

. .
.

... .
.
.... .

.
.. ..

..
.

.
.

.
.

. .. .
..

.
.

.
..
.
.

. .
.
. ...
..
.

.
..

.....
.

..

.......
..

.
....
....

. .
..

. .
..

.
.....
... ..
.

. .
.. ...

.
.

.
.

.

..
..
......

.
.

.
..
.
.
.

.
..

. ..
.
.

.
.

. ...
. .
.

..
.. . .

..
..
.. .

..
....

....
.
.

..
.

.
. .

...
.

.
... .

.. ..

.
. .

.
.

.... .
.
.

.. ..
.
.

. .
.

..

...
.. . . .

.
.

..
..

.
.

. .
..

.
.

.
.
.

....
. .

..
.. .

.
... ..

.

.

.
...
.
. .

..
....

. .

...
...
.. .

..
....

.. ..
.
..

......
..
.

.
. .

.
.. ..

.
. .

... .
.

..
...

.
.. .

.
..
.

...
.

..
.

. . .
.

....
....

.. ..
.

.
.

..
.

. .

.
..
.. .
.

.
..

.
.

.
.

..
.
.

... .

..
..

...
.
..

.

...
. .

.
..

..

. ...
.
.

....

.
.

...
..

...
.

.
.

.

.
.

.
.

.
.. .

..
.

.
...

..
... .

..
.

.
.. ...

...
...... ..

...
........

.
...

..
..

..
.
. . ..

.
.. ...

.. .
..

.
...

..

...
...

.
.

...
..
.

... .

.
.

...

..

..
.

.
..

. .
.

..
..

.
.

....
...

. .. .
.

..
. ...
.

.
.
.

..
..

.
.. .

..

.
.. ..

..
..
.
.

.
..
.

.
. .

..
.

.
... .

..
. .
...

.
. .

.
...
..

.
.
.
.

.

..

.
.

. .
.

.
.
.

.

.
..

. .
.

..
. ...
...

.
.

. .
.

..
... .

.
. . .

....
.

.
..

..
.

.. .

. .
..

.
....
.

.
.....

..
..

.
..

. . .

.
...

.
.. .. .
... ..

.. .

. .
.

.
..... ..

.

..
..
.
.....

.
.

.
.

. .
... ..

. .
. .
. .

.
.

.
. .
.

.

..
..

...
.

...
..

. ..
.

.
..

...
.

.....
.
.
.

.. .
.

.
. .

..
..

. .
..
.
. .

..
. .

.. .
.

.. ...
.. ...

.
....

.
.. ..
.
..

.

. ...

. ..
....

.
...

... .. .
.

.
.

..

.
.

.....

.
.

..

. .
...

.
..

. .
. ..

.
.

. .
..

..
. . .

...
.

. . ..
.
.....

...
.
. .
.

..
.

...
.

. .. .
..

... . ..
..

..
..

...
..

. . .
.

.
.

. .
.
..

.. .
..

..

.
.
.

. . .
.

.

.

..... .
.

.
. ..

....

.. ...
. .
.

. .. .

.
.

.
.

.
.

.
.

..... . .
...

.. .
. ..

.
.
.
..
.

. ..
.

.
..

.

.
.. ..

.
. . .

..
.

. .
..
.

. .
..

.
.

.
... .

.
. .. .

.
.

....
..
.

... ..
.
.
.

.
...
..

.
.
..

...
.

.. .
. .

.
. .
.

.
.....

..
.

.
. .

.
. .

.
.. .

.
. .

.
..

.......
.

.
.
.....

.....

.
.

.. .

.... .
...... .

.. .

..
.

..
.

.
.
.
.

...

. ..
.

.
...

..... .
...

.
.
.

..
....

.
. ..

....
.....

.. ...
. .. .

.

..
.. . .

..

. ..
.

.
.

.
.

.
...

..
... . .

..
.

. . .
.
. .

.. .
. .

.

.
.

...
.
.

.
.

.
. .

.
.

...
.

..
.

.

.
.
.

.
.
.
.. .

.

.
.
.

...
.

..
..

. .
.. .
.

...
.

....... . ..
. .

...
..
..

.
..

.
..

..

....
..
.
.
..
.. .
.
. ..
. .
.
.

.
. .

.
.. .

. ...

....
..

.
..
. .. .

.
..

.
.

.
...

.

..
...
.

..
..
....

.. ..
.

.
.

.. ...

.
.

...
..

.

.
. ...

.

..

....
. . ..

.
. .

... .

.
...

.
.. ..
.
..

.
.

. ..
.
.

..
.

.
.

.
...
..

...

.
...

.
. ..

.
.

.
.

.
..

. .

.
...

....

.
. .
..

.
..

.
.

.

Figure 18.9 Five independent sequences of a Metropolis algorithm, with overdispersed start-
ing points indicated by solid squares. (a) After 50 iterations, the sequences are still far from
convergence. (b) After 1000 iterations, with the sequences nearer to convergence. (c) The
iterates from the second halves of the sequences, jittered so that steps in which the random
walks stood still are not hidden.

R output mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a 155.3 0.6 154.1 154.9 155.3 155.7 156.3 1.0 53

b 4.8 0.2 4.5 4.7 4.8 4.9 5.1 1.0 150

sigma 26.5 0.5 25.7 26.2 26.5 26.9 27.6 1.0 69

z[3] 216.9 13.0 200.7 206.1 215.4 223.7 247.7 1.0 87

z[6] 210.9 9.3 200.3 203.5 208.9 214.9 234.1 1.0 150

z[11] 208.5 7.1 200.3 203.4 206.6 211.7 226.2 1.0 150

. . .

which is essentially identical to the results from the Bugs run (as it should be, given
that we are fitting the same model).

Section 25.6 briefly describes a more realistic and complicated example of cen-
soring that arises in a study of reversals of the death penalty, in which cases are
censored that are still under consideration by appellate courts.

18.6 Metropolis algorithm for more general Bayesian computation

Moving to even more general models, the Gibbs sampler is a special case of a larger
class of Markov chain simulation algorithms that can be used to iteratively estimate
parameters in any statistical model. Markov chain simulation in general (and the
Gibbs sampler in particular) can be thought of as iterative imputation of unknown
parameters, or as a random walk through parameter space.

The Gibbs sampler updates the parameters one at a time (or in batches) us-
ing their conditional distributions. It can also be efficient to use the Metropolis

algorithm, which takes a random walk through the space of parameters.
The Gibbs sampler and Metropolis algorithms are special cases of Markov chain

simulation (also called Markov chain Monte Carlo, or MCMC), a general method
based on drawing values of θ from approximate distributions and then correcting
those draws to better approximate the target posterior distribution, p(θ|y). The
samples are drawn sequentially, with the distribution of the sampled draws depend-
ing on the last value drawn; hence, the draws form a Markov chain. (As defined in
probability theory, a Markov chain is a sequence of random variables θ(1), θ(2), . . .,
for which, for any t, the distribution of θ(t) given all previous θ’s depends only on
the most recent value, θ(t−1).) The key to the method’s success, however, is not
the Markov property but rather that the approximate distributions are improved
at each step in the simulation, in the sense of converging to the target distribution.

Figure 18.9 illustrates a simple example of a Markov chain simulation—in this

PROGRAMMING GIBBS AND METROPOLIS IN R 409

case, a Metropolis algorithm in which θ is a vector with only two components,
with a bivariate unit normal posterior distribution, θ ∼ N(0, I). First consider
Figure 18.9a, which portrays the early stages of the simulation. The space of the
figure represents the range of possible values of the multivariate parameter, θ, and
each of the five jagged lines represents the early path of a random walk starting
near the center or the extremes of the target distribution and jumping through
the distribution according to an appropriate sequence of random iterations. Figure
18.9b represents the mature stage of the same Markov chain simulation, in which
the simulated random walks have each traced a path throughout the space of θ,
with a common stationary distribution that is equal to the target distribution. From
a simulation such as 18.9b, we can perform inferences about θ using points from
the second halves of the Markov chains we have simulated, as displayed in Figure
18.9c.

It is useful to have some sense of how the Metropolis algorithm works, because
it is a key part of Bugs and other programs that perform iterative simulation. For
further details on programming the Metropolis algorithm, see Gelman et al. (2003).

18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis

algorithm in R

To compute Markov chain simulation, the posterior density function and Gibbs
sampler steps must be given. Bugs sets up these specification automatically (deter-
mining them from the model file) but for certain applications in which Bugs does
not run or is too slow, it is necessary to program the log posterior density and
Gibbs sampler steps explicitly.

We illustrate for the overdispersed Poisson regression model for social networks
from Section 15.3, in which the large number of parameters (more than 1400)
makes Bugs too slow to be practical. Instead, we use Umacs (universal Markov
chain sampler), a program under development that performs Gibbs and Metropolis
sampling given a specified posterior distribution. We go through the steps here,
partly to complete the fitting of the social network model and partly to illustrate
Markov chain sampling on a relatively complicated example.

The joint posterior density

The joint posterior density of the model in Section 15.3 can be written as

p(α, β, ω, µα, µβ, σα, σβ |y) ∝
n∏

i=1

K∏

k=1

(
yik + ξik − 1

ξik − 1

)(
1

ωk

)ξik
(

ωk − 1

ωk

)yik

×

n∏

i=1

N(αi|µα, σ2
α)

K∏

k=1

N(βk|µβ , σ2
β)

K∏

k=1

ω−2
k , (18.21)

where ξik = eαi+βk/(ωk − 1), from the definition of the negative binomial distri-
bution. The first factor in the posterior density is the likelihood—the probability
density function of data given the parameters—and the remaining factors are the
population distributions for each of the αj ’s, βk’s, and ωk’s. The prior p(ωk) ∝ ω−2

k

is equivalent to a uniform prior distribution on 1/ω, using the “Jacobian” from
probability theory to transform from 1/ω to ω.5

In computing, we actually work with the logarithm of the posterior density func-

5 See, for example, Gelman et al. (2003, p. 24) for an explanation of the Jacobian.

410 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

tion because then computations are more stable and less likely to result in overflows
or underflows than when using the density function itself. We typically only specify
the density up to a multiplicative constant (note the proportionality sign in (18.21))
or, equivalently, the log density up to an additive constant—but this is all that is
needed for Gibbs/Metropolis calculations.

The simulation algorithm

Our Markov chain simulation for the social network model requires the following
steps:

• Gibbs sampler on the hyperparameters µα, σα, µβ , σβ .

• Metropolis jumping for each component of α, β, γ. Jump one vector at once for
computational convenience.

• Constraining the components of γ to keep them above 1.

• Renormalization at each step because we are working with an overspecified
model. (As discussed in Section 15.3, the model is unchanged if a constant is
added to all the components of α and β. This constant thus needs to be specified
in some way to stop the simulations from drifting aimlessly.)

• Adaptive Metropolis updating to keep acceptance rates near the target of 44%.

• Simulation of three parallel chains.

• After burn-in: stop adaptation, run awhile, and check convergence.

• Summarize with random simulation draws.

We program the first four of the above items; the others are performed automat-
ically by Umacs.

We obtain posterior simulations using a Gibbs-Metropolis algorithm, iterating
the following steps:

1. For each i, update αi using a Metropolis step with jumping distribution, α∗
i ∼

N(α
(t−1)
i , (jumping scale of αi)

2).

2. For each k, update βk using a Metropolis step with jumping distribution, β∗
k ∼

N(β
(t−1)
i , (jumping scale of βk)2).

3. Update µα ∼ N(µ̂α, σ2
α/n), where µ̂α = 1

n

∑n
i=1 αi.

4. Update σ2
α ∼ Inv-χ2(n−1, σ̂2

α), where σ̂2
α = 1

n

∑n
i=1 (αi − µα)2.

5. Update µβ ∼ N(µ̂β , σ2
β/n), where µ̂β = 1

K

∑K
k=1 βk.

6. Update σ2
β ∼ Inv-χ2(K−1, σ̂2

β), where σ̂2
β = 1

K

∑K
k=1 (βk − µβ)2.

7. For each k, update ωk using a Metropolis step with jumping distribution, ω∗
k ∼

N(ω
(t−1)
k , (jumping scale of ωk)2).

8. Rescale the α’s and β’s by computing the adjustment term C described on page
336 and adding it to all the αi’s and µα and subtracting it from all the βk’s and
µβ .

We construct starting points for the algorithm by fitting a classical Poisson re-
gression (the null model, yik ∼ Poisson(λik), with λik = aibk) and then estimating
the overdispersion for each subpopulation k using the statistic (6.5) on page 114.

Programming in R and Umacs

Setting up the model in Umacs requires several steps, which we include here as
illustration of the details required to fully specify multilevel computation in R.

PROGRAMMING GIBBS AND METROPOLIS IN R 411

Log likelihood function. We take advantage of the matrix representation of the
data y = (yjk) to write a function that computes the log likelihood in parallel for
all data points at once. In these expressions, y is a 1370× 32 matrix; α is a vector
of length 1370; β and ω are vectors of length 32, and data.n= 1370, the number
of survey respondents.

R codef.loglik <- function (y, a, b, o, data.n) {

theta.mat <- exp (outer (a, b, "+"))

O.mat <- outer (rep (1, data.n), o, "*")

A.mat <- theta.mat/(O.mat-1) # the "alpha" and "beta" parameters

B.mat <- 1/(O.mat-1) # of the negative binomial distribution

loglik <- lgamma(y+A.mat) - lgamma(A.mat) - lgamma(y+1) +

(log(B.mat)-log(B.mat+1))*A.mat - log(B.mat+1)*y

return (loglik)

}

The expression for loglik is the logarithm of the negative binomial density func-
tion.

Log posterior density functions. Our next step is to write functions that compute
the log posterior density for each vector of parameters; these log densities are formed
by summing the log likelihood by row or column and then adding the log prior
distribution. We write different log posterior density functions for each parameter
vector in order to make computations more efficient (for example, in updating α,
we only need to include factors that depend on this parameter):

R codef.logpost.a <- function() {

loglik <- f.loglik (y, a, b, o, data.n)

rowSums (loglik, na.rm=TRUE) + dnorm (a, mu.a, sigma.a, log=TRUE)

}

f.logpost.b <- function() {

loglik <- f.loglik (y, a, b, o, data.n)

colSums (loglik, na.rm=TRUE) + dnorm (b, mu.b, sigma.b, log=TRUE)

}

f.logpost.o <- function() {

reject <- !(o>1) # reject if omega is not greater than 1

o[reject] <- 2 # set rejected omega’s to arbitrary value of 2

loglik <- f.loglik (y, a, b, o, data.n)

loglik <- colSums (loglik, na.rm=TRUE) - 2*log(o)

loglik[reject] <- -Inf # set loglik to zero for rejected values

return (loglik)

}

We constrain the components of ω to be greater than 1.01 because the model re-
stricts this parameter to be greater than 1, and we want to avoid potential numerical
difficulties when any ωk is exactly 1.

Data and initial values. Next, we load in the data:

R codelibrary ("foreign")

y <- as.matrix (read.dta ("all.dta"))

and define initial values for the parameters:

R codea.init <- function() {rnorm (data.n)}

b.init <- function() {rnorm (data.j)}

o.init <- function() {runif (data.j, 1.01, 50)}

mu.a.init <- function() {rnorm (1)}

mu.b.init <- function() {rnorm (1)}

sigma.a.init <- function() {runif (1)}

sigma.b.init <- function() {runif (1)}

412 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

The initial values (as well as the log posterior densities defined above) are set up
as functions with no arguments because Umacs uses the variables in the workspace
rather than passing data and parameters back and forth among functions.6

Gibbs sampler steps. Having defined the model, data, and inital values, we write
the functions for the Gibbs samplers for the hyperparameters:

R code mu.a.update <- function() {

rnorm (1, mean(a), sigma.a/sqrt(data.n))

}

mu.b.update <- function() {

rnorm (1, mean(b), sigma.b/sqrt(data.j))

}

sigma.a.update <- function() {

sqrt (sum((a-mu.a)^2)/rchisq(1, data.n-1))

}

sigma.b.update <- function() {

sqrt (sum((b-mu.b)^2)/rchisq(1, data.j-1))

}

Renormalization step. We next write a function for the renormalization of the α’s
and β’s in terms of the frequencies of the names in the population:

R code renorm.network <- function() {

const <- log (sum(exp(b[c(2,4,12)]))/.00357) +

.5*log (sum(exp(b[c(3,7)]))/.00760) -

.5*log (sum(exp(b[c(6,8,10)]))/.00811)

a <- a + const

mu.a <- mu.a + const

b <- b - const

mu.b <- mu.b - const

}

Setting up the Umacs sampler function. We are now ready to set up the series of
steps for Metropolis and Gibbs sampling for the social network model. We update
each of the vectors α, β, and ω using the PSMetropolis() routine, which stands
for “scalar parallel Metropolis”—that is, separately updating each component using
Metropolis jumping, automatically tuning these to jump efficiently.7

R code s.network <- Sampler (

y = y,

data.n = nrow(y),

data.j = ncol(y),

a = PSMetropolis (f.logpost.a, a.init),

b = PSMetropolis (f.logpost.b, b.init),

o = PSMetropolis (f.logpost.o, o.init),

mu.a = Gibbs (mu.a.update, mu.a.init),

mu.b = Gibbs (mu.b.update, mu.b.init),

sigma.a = Gibbs (sigma.a.update, sigma.a.init),

sigma.b = Gibbs (sigma.b.update, sigma.b.init),

renorm.network)

This call to Sampler() creates a function, s.network(), which we can then call to
perform the actual sampling.

6 As discussed on page 400, this “global variable” structure makes it easier for us to expand
models without having to worry about keeping track of the parameters used in each function
call. Other programming strategies are also possible.

7 Umacs also includes vector Metropolis jumping, in which several components of a vector are
altered at once, but in this case the posterior density for each vector of parameters factors into
its components, so these components can be efficiently updated in parallel.

BIBLIOGRAPHIC NOTE 413

Running Umacs and saving the simulations. Finally, we run the sampler for three
parallel chains for 2000 iterations, keeping the last 1000. We save the output as a
Bugs object and plot it.

R codenetwork.1 <- s.network (n.iter=2000, n.sims=1000, n.chains=3)

network.1.bugs <- as.bugs.array (network.1)

plot (network.1)

We can then check convergence (by looking at the values of R̂ in the plot), access
the simulations using attach.bugs(network.1.bugs), and make the plots shown
in Section 15.3.

18.8 Bibliographic note

For a fuller presentation of our perspective on likelihood and Bayesian data analysis,
see Gelman et al. (2003). Other presentations of Bayesian inference include Box and
Tiao (1973), Bernardo and Smith (1994), and Carlin and Louis (2001).

For more on prior distributions, see Jeffreys (1961), Jaynes (1983), Box and Tiao
(1973), and Meng and Zaslavsky (2002). Many of the concerns in this literature are
less urgent in multilevel models, in which most parameters are themselves mod-
eled at the group level—but the prior distribution can still be relevant for the
few remaining hyperparameters of any model. Our approach of prior distributions
as placeholders or “reference models” follows Bernardo (1979); see also Kass and
Wasserman (1996).

Full Bayesian analysis for multilevel models was first performed by Hill (1965),
Tiao and Tan (1965, 1966), and Tiao and Box (1967). Important later work in-
cludes Lindley and Smith (1972), Efron and Morris (1975), Dempster, Rubin, and
Tustakawa (1981), Gelfand and Smith (1990), and Pauler, Wakefield, and Kass
(1999).

See Gilks, Richardson, and Spiegelhalter (1996) for more on the Gibbs sampler
and the Metropolis algorithm. For an introduction to Bayesian inference for cen-
soring and truncation, see Gelman et al. (2003, section 7.8).

The social network example comes from Zheng, Salganik, and Gelman (2006).
Umacs is described by Kerman (2006) and Kerman and Gelman (2006).

18.9 Exercises

1. Linear regression algebra: show that weighted least squares is maximum likeli-
hood estimation for the model (18.7).

2. Bayesian inference: take a multilevel linear model that you have already fit, and
make a graph such as in Figure 18.5 or 18.6 showing likelihood, prior distribution,
and posterior distribution, in each of several groups.

3. Maximum likelihood estimation: consider the logistic regression you set up in
Exercise 5.8(a) for predicting presence of rodents in an apartment given ethnic
group.

(a) Write the likelihood for this model.

(b) Program the likelihood function in R and use optim() to find the maximum
likelihood estimate. Check that your estimate is the same as you obtained in
Exercise 5.8(a).

4. Censored data: take the data on beauty and teaching evaluations data described
in Exercise 3.5 and artificially censor by reporting all course evaluations below
3.0 simply as “*”

414 LIKELIHOOD AND BAYESIAN INFERENCE AND COMPUTATION

(a) Take one of the models from that earlier exercise and write the likelihood
function given this mix of observed and censored data.

(b) Find the maximum likelihood estimate in R using the optim() function.

(c) Fit the model using Bugs, accounting for the censoring.

(d) Compare the censored-data inferences from the estimates using the complete
data.

