
CHAPTER 10

Causal inference using more advanced
models

Chapter 9 discussed situations in which it is dangerous to use a standard linear
regression of outcome on predictors and an indicator variable for estimating causal
effects: when there is imbalance or lack of complete overlap or when ignorability is
in doubt. This chapter discusses these issues in more detail and provides potential
solutions for each.

10.1 Imbalance and lack of complete overlap

In a study comparing two treatments (which we typically label “treatment” and
“control”), causal inferences are cleanest if the units receiving the treatment are
comparable to those receiving the control. Until Section 10.5, we shall restrict our-
selves to ignorable models, which means that we only need to consider observed
pre-treatment predictors when considering comparability.

For ignorable models, we consider two sorts of departures from comparability—
imbalance and lack of complete overlap. Imbalance occurs if the distributions of
relevant pre-treatment variables differ for the treatment and control groups. Lack
of complete overlap occurs if there are regions in the space of relevant pre-treatment
variables where there are treated units but no controls, or controls but no treated
units.

Imbalance and lack of complete overlap are issues for causal inference largely
because they force us to rely more heavily on model specification and less on direct
support from the data.

When treatment and control groups are unbalanced, the simple comparison of
group averages, ȳ1− ȳ0, is not, in general, a good estimate of the average treat-
ment effect. Instead, some analysis must be performed to adjust for pre-treatment
differences between the groups.

When treatment and control groups do not completely overlap, the data are in-
herently limited in what they can tell us about treatment effects in the regions of
nonoverlap. No amount of adjustment can create direct treatment/control compar-
isons, and one must either restrict inferences to the region of overlap, or rely on a
model to extrapolate outside this region.

Thus, lack of complete overlap is a more serious problem than imbalance. But
similar statistical methods are used in both scenarios, so we discuss these problems
together here.

Imbalance and model sensitivity

When attempting to make causal inferences by comparing two samples that differ in
terms of the “treatment” or causing variable of interest (participation in a program,
taking a drug, engaging in some activity) but that also differ in terms of confounding
covariates (predictors related both to the treatment and outcome), we can be misled
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Figure 10.1 Imbalance in distributions across treatment and control groups. (a) In the left
panel, the groups differ in their averages (dotted vertical lines) but cover the same range
of x. (b) The right panel shows a more subtle form of imbalance, in which the groups have
the same average but differ in their distributions.

if we do not appropriately control for those confounders. The examples regarding
the effect of a treatment on health outcomes in Section 9.1 illustrated this point in
a simple setting.

Even when all the confounding covariates are measured (hence ignorability is sat-
isfied), however, it can be difficult to properly control for them if the distributions
of the predictors are not similar across groups. Broadly speaking, any differences
across groups can be referred to as lack of balance across groups. The terms “im-
balance” and “lack of balance” are commonly used as a shorthand for differences
in averages, but more broadly they can refer to more general differences in distri-
butions across groups. Figure 10.1 provides two examples of imbalance. In the first
case the groups have different means (dotted vertical lines) and different skews. In
the second case groups have the same mean but different skews. In both examples
the standard deviations are the same across groups though differences in standard
deviation might be another manifestation of imbalance.

Imbalance creates problems primarily because it forces us to rely more on the
correctness of our model than we would have to if the samples were balanced. To
see this, consider what happens when we try to make inferences about the effect of
a treatment variable, for instance a new reading program, on test score, y, while
controlling for a crucial confounding covariate, pre-test score, x. Suppose that the
true treatment effect is θ and the relations between the response variable, y, and the
sole confounding covariate, x, is quadratic, as indicated by the following regressions,
written out separately for the members of each treatment group:

treated: yi = β0 + β1xi + β2x
2
i + θ + errori

controls: yi = β0 + β1xi + β2x
2
i

+ errori

Averaging over each treatment group separately, solving the second equation for
β0, plugging back into the first, and solving for θ yields the estimate

θ̂ = ȳ1 − ȳ0 − β1(x̄1 − x̄0) − β2(x2
1 − x2

0), (10.1)

where ȳ1 and ȳ0 denote the average of the outcome test scores in the treatment and
control groups respectively, x̄1 and x̄0 represent average pre-test scores for treat-
ment and control groups respectively, and x2

1 and x2
0 represent these averages for

squared pre-test scores. Ignoring x (that is, simply using the raw treatment/control
comparison ȳ1 − ȳ0) is a poor estimate of the treatment effect: it will be off by the

amount β1(x̄1 − x̄0) + β2(x2
1 − x2

0), which corresponds to systematic pre-treatment
differences between groups 0 and 1. The magnitude of this bias depends on how
different the distribution of x is across treatment and control groups (specifically
with regard to variance in this case) and how large β1 and β2 are. The closer the
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Figure 10.2 Lack of complete overlap in distributions across treatment and control groups.
Dashed lines indicate distributions for the control group; solid lines indicate distributions
for the treatment group. (a) Two distributions with no overlap; (b) two distributions with
partial overlap; (c) a scenario in which the range of one distribution is a subset of the
range of the other.

distributions of pre-test scores across treatment and control groups, the smaller this
bias will be.

Moreover, a linear model regression using x as a predictor would also yield the
wrong answer; it will be off by the amount β2(x2

1−x2
0). The closer the distributions

of pre-test scores across treatment and control groups, however, the smaller (x2
1−x2

0)
will be, and the less worried we need to be about correctly specifying this model as
quadratic rather than linear.

Lack of complete overlap and model extrapolation

Overlap describes the extent to which the range of the data is the same across
treatment groups. There is complete overlap if this range is the same in the two
groups. Figure 10.1 illustrated treatment and control confounder distributions with
complete overlap.

As discussed briefly in the previous chapter, lack of complete overlap creates
problems because it means that there are treatment observations for which we have
no counterfactuals (that is, control observations with the same covariate distribu-
tion) and vice versa. A model fitted to data such as these is forced to extrapolate
beyond the support of the data. The illustrations in Figure 10.2 display several
scenarios that exhibit lack of complete overlap.

If these are distributions for an important confounding covariate, then areas
where there is no overlap represent observations about which we may not want
to make causal inferences. Observations in these areas have no empirical counter-
factuals. Thus, any inferences regarding these observations would have to rely on
modeling assumptions in place of direct support from the data. Adhering to this
structure would imply that in the setting of Figure 10.2a, it would be impossible
to make data-based causal inferences about any of the observations. Figure 10.2b
shows a scenario in which data-based inferences are only possible for the region of
overlap, which is underscored on the plot. In Figure 10.2c, causal inferences are
possible for the full treatment group but only for a subset of the control group
(again indicated by the underscored region).

Example: evaluating the effectiveness of high-quality child care

We illustrate with data collected regarding the development of nearly 4500 children
born in the 1980s. A subset of 290 of these children who were premature and with
low birth weight (between 1500 and 2500 grams) received special services in the
first few years of life, including high-quality child care (five full days a week) in the
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Predictor Standardized Difference in Means
0 1 2 3

Child

Mother

negative birth weight
weeks preterm
days in hospital
male
first born
age

black
hispanic
white
unmarried at birth
less than high school
high school graduate
some college
college graduate
worked during pregnancy
had no prenatal care
age at birth

Figure 10.3 Imbalance in averages of confounding covariates across treatment groups.
Open circles represent differences in averages for the unmatched groups standardized by
the pooled within-group standard deviations for unmatched groups. Solid circles represent
differences in averages for matched groups standardized by the pooled within-group stan-
dard deviation for unmatched groups to facilitate comparisons. Negative birth weight is
defined as 2500 grams minus the child’s weight at birth.

second and third years of life as part of a formal intervention (the Infant Health and
Development Program). We want to evaluate the impact of this intervention on the
children’s subsequent cognitive outcomes by comparing the outcomes for children
in the intervention group to the outcomes in a comparison group of 4091 children
who did not participate in the program. The outcome of interest is test score at age
3; this test is similar to an IQ measure so we simplistically refer to these scores as
IQ scores from now on.

Missing data. Incomplete data arise in virtually all observational studies. For this
sample dataset, we imputed missing data once, using a model-based random impu-
tation (see Chapter 25 for a general discussion of this approach). We excluded the
most severely low-birth-weight children (those at or below 1500 grams) from the
sample because they are so different from the comparison sample. For these reasons,
results presented here do not exactly match the complete published analysis, which
multiply imputed the missing values.

Examining imbalance for several covariates

To illustrate the ways in which the treated and comparison groups differ, the open
circles in Figure 10.3 display the standardized differences in mean values (differences
in averages divided by the pooled within-group standard deviations for the treat-
ment and control groups) for a set of confounding covariates that we think predict
both program participation and subsequent test scores. Many of these differences
are large given that they are shown in standard-deviation units.

Setting up the plot to reveal systematic patterns of imbalance. In Figure 10.3, the
characteristics of this sample are organized by whether they pertain to the child
or to the mother. Additionally, continuous and binary predictors have been coded
when possible such that the larger values are typically associated with lower test
scores for children. For instance, “negative birth weight” is defined as the child’s
birth weight subtracted from 2500 grams, the cutoff for the official designation of
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Figure 10.4 Data from an intervention targeting low birth weight, premature children
(black dots), and data from a comparison group of children (gray dots). Test scores at
age 3 are plotted against birth weight. The solid line and dotted lines are regressions fit to
the black and gray points, respectively.

low birth weight. Therefore, high values of this predictor reflect children whom we
would expect to have lower test scores than children with lower values for negative
birth weight. Categorical variables have been broken out into indicators for each
category and organized so that the category associated with lowest test scores comes
first.

Displaying the confounders in this way and plotting standardized averages—
rather than displaying a table of numbers—facilitate comparisons across predictors
and methods (the dark points, to be described later, correspond to results obtained
from another strategy) and allow us to more clearly identify trends when they exist.
For instance, compared to the control group, the at-risk treatment group generally
has characteristics associated with lower test scores—such as low birth weight for
the child (coded as high “negative birth weight”), mother unmarried at birth, and
mother not a high school graduate.

Figure 10.4, which shows a scatterplot and regression lines of test scores on
birth weight, illustrates that, not only do the average birth weights differ in the
two groups (lack of balance), but there are many control observations (gray dots)
who have birth weights far out of the range of birth weights experienced in the
treatment population (black dots). This is an example of lack of complete overlap
in this predictor across groups. If birth weight is a confounding covariate that we
need to control for to achieve ignorability, Figure 10.4 demonstrates that if we
want to make inferences about the effect of the program on children with birth
weights above 2500 grams, we will have to rely on model extrapolations that may
be inappropriate.

Imbalance is not the same as lack of overlap

Figure 10.5 illustrates the distinction between balance and overlap. Imbalance does
not necessarily imply lack of complete overlap; conversely, lack of complete overlap
does not necessarily necessarily result in imbalance in the sense of different average
values in the two groups. Ultimately, lack of overlap is a more serious problem,
corresponding to a lack of data that limits the causal conclusions that can be made
without uncheckable modeling assumptions.

Figure 10.5a demonstrates complete overlap across groups in terms of mother’s
education. Each category includes observations in each treatment group. However,
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Figure 10.5 Comparisons of the treatment (black histogram bars) and control (gray his-
togram bars) groups for the child-intervention study, with respect to two of the pre-
treatment variables. There is lack of complete overlap for child age, but the averages are
similar across groups. In contrast, mother’s education shows complete overlap, but imbal-
ance exists in that the distributions differ for the two groups.

the percentages falling in each category (and the overall average, were we to code
these categories as 1–4) differ when comparing treatment and control groups—thus
there is clearly imbalance.

Figure 10.5b shows balance in mean values but without complete overlap. As
the histograms show, the averages of children’s ages differ little across treatment
groups, but the vast majority of control children have ages that are not represented
in the treatment group. Thus there is a lack of complete overlap across groups for
this variable. More specifically, there is complete overlap in terms of the treatment
observations, but not in terms of the control observations. If we believe age to be
a crucial confounding covariate, we probably would not want to make inferences
about the full set of controls in this sample.

10.2 Subclassification: effects and estimates for different

subpopulations

Assuming we are willing to trust the ignorability assumption, how can we assess
whether we are relying too strongly on modeling assumptions? And if we are un-
certain of our assumptions, how can we proceed cautiously? Section 9.5 illustrated
a check for overlap in one continuous predictor across treatment groups. In this
section we demonstrate a check that accommodates many predictors and discuss
options for more flexible modeling.

Subclassification

We saw in Chapter 3 that mother’s educational attainment is an important pre-
dictor of her child’s test scores. Education level also traditionally is associated
with participation in interventions such as this program for children with low birth
weights. Let us make the (unreasonable) assumption for the moment that this is the
only confounding covariate (that is, the only predictor associated with both par-
ticipation in this program and test scores). How would we want to estimate causal
effects? In this case a simple solution would be to estimate the difference in mean
test scores within each subclass defined by mother’s education. These averages as
well as the associated standard error and sample size in each subclass are displayed
in Figure 10.6. These point to positive effects for all participants, though not all
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Treatment effect Sample size
Mother’s education estimate ± s.e. treated controls

Not a high school grad 9.3 ± 1.3 126 1358
High school graduate 4.0 ± 1.8 82 1820
Some college 7.9 ± 2.3 48 837
College graduate 4.6 ± 2.1 34 366

Figure 10.6 Estimates ± standard errors of the effect on children’s test scores of a child
care intervention, for each of four subclasses formed by mother’s educational attainment.
The study was of premature infants with low birth weight, most of whom were born to
mothers with low levels of education.

effects are statistically significant, with by far the largest effects for the children
whose mothers had not graduated from high school.

Recall that there is overlap on this variable across the treatment and control
groups as is evidenced by the sample sizes for treated and control observations
within each subclass in Figure 10.6. If there were a subclass with observations only
from one group, we would not be able to make inferences for this type of person.
Also, if there were a subclass with only a small number of observations in either
the treatment group or the control group, we would probably be wary of making
inferences for these children as well.

To get an estimate of the overall effect for those who participated in the program,
the subclass-specific estimates could be combined using a weighted average where
the weights are defined by the number of children in each subclass who participated
in the program:

Est. effect on the treated =
9.3 · 126 + 4.0 · 82 + 7.9 · 48 + 4.6 · 34

126 + 82 + 48 + 34
= 7.0, (10.2)

with a standard error of
√

1.32
·1262+1.82

·822+2.32
·5.32+2.12

·342

(126+82+48+34)2 = 0.9.

This analysis is similar to a regression with interactions between the treatment
and mother’s educational attainment. To calculate the average treatment effect for
program participants, we would have to poststratify—that is, estimate the treat-
ment effect separately for each category of mother’s education, and then average
these effects based on the distribution of mother’s education in the population.

This strategy has the advantage of imposing overlap and, moreover, forcing the
control sample to have roughly the same covariate distribution as the treated sam-
ple. This reduces reliance on the type of model extrapolations discussed previously.
Moreover, one can choose to avoid modeling altogether after subclassifying, and
simply can take a difference in averages across treatment and control groups to
perform inferences, therefore completely avoiding making assumptions about the
parametric relation between the response and the confounding covariates.

One drawback of subclassifying, however, is that when controlling for a continu-
ous variable, some information may be lost when discretizing the variable. A more
substantial drawback is that it is difficult to control for many variables at once.

Average treatment effects: whom do we average over?

Figure 10.6 demonstrated how treatment effects can vary over different subpopula-
tions. Why did we weight these subclass-specific estimates by the number of treated
children in each subclass rather than the total number of children in each subclass?
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For this application, we are interested in the effect of the intervention for the sort of
children who would have participated in it. Weighting using the number of treatment
children in each subclass forces the estimate implicitly to be representative of the
treatment children we observe. The effect we are trying to estimate is sometimes
called the effect of the treatment on the treated.

If we had weighted instead by the number of control children in each subclass,
we could estimate the effect of the treatment on the controls. However, this partic-
ular intervention was designed for the special needs of low-birth-weight, premature
children—not for typical children—and there is little interest in its effect on com-
parison children who would not have participated.

The effect of the intervention might vary, for instance, for children with different
initial birth weights, and since we know that the mix of children’s birth weights
differs in treatment and comparison groups, the average effects across these groups
could also differ. Moreover, we saw in Figure 10.4 that there are so many control
observations with no counterfactual observations in the treatment group with regard
to birth weight that these data are likely inappropriate for drawing inferences about
the control group either directly (the effect of the treatment on the controls) or as
part of an average effect across the entire sample.

Again, this is related to poststratification. We can think of the estimate of the
effect of the treatment on the treated as a poststratified version of the estimate of
the average causal effect. As the methods we discuss in this section rely on more
and more covariates, however, it can be more attractive to apply methods that more
directly estimate the effect of the treatment on the treated, as we discuss next.

10.3 Matching: subsetting the data to get overlapping and balanced

treatment and control groups

Matching refers to a variety of procedures that restrict and reorganize the original
sample in preparation for a statistical analysis. In the simplest form of matching,
one-to-one matching, the data points are divided into pairs—each containing one
treated and one control unit—with the two units matched into a pair being as
similar as possible on relevant pre-treatment variables. The number of units in the
two groups will not in general be equal—typically there are more controls than
treated units, as in Figure 10.5, for example—and so there will be some leftover
units unmatched. In settings with poor overlap, there can be unmatched units from
both groups, so that the matched pairs represent the region of data space where
the treatment and control groups overlap.

Once the matched units have been selected out of the larger dataset, they can be
analyzed by estimating a simple difference in average outcomes across treatment
groups or by using regression methods to estimate the effect of the treatment in
the area of overlap.

Matching and subclassification

Matching on one variable is similar to subclassification except that it handles con-
tinuous variables more precisely. For instance, a treatment observation might be
matched to control observations that had the closest age to their own as opposed
to being grouped into subclasses based on broader age categories. Thus, matching
has the same advantages of stratification in terms of creating balance and forcing
overlap, and may even be able to create slightly better balance. However, many
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matching methods discard observations even when they are within the range of
overlap, which is likely inefficient.

Matching has some advantages over subclassification when controlling for many
variables at once. Exact matching is difficult with many confounders, but “nearest-
neighbor” matching is often still possible. This strategy matches treatment units
to control units that are “similar” in terms of their confounders where the metric
for similarity can be defined in any variety of ways, one of the most popular be-
ing the Mahalanobis distance, which is defined in matrix notation as d(x(1), x(2)) =
(x(1)

−x(2))tΣ−1(x(1)
−x(2)), where x(1) and x(2) represent the vectors of predictors

for points 1 and 2, and Σ is the covariance of the predictors in the dataset. Recently,
other algorithms have been introduced to accomplish this same task—finding sim-
ilar treatment and control observations—that rely on algorithms originally created
for genetic or data mining applications. Another matching approach, which we de-
scribe next, compares the input variables for treatment and control cases in order
to find an effective scale on which to match.

Propensity score matching

One way to simplify the issue of matching or subclassifying on many confounding
covariates at once is to create a one-number summary of all the covariates and
then use this to match or subclassify. We illustrate using a popular summary, the
propensity score, with our example of the intervention for children with low birth
weights. It seems implausible that mother’s education, for example, is the only
predictor we need to satisfy the ignorability assumption in our example. We would
like to control for as many predictors as possible to allow for the possibility that
any of them is a confounding covariate. We also want to maintain the beneficial
properties of matching. How can we match on many predictors at once?

Propensity score matching provides a solution to this problem. The propensity
score for the ith individual is defined as the probability that he or she receives
the treatment given everything we observe before the treatment (that is, all the
confounding covariates for which we want to control). Propensity scores can be
estimated using standard models such as logistic regression, where the outcome
is the treatment indicator and the predictors are all the confounding covariates.
Then matches are found by choosing for each treatment observation the control
observation with the closest propensity score.

In our example we randomly ordered the treatment observations, and then each
time a control observation was chosen as a match for a given treatment observation
it could not be used again. More generally, methods have been developed for match-
ing multiple control units to a single treated unit, and vice versa; these ideas can be
effective, especially when there is overlap but poor balance (so that, for example,
some regions of predictor space contain many controls and few treated units, or the
reverse). From this perspective, matching can be thought of as a way of discarding
observations so that the remaining data show good balance and overlap.

The goal of propensity score matching is not to ensure that each pair of matched
observations is similar in terms of all their covariate values, but rather that the
matched groups are similar on average across all their covariate values. Thus, the
adequacy of the model used to estimate the propensity score can be evaluated by
examining the balance that results on average across the matched groups.
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Computation of propensity score matches

The first step in creating matches is to fit a model to predict who got the interven-
tion based on the set of predictors we think are necessary to achieve ignorability
(confounding covariates). A natural starting point would be a logistic regression,
something like

R code ps.fit.1 <- glm (treat ~ as.factor(educ) + as.factor(ethnic) + b.marr +

work.dur + prenatal + mom.age + sex + first + preterm + age +

dayskidh + bw + unemp.rt, data=cc2, family=binomial(link="logit"))

In our example, we evaluated several different model fits before settling on one that
provided balance that seemed adequate. In each case we evaluated the adequacy of
the model by evaluating the balance that resulted from matching on the estimated
propensity scores from that model. Model variations tried excluding variables and
including interactions and quadratic terms. We finally settled on

R code ps.fit.2 <- glm (treat ~ bwg + as.factor(educ) + bwg:as.factor(educ) +

as.factor(ethnic) + b.marr + as.factor(ethnic):b.marr +

work.dur + prenatal + preterm + age + mom.age + sex + first,

data=cc2, family=binomial(link="logit"))

We then create predicted values:1

R code pscores <- predict (ps.fit.2, type="link")

The regression model is messy, but we are not concerned with all its coefficients;
we are only using it as a tool to construct a balanced comparison between treatment
and control groups. We used the estimated propensity scores to create matches,
using a little R function called matching that finds for each treatment unit in turn
the control unit (not previously chosen) with the closest propensity score:2

R code matches <- matching (z=cc2$treat, score=pscores)

matched <- cc2[matches$matched,]

Then the full dataset was reduced to only the treated observations and only those
control observations that were chosen as matches.

The differences between treated and control averages, for the matched subset, are
displayed by the solid dots in Figure 10.3. The imbalance has decreased noticeably
compared to the unmatched sample. Certain variables (birth weight and the number
of days the children were in the hospital after being born) still show imbalance, but
none of our models succeeded in balancing those variables. We hope the other
variables are more important in predicting future test scores (which appears to be
reasonable from the previous literature on this topic).

The process of fitting, assessing, and selecting a model for the propensity scores
has completely ignored the outcome variable. We have judged the model solely
by the balance that results from subsequent matches on the associated propensity
scores. This helps the researcher to be “honest” when fitting the propensity score
model because a treatment effect estimate is not automatically produced each time
a new model is fit.

1 We use the type="link" option to get predictions on the scale of the linear predictor, that is,

X̃β. If we wanted predictions on the probability scale, we would set type="response". In this
example, similar results would arise from using either approach.

2 Here we have performed the matching mostly “manually” in the sense of setting up a regression
on the treatment variable and then using the predicted probabilities to select a subset of
matched units for the analysis. Various more automatic methods for propensity score estimation,
matching, and balancing have be implemented in R and other software packages; see the end
of this chapter for references.
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Figure 10.7 (a) Distribution of logit propensity scores for treated (dark lines) and control
groups (gray lines) before matching. (b) Distributions of logit propensity scores for treated
(dark lines) and control groups (gray lines) after matching.

Having created and checked appropriateness of the matches by examining bal-
ance, we fit a regression model just on the matched data including all the predictors
considered so far, along with an indicator to estimate the treatment effect:

R codereg.ps <- lm (ppvtr.36 ~ treat + hispanic + black + b.marr + lths +

hs + ltcoll + work.dur + prenatal + mom.age + sex + first +

preterm + age + dayskidh + bw, data=matched)

Given the balance and overlap that the matching procedure has achieved, we are less
concerned than in the standard regression context about issues such as deviations
from linearity and model extrapolation. Our estimated treatment effect from the
matched dataset is 10.2 (with a standard error of 1.6), which can be compared to
the standard regression estimate of 11.7 (with standard error of 1.3) based on the
full dataset.

If we fully believed in the linear model and were confident that it could be
extrapolated to the areas of poor overlap, we would use the regression based on
all the data. Realistically, however, we prefer to construct comparable groups and
restrict our attention to the range of overlap.

Insufficient overlap? What happens if there are observations about which we want
to make inferences but there are no observations with similar propensity scores
in the other group? For instance, suppose we are interested in the effect of the
treatment on the treated but there are some treated observations with propensity
scores far from the propensity scores of all the control observations. One option
is to accept some lack of comparability (and corresponding level of imbalance in
covariates). Another option is to eliminate the problematic treated observations.
If the latter choice is made it is important to be clear about the change in the
population about whom inferences will now generalize. It is also helpful to try
“profile” the observations that are omitted from the analysis.

Matched pairs? Although matching often results in pairs of treated and control
units, we typically ignore the pairing in the analysis of the matched data. Propensity
score matching works well (in appropriate settings) to create matched groups, but
it does not necessarily created closely matched pairs. It is not generally appropriate
to add the complication of including the pairing in the model, because the pairing in
the matching is performed in the analysis, not the data collection. However, pairing
in this way does affect variance calculations, as we shall discuss.

The propensity score as a one-number summary used to assess balance and overlap

A quick way of assessing whether matching has achieved increased balance and
overlap is to plot histograms of propensity scores across treated and control groups.
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Figure 10.7 displays these histograms for unmatched and matched samples. (We
plot the propensity scores on the logit scale to better display their variation at the
extremes, which correspond to probabilities near 0 and 1.) The decreased imbalance
and increased overlap illustrated in the histograms for the matched groups do not
ensure that all predictors included in the model will be similarly matched, but they
provide some indication that these distribution will have closer balance in general
than before matching.

Geographic information

We have excluded some important information from these analyses. We have access
to indicators reflecting the state in which each child resides. Given the tremendous
variation in test scores and child care quality3 across states, it seems prudent to
control for this variable as well. If we redo the propensity score matching by includ-
ing state indicators in both the propensity score model and final regression model,
we get an estimate of 8.8 (with standard error of 2.1), which is even lower than our
original estimate of 10.2. Extending the regression analysis on the full dataset to
include state indicators changes the estimate only from 11.7 to 11.6.

We include results from this analyses using classical regression to adjust for states
because it would be a standard approach given these data. A better approach would
be to include states in a multilevel model, as we discuss in Chapter 23.

Experimental benchmark by which to evaluate our estimates

It turns out that the researchers evaluating this intervention did not need to rely on
a comparison group strategy to assess its impact on test scores. The intervention
was evaluated using a randomized experiment. In the preceding example, we simply
replaced the true experimental control group with a comparison group pulled from
the National Longitudinal Survey of Youth. The advantage of this setup as an
illustration of propensity score matching is that we can compare the estimates
obtained from the observational study that we have “constructed” to the estimates
found using the original randomized experiment. For this sample, the experimental
estimate is 7.4. Thus, both propensity score estimates are much closer to the best
estimate of the true effect than the standard regression estimates.

Subclassification on mother’s education alone yields an estimated treatment effect
of 7.0, which happens to be close to the experimental benchmark. However, this
does not imply that subclassifying on one variable is generally the best strategy
overall. In this example, failure to control for all confounding covariates leads to
many biases (some negative and some positive—the geographic variables complicate
this picture), and unadjusted differences in average outcomes yield estimates that
are lower than the experimental benchmark. Controlling for one variable appears to
work well for this example because the biases caused by the imbalances in the other
variables just happen to cancel. We would not expect this to happen in general.

Other matching methods, matching on all covariates, and subclassification

The method we have illustrated is called matching without replacement because any
given control observation cannot be used as a match for more than one treatment

3 Variation in quality of child care is important because it reflects one of the most important
alternatives that can be chosen by the parents in the control group.
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observation. This can work well in situations when there is a large enough con-
trol group to provide adequate overlap. It has the advantage of using each control
observation only once, which maximizes our sample size (assuming a constraint of
one match per treatment unit) and makes variance calculations a bit easier; see the
discussion of standard errors at the end of this section.

However, situations arise when there are not enough controls in the overlapping
region to fully provide one match per treated unit. In this case it can help to use
some control observations as matches for more than one treated unit. This approach
is often called matching with replacement, a term which commonly refers to with
one-to-one matching but could generalize to multiple control matches for each con-
trol. Such strategies can create better balance, which should yield estimates that
are closer to the truth on average. Once such data are incorporated into a regres-
sion, however, the multiple matches reduce to single data points, which suggests
that matching with replacement has limitations as a general strategy.

A limitation of one-to-one matching is that it may end up “throwing away” many
informative units if the control group is substantially bigger than the treatment
group. One way to make better use of the full sample is simply to subclassify based
on values of the propensity score—perhaps discarding some noncomparable units
in the tails of the propensity score distribution. Then separate analyses can be
performed within each subclass (for example, difference in outcome averages across
treatment groups or linear regressions of the outcome on an indicator variable for
treatment and other covariates). The estimated treatment effects from each of the
subclasses then can either be reported separately or combined in a weighted average
with different weights used for different estimands. For instance, when estimating
the effect of the treatment on the treated, the number of treated observations in each
subclass would be used as the weight, just as we did for the simple subclassification
of mother’s education in model (10.2) on page 205.

A special case of subclassification called full matching can be conceptualized
as a fine stratification of the units where each statum has either (1) one treated
unit and one control unit, (2) one treated unit and multiple control units, or (3)
multiple treated units and one control unit. “Optimal” versions of this matching
algorithm have the property of minimizing the average distance between treatment
and control units. Strategies with nonoverlapping strata such as subclassification
and full matching have the advantage of being more easily incorporated into larger
models. This enables strata to be modeled as groups in any number of ways.

Other uses for propensity scores

Some researchers use the propensity score in other ways. For instance, the inverse
of estimated propensity scores can be used to create a weight for each point in the
data, with the goal that weighted averages of the data should look, in effect, like
what would be obtained from a randomized experiment. For instance, to obtain
an estimate of an average treatment effect, one would use weights of 1/pi and
1/(1−pi) for treated and control observations i, respectively, where the pi’s are the
estimated propensity scores. To obtain an estimate of the effect of the treatment
on the treated, one would use weights of 1 for the treated and pi/(1 − pi) for the
controls. These weights can be used to calculate simple means or can be included
within a regression framework. In our example, this method yielded a treatment
effect estimate of 7.8 (when including state information), which is close to the
experimental benchmark.

These strategies have the advantage (in terms of precision) of retaining the full
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sample. However, the weights may have wide variability and may be sensitive to
model specification, which could lead to instability. Therefore, these strategies work
best when care is taken to create stable weights and to use robust or nonparametric
models to estimate the weights. Such methods are beyond the scope of this book.

More simply, propensity scores can be used in a regression of the outcome on
the treatment and the scores rather than the full set of covariates. However, if
observations that lie in areas where there is no overlap across treatment groups are
not removed, the same problems regarding model extrapolation will persist. Also,
this method once again places a great deal of faith in precise and correct estimation
of the propensity score.

Finally, generalizations of the binary treatment setup have been formalized to
accommodate multiple-category or continuous treatment variables.

Standard errors

The standard errors presented for the analyses fitted to matched samples are not
technically correct. First, matching induces correlation among the matched obser-
vations. The regression model, however, if correctly specified, should account for
this by including the variables used to match. Second, our uncertainty about the
true propensity score is not reflected in our calculations. This issue has no per-
fect solution to date and is currently under investigation by researchers in this
field. Moreover, more complicated matching methods (for example, matching with
replacement and many-to-one matching methods) generally require more sophisti-
cated approaches to variance estimation. Ultimately, one good solution may be a
multilevel model that includes treatment interactions so that inferences explicitly
recognize the decreased precision that can be obtained outside the region of overlap.

10.4 Lack of overlap when the assignment mechanism is known:

regression discontinuity

Simple regression works to estimate treatment effects under the assumption of ignor-
able treatment assignment if the model is correct, or if the confounding covariates
are well balanced with respect to the treatment variable, so that regression serves
as a fine-tuning compared to a simple difference of averages. But if the treated and
control groups are very different from each other, it can be more appropriate to
identify the subset of the population with overlapping values of the predictor vari-
ables for both treatment and control conditions, and to estimate the causal effect
(and the regression model) in this region only. Propensity score matching is one
approach to lack of overlap.

If the treatment and control groups do not overlap at all in key confounding
covariates, it can be prudent to abandon causal inferences altogether. However,
sometimes a clean lack of overlap arises from a covariate that itself was used to
assign units to treatment conditions. Regression discontinuity analysis is an ap-
proach for dealing with this extreme case of lack of overlap in which the assignment
mechanism is clearly defined.

Regression discontinuity and ignorability

A particularly clear case of imbalance sometimes arises in which there is some pre-
treatment variable x, with a cutoff value C so that one of the treatments applies
for all units i for which xi < C, and the other treatment applies for all units for
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Figure 10.8 Example of a regression discontinuity analysis: political ideology of members
of the 1993–1994 House of Representatives versus Republican share of the two-party vote
in the district’s congressional election in 1992. Democrats and Republicans are indicated
by crosses and circles, respectively. For the purpose of estimating the effect of electing a
Democrat or Republican, there is no overlap between the “treatment” (the congressmem-
ber’s party) and the pre-treatment control variable on the x-axis.

which xi > C. This could occur, for example, in a medical experiment in which a
risky new treatment is only given to patients who are judged to be in particularly
bad condition. But the usual setting is in observational studies, where a particular
event or “treatment” only occurs under certain specified conditions. For example,
in a two-candidate election, a candidate wins if and only if he or she receives more
than half the vote.

In a setting where one treatment occurs only for x < C and the other only for
x > C, it is still possible to estimate the treatment effect for units with x in the
neighborhood of C, if we assume that the regression function—the average value of
the outcome y, given x and the treatment—is a continuous function of x near the
cutoff value C.

In this scenario, the mechanism that assigns observations to treatment or control
is known, and so we need not struggle to set up a model in which the ignorabil-
ity assumption is reasonable. All we need to do is control for the input(s) used to
determine treatment assignment—these are our confounding covariates. The disad-
vantage is that, by design, there is no overlap on this covariate across treatment
groups. Therefore, to “control for” this variable we must make stronger modeling
assumptions because we will be forced to extrapolate our model out of the range of
our data. To mitigate such extrapolations, one can limit analyses to observations
that fall just above and below the threshold for assignment.

Example: political ideology of congressmembers

Figure 10.8 shows an example, where the goal is to estimate one aspect of the effect
of electing a Republican, as compared to a Democrat, in the U.S. House of Rep-
resentatives. The graph displays political ideologies (as computed using a separate
statistical analysis of congressional roll-call votes) for Republican and Democratic
congressmembers, plotted versus the vote received by the Republican candidate in
the previous election. There is no overlap because the winner in each district nec-
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essarily received at least 50% of the vote. (For simplicity, we are only considering
districts where an incumbent was running for reelection, so that different districts
with the same congressional vote share can be considered as comparable.)

Regression discontinuity analysis. If we wish to consider the effect of the winning
party on the political ideology of the district’s congressmember, then a simple re-
gression discontinuity analysis would consider a narrow range—for example, among
all the districts where x lies between 0.45 and 0.55, and then fit a model of the form

yi = β0 + θTi + β1xi + errori

where Ti is the “treatment,” which we can set to 1 for Republicans and 0 for
Democrats.

Here is the result of the regression:

R output lm(formula = score1 ~ party + x, subset=overlap)

coef.est coef.se

(Intercept) -1.21 0.62

party 0.73 0.07

x 1.65 1.31

n = 68, k = 3

residual sd = 0.15, R-Squared = 0.88

The effect of electing a Republican (compared to a Democrat) is 0.73 (on a scale
in which the most extreme congressmembers are at ±1; see Figure 10.8) after con-
trolling for the party strength in the district. The coefficient of x is estimated to
be positive—congressmembers in districts with higher Republican votes tend to be
more conservative, after controlling for party—but this coefficient is not statisti-
cally significant. The large uncertainty in the coefficient for x is no surprise, given
that we have restricted our analysis to the subset of data for which x lies in the
narrow range from 0.45 to 0.55.

Regression fit to all the data. Alternatively, we could fit the model to the whole
dataset:

R output lm(formula = score1 ~ party + x)

coef.est coef.se

(Intercept) -0.68 0.05

party 0.69 0.04

x 0.64 0.13

n = 357, k = 3

residual sd = 0.21, R-Squared = 0.8

The coefficient on x is estimated much more precisely, which makes sense given
that we have more leverage on x (see Figure 10.8).

Regression with interactions. However, a closer look at the figure suggests different
slopes for the two parties, and so we can fit a model interacting x with party:

R output lm(formula = score1 ~ party + x + party:x)

coef.est coef.se

(Intercept) -0.76 0.06

party 1.13 0.16

x 0.87 0.15

party:x -0.81 0.29

n = 357, k = 4

residual sd = 0.21, R-Squared = 0.81

Everything is statistically significant, but it is difficult to interpret these coefficients.
We shall reparameterize and define
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R codez <- x - 0.5

so that when z = 0, we are at the point of discontinuity. We then reparameterize the
interaction slope as separate slopes for the Democrats (party==0) and Republicans
(party==1):

R outputlm(formula = score1 ~ party + I(z*(party==0)) + I(z*(party==1)))

coef.est coef.se

(Intercept) -0.33 0.03

party 0.73 0.04

I(z * (party == 0)) 0.87 0.15

I(z * (party == 1)) 0.06 0.24

n = 357, k = 4

residual sd = 0.21, R-Squared = 0.81

We see a strong positive slope of z among Democrats but not Republicans, and an
estimate of 0.73 for the effect of party at the discontinuity point.

Comparison of regression discontinuity analysis to the model with interactions us-
ing all the data. In this example, the analysis fit to the entire dataset gives similar
results (but with a much lower standard error) as the regression discontinuity anal-
ysis that focused on the region of near overlap. In general, however, the model fit
just to the area of overlap may be considered more trustworthy.

Partial overlap

What happens when the discontinuity is not so starkly defined? This is sometimes
called a “fuzzy” discontinuity, as opposed to the “sharp” discontinuity discussed
thus far. Consider, for instance, a situation where the decision whether to promote
children to the next grade is made based upon results from a standardized test
(or set of standardized tests). Theoretically this should create a situation with no
overlap in these test scores across those children forced to repeat their grade and
those promoted to the next grade (the treatment and control groups). In reality,
however, there is some “slippage” in the assignment mechanism. Some children may
be granted waivers from the official policy based on any of several reasons, including
parental pressure on school administrators, a teacher who advocates for the child,
and designation of the child as learning-disabled.

This situation creates partial overlap between the treatment and control groups
in terms of the supposed sole confounding covariate, promotion test scores. Unfor-
tunately, this overlap arises from deviations from the stated assignment mechanism.
If the reasons for these deviations are well defined (and measurable), then ignora-
bility can be maintained by controlling for the appropriate child, parent, or school
characteristics. Similarly, if the reasons for these deviations are independent of the
potential outcomes of interest, there is no need for concern. If not, inferences could
be compromised by failure to control for important omitted confounders.

10.5 Estimating causal effects indirectly using instrumental variables

There are situations when the ignorability assumption seems inadequate because
the dataset does not appear to capture all inputs that predict both the treatment
and the outcomes. In this case, controlling for observed confounding covariates
through regression, subclassification, or matching will not be sufficient for calculat-
ing valid causal estimates because unobserved variables could be driving differences
in outcomes across groups.
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When ignorability is in doubt, the method of instrumental variables (IV) can
sometimes help. This method requires a special variable, the instrument, which is
predictive of the treatment and brings with it a new set of assumptions.

Example: a randomized-encouragement design

Suppose we want to estimate the effect of watching an educational television pro-
gram (this time the program is Sesame Street) on letter recognition. We might con-
sider implementing a randomized experiment where the participants are preschool
children, the treatment of interest is watching Sesame Street, the control condition
is not watching,4 and the outcome is the score on a test of letter recognition. It is
not possible here for the experimenter to force children to watch a TV show or to
refrain from watching (the experiment took place while Sesame Street was on the
air). Thus watching cannot be randomized. Instead, when this study was actually
performed, what was randomized was encouragement to watch the show—this is
called a randomized encouragement design.

A simple comparison of randomized groups in this study will yield an estimate of
the effect of encouraging these children to watch the show, not an estimate of the
effect of actually viewing the show. In this setting the simple randomized compari-
son is an estimate of a quantity called the intent-to-treat (ITT) effect. However, we
may be able to take advantage of the randomization to estimate a causal effect for
at least some of the people in the study by using the randomized encouragement as
an “instrument.” An instrument is a variable thought to randomly induce variation
in the treatment variable of interest.

Assumptions for instrumental variables estimation

Instrumental variables analyses rely on several key assumptions, one combination
of which we will discuss in this section in the context of a simple example with
binary treatment and instrument:

• Ignorability of the instrument,

• Nonzero association between instrument and treatment variable,

• Monotonicity,

• Exclusion restriction.

In addition, the model assumes no interference between units (the stable unit treat-
ment value assumption) as with most other causal analyses, an issue we have already
discussed at the end of Section 9.3.

Ignorability of the instrument

The first assumption in the list above is ignorability of the instrument with respect
to the potential outcomes (both for the primary outcome of interest and the treat-
ment variable). This is trivially satisfied in a randomized experiment (assuming the
randomization was pristine). In the absence of a randomized experiment (or nat-
ural experiment) this property may be more difficult to satisfy and often requires
conditioning on other predictors.

4 Actually the researchers in this study recorded four viewing categories: (1) rarely watched, (2)
watched once or twice a week, (3) watched 3-5 times a week, and (4) watched more than 5
times a week on average. Since there is no a category for “never watched,” for the purposes of
this illustration we treat the lowest viewing category (“rarely watched”) as if it were equivalent
to “never watched.”
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Nonzero association between instrument and treatment variable

To demonstrate how we can use the instrument to obtain a causal estimate of the
treatment effect in our example, first consider that about 90% of those encour-
aged watched the show regularly; by comparison, only 55% of those not encouraged
watched the show regularly. Therefore, if we are interested in the effect of actually
viewing the show, we should focus on the 35% of the treatment population who
decided to watch the show because they were encouraged but who otherwise would
not have watched the show. If the instrument (encouragement) did not affect regu-
lar watching, then we could not proceed. Although a nonzero association between
the instrument and the treatment is an assumption of the model, fortunately this
assumption is empirically verifiable.

Monotonicity and the exclusion restrictions

Those children whose viewing patterns could be altered by encouragement are the
only participants in the study for whom we can conceptualize counterfactuals with
regard to viewing behavior—under different experimental conditions they might
have been observed either viewing or not viewing, so a comparison of these potential
outcomes (defined in relation to randomized encouragement) makes sense. We shall
label these children “induced watchers”; these are the only children for whom we
will make inferences about the effect of watching Sesame Street.

For the children who were encouraged to watch but did not, we might plausibly
assume that they also would not have watched if not encouraged—we shall label this
type of child a “never-watcher.” We cannot directly estimate the effect of viewing
for these children since in this context they would never be observed watching
the show. Similarly, for the children who watched Sesame Street even though not
encouraged, we might plausibly assume that if they had been encouraged they
would have watched as well, again precluding an estimate of the effect of viewing
for these children. We shall label these children “always-watchers.”

Monotonicity. In defining never-watchers and always-watchers, we assumed that
there were no children who would watch if they were not encouraged but who
would not watch if they were encouraged. Formally this is called the monotonicity
assumption, and it need not hold in practice, though there are many situations in
which it is defensible.

Exclusion restriction. To estimate the effect of viewing for those children whose
viewing behavior would have been affected by the encouragement (the induced
watchers), we must make another important assumption, called the exclusion re-
striction. This assumption says for those children whose behavior would not have
been changed by the encouragement (never-watchers and always-watchers) there is
no effect of encouragement on outcomes. So for the never-watchers (children who
would not have watched either way), for instance, we assume encouragement to
watch did not affect their outcomes. And for the always-watchers (children who
would have watched either way), we assume encouragement to watch did not affect
their outcomes.5

It is not difficult to tell a story that violates the exclusion restriction. Consider,
for instance, the conscientious parents who do not let their children watch television

5 Technically, the assumptions regarding always-watchers and never-watchers represent distinct
exclusion restrictions. In this simple framework, however, the analysis suffers if either assump-
tion is violated. Using more complicated estimation strategies, it can be helpful to consider
these assumptions separately as it may be possible to weaken one or the other or both.
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Potential
Potential Encouragement test Encouragement

Unit viewing outcomes indicator outcomes effect
i T 0

i T 1

i zi y0

i y1

i y1

i − y0

i

1 0 1 (induced watcher) 0 67 76 9
2 0 1 (induced watcher) 0 72 80 8
3 0 1 (induced watcher) 0 74 81 7
4 0 1 (induced watcher) 0 68 78 10
5 0 0 (never-watcher) 0 68 68 0
6 0 0 (never-watcher) 0 70 70 0
7 1 1 (always-watcher) 0 76 76 0
8 1 1 (always-watcher) 0 74 74 0
9 1 1 (always-watcher) 0 80 80 0
10 1 1 (always-watcher) 0 82 82 0
11 0 1 (induced watcher) 1 67 76 9
12 0 1 (induced watcher) 1 72 80 8
13 0 1 (induced watcher) 1 74 81 7
14 0 1 (induced watcher) 1 68 78 10
15 0 0 (never-watcher) 1 68 68 0
16 0 0 (never-watcher) 1 70 70 0
17 1 1 (always-watcher) 1 76 76 0
18 1 1 (always-watcher) 1 74 74 0
19 1 1 (always-watcher) 1 80 80 0
20 1 1 (always-watcher) 1 82 82 0

Figure 10.9 Hypothetical complete data in a randomized encouragement design. Units have
been ordered for convenience. For each unit, the students are encouraged to watch Sesame
Street (zi = 1) or not (zi = 0). This reveals which of the potential viewing outcomes
(T 0

i , T 1

i ) and which of the potential test outcomes (y0

i , y1

i ) we get to observe. The observed
outcomes are displayed in boldface. Here, potential outcomes are what we would observe
under either encouragement option. The exclusion restriction forces the potential outcomes
to be the same for those whose viewing would not be affected by the encouragement. The
effect of watching for the “induced watchers” is equivalent to the intent-to-treat effect
(encouragement effect over the whole sample) divided by the proportion induced to view;
thus, 3.4/0.4 = 8.5.

and are concerned with providing their children with a good start educationally.
The materials used to encourage them to have their children watch Sesame Street
for its educational benefits might instead have motivated them to purchase other
types of educational materials for their children or to read to them more often.

Derivation of instrumental variables estimation with complete data (including
unobserved potential outcomes)

To illustrate the instrumental variables approach, however, let us proceed as if the
exclusion restriction were true (or at least approximately true). In this case, if we
think about individual-level causal effects, the answer becomes relatively straight-
forward.

Figure 10.9 illustrates with hypothetical data based on the concepts in this real-
life example by displaying for each study participant not only the observed data
(encouragement and viewing status as well as observed outcome test score) but
also the unobserved categorization, ci, into always-watcher, never-watcher, or in-
duced watcher based on potential watching behavior as well as the counterfactual
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test outcomes (the potential outcome corresponding to the treatment not received).
Here, potential outcomes are the outcomes we would have observed under either
encouragement option. Because of the exclusion restriction, for the always-watchers
and the never-watchers the potential outcomes are the same no matter the encour-
agement (really they need not be exactly the same, just distributionally the same,
but this simplifies the exposition).

The true intent-to-treat effect for these 20 observations is then an average of
the effects for the 8 induced watchers, along with 12 zeroes corresponding to the
encouragement effects for the always-watchers and never-watchers:

ITT =
9 + 8 + 7 + 10 + 9 + 8 + 7 + 10 + 0 + · · · + 0

20

= 8.5 ·
8

20
+ 0 ·

12

20
= 8.5 · 0.4. (10.3)

The effect of watching Sesame Street for the induced watchers is 8.5 points on the
letter recognition test. This is algebraically equivalent to the intent-to-treat effect
(3.4) divided by the proportion of induced watchers (8/20 = 0.40).

Instrumental variables estimate

We can calculate an estimate of the effect of watching Sesame Street for the induced
watchers with the actual data using the same principles.

We first estimate the percentage of children actually induced to watch Sesame
Street by the intervention, which is the coefficient of the treatment (encouraged),
in the following regression:

R codefit.1a <- lm (watched ~ encouraged)

The estimated coefficient of encouraged here is 0.36 (which, in this regression with
a single binary predictor, is simply the proportion of induced watchers in the data).

We then compute the intent-to-treat estimate, obtained in this case using the
regression of outcome on treatment:

R codefit.1b <- lm (y ~ encouraged)

The estimated coefficient of encouraged in this regression is 2.9, which we then
“inflate” by dividing by the percentage of children affected by the intervention:

R codeiv.est <- coef(fit.1a)[,"encouraged"]/coef(fit.1b)[,"encouraged"]

The estimated effect of regularly viewing Sesame Street is thus 2.9/0.36 = 7.9 points
on the letter recognition test. This ratio is sometimes called the Wald estimate.

Local average treatment effects

The instrumental variables strategy here does not estimate an overall causal effect
of watching Sesame Street across everyone in the study. The exclusion restriction
implies that there is no effect of the instrument (encouragement) on the outcomes
for always-watchers and for never-watchers. Given that the children in these groups
cannot be induced to change their watching behavior by the instrument, we cannot
estimate the causal effect of watching Sesame Street for these children. Therefore
the causal estimates apply only to the “induced watchers.”
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We are estimating (a special case of) what has been called a local average treat-
ment effect (LATE). Some researchers argue that intent-to-treat effects are more
interesting from a policy perspective because they accurately reflect that not all
targeted individuals will participate in the intended program. However, the intent-
to-treat effect only parallels a true policy effect if in the subsequent policy imple-
mentation the compliance rate remains unchanged. We recommend estimating both
the intent-to-treat effect and the local average treatment effect to maximize what
we can learn about the intervention.

10.6 Instrumental variables in a regression framework

Instrumental variables models and estimators can also be derived using regression,
allowing us to more easily extend the basic concepts discussed in the previous
section. A general instrumental variables model with continuous instrument, z, and
treatment, d, can be written as

y = β0 + β1T + εi

T = γ0 + γ1z + νi (10.4)

The assumptions can now be expressed in a slightly different way. The first as-
sumption is that zi is uncorrelated with both εi and νi, which translates informally
into the ignorability assumption and exclusion restriction (here often expressed
informally as “the instrument only affects the outcome through its effect on the
treatment”). Also the correlation between zi and ti must be nonzero (parallel to
the monotonicity assumption from the previous section). We next address how this
framework identifies the causal effect of T on y.

Identifiability with instrumental variables

Generally speaking, identifiability refers to whether the data contain sufficient in-
formation for unique estimation of a given parameter or set of parameters in a par-
ticular model. For example, in our formulation of the instrumental variables model,
the causal parameter is not identified without assuming the exclusion restriction
(although more generally the exclusion restriction is not the only assumption that
could be used to achieve identifiability).

What if we did not impose the exclusion restriction for our basic model? The
model (ignoring covariate information, and switching to mathematical notation for
simplicity and generalizability) can be written as

y = β0 + β1T + β2z + error

T = γ0 + γ1z + error, (10.5)

where y is the response variable, z is the instrument, and T is the treatment of
interest. Our goal is to estimate β1, the treatment effect. The difficulty is that T
has not been randomly assigned; it is observational and, in general, can be correlated
with the error in the first equation; thus we cannot simply estimate β1 by fitting a
regression of y on T and z.

However, as described in the previous section, we can estimate β1 using instru-
mental variables. We derive the estimate here algebraically, in order to highlight
the assumptions needed for identifiability.
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Substituting the equation for T into the equation for y yields

y = β0 + β1T + β2z + error

= β0 + β1(γ0 + γ1z) + β2z + error

= (β0 + β1γ0) + (β1γ1 + β2)z + error. (10.6)

We now show how to estimate β1, the causal effect of interest, using the slope of
this regression, along with the regressions (10.5) and the exclusion restriction.

The first step is to express (10.6) in the form

y = δ0 + δ1z + error.

From this equation we need δ1, which can be estimated from a simple regression of
y on z. We can now solve for β1 in the following equation:

δ1 = β1γ1 + β2,

which we can rearrange to get

β1 = (δ1 − β2)/γ2. (10.7)

We can directly estimate the denominator of this expression, γ2, from the regression
of T on z in (10.5)—this is not a problem since we are assuming that the instrument,
z, is randomized.

The only challenge that remains in estimating β1 from (10.7) is to estimate β2,
which in general cannot simply be estimated from the top equation of (10.5) since,
as already noted, the error in that equation can be correlated with T . However,
under the exclusion restriction, we know that β2 is zero, and so β1 = δ1/γ1, leaving
us with the standard instrumental variables estimate.

Other models. There are other ways to achieve identifiability in this two-equation
setting. Approaches such as selection correction models rely on functional form
specifications to identify the causal effects even in the absence of an instrument.
For example, a probit specification could be used for the regression of T on z. The
resulting estimates of treatment effects are often unstable if a true instrument is
not included as well.

Two-stage least squares

The Wald estimate discussed in the previous section can be used with this formu-
lation of the model as well. We now describe a more general estimation strategy,
two-stage least squares.

To illustrate we return to our Sesame Street example. The first step is to regress
the “treatment” variable—an indicator for regular watching (watched)—on the
randomized instrument, encouragement to watch (encouraged). Then we plug pre-
dicted values of encouraged into the equation predicting the letter recognition
outcome, y:

R codefit.2a <- lm (watched ~ encouraged)

watched.hat <- fit.2a$fitted

fit.2b <- lm (y ~ watched.hat)

The result is

R outputcoef.est coef.se

(Intercept) 20.6 3.9

watched.hat 7.9 4.9

n = 240, k = 2

residual sd = 13.3, R-Squared = 0.01
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where now the coefficient on watched.hat is the estimate of the causal effect of
watching Sesame Street on letter recognition for those induced to watch by the
experiment. This two-stage estimation strategy is especially useful for more com-
plicated versions of the model, for instance, when multiple instruments are included.

This second-stage regression does not give the correct standard error, however,
as we discuss at the bottom of this page.

Adjusting for covariates in an instrumental variables framework

It turns out that the randomization for this experiment took place within sites
and settings; it is therefore appropriate to control for these covariates in estimat-
ing the treatment effect. Additionally, pre-test scores are available that are highly
predictive of post-test scores. Our preferred model would control for all of these
predictors. We can calculate the same ratio (intent-to-treat effect divided by effect
of encouragement on viewing) as before using models that include these additional
predictors but pulling out only the coefficients on encouraged for the ratio.

Here we equivalently perform this analysis using two-stage least squares:

R code fit.3a <- lm (watched ~ encouraged + pretest + as.factor(site) + setting)

watched.hat <- fit.3a$fitted

fit.3b <- lm (y ~ watched.hat + pretest + as.factor(site) + setting)

display (fit.3b)

yielding

R output coef.est coef.se

(Intercept) 1.2 4.8

watched.hat 14.0 4.0

pretest 0.7 0.1

as.factor(site)2 8.4 1.8

as.factor(site)3 -3.9 1.8

as.factor(site)4 0.9 2.5

as.factor(site)5 2.8 2.9

setting 1.6 1.5

n = 240, k = 8

residual sd = 9.7, R-Squared = 0.49

The estimated effect of watching Sesame Street on the induced watchers is about 14
points on the letter recognition test. Again, we do not trust this standard error and
will discuss later how to appropriately adjust it for the two stages of estimation.

Since the randomization took place within each combination of site (five cat-
egories) and setting (two categories), it would be appropriate to interact these
variables in our equations. Moreover, it would probably be interesting to estimate
variation of effects across sites and settings. However, for simplicity of illustration
(and also due to the complication that one site × setting combination has no obser-
vations) we only include main effects for this discussion. We return to this example
using multilevel models in Chapter 23. It turns out that the estimated average treat-
ment effect changes only slightly (from 14.0 to 14.1) with the model that includes
site × setting interactions.

Standard errors for instrumental variables estimates

The second step of two-stage regression yields the instrumental variables estimate,
but the standard-error calculation is complicated because we cannot simply look at
the second regression in isolation. We show here how to adjust the standard error
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to account for the uncertainty in both stages of the model. We illustrate with the
model we have just fitted.

The regression of compliance on treatment and other covariates (model fit.3a)
is unchanged. We then regress the outcome on predicted compliance and covariance,
this time saving the predictor matrix, X , from this second-stage regression (which
we do using the x=TRUE option in the lm call):

R codefit.3b <- lm (y ~ watched.hat+pretest+as.factor(site)+setting, x=TRUE)

We next compute the standard deviation of the adjusted residuals, radj
i

= yi−Xadj
i

β̂,
where Xadj is the predictor matrix from fit.3b but with the column of predicted
treatment values replaced by observed treatment values:

R codeX.adj <- fit.2$x

X.adj[,"watched.hat"] <- watched

residual.sd.adj <- sd (y - X.adj %*% coef(fit.3b))

Finally, we compute the adjusted standard error for the two-stage regression esti-
mate by taking the standard error from fit.3b and scaling by the adjusted residual
standard deviation, divided by the residual standard deviation from fit.3b itself:

R codese.adj <-se.coef(fit.3b)["watched.hat"]*residual.sd.adj/sigma.hat(fit.3b)

So the adjusted standard errors are calculated as the square roots of the diag-
onal elements of (XtX)−1σ̂2

TSLS rather than (XtX)−1σ̂2, where σ̂ is the residual
standard deviation from fit.3b and σ̂TSLS is calculated using the residuals from
an equation predicting the outcome from watched (not watched.hat) using the
two-stage least squares estimate of the coefficient, not the coefficient that would
have been obtained in a least squares regression of the outcome on watched).

The resulting standard-error estimate for our example is 3.9, which is actually
a bit smaller than the unadjusted estimate (which is not unusual for these correc-
tions).

Performing two-stage least squares automatically using the tsls function

We have illustrated the key concepts in our instrumental variables discussion using
basic R commands with which you were already familiar so that the steps were
transparent. There does exist, however, a package available in R called sem that has
a function, tsls(), that automates this process, including calculating appropriate
standard errors.

To calculate the effect of regularly watching Sesame Street on post-treatment
letter recognition scores using encouragement as an instrument, we specify both
equations:

R codeiv1 <- tsls (postlet ~ regular, ~ encour, data=sesame)

display (iv1)

where in the second equation it is assumed that the “treatment” (in econometric
parlance, the endogenous variable) for which encour is an instrument is whatever
predictor from the first equation that is not specified as a predictor in the second.
Fitting and displaying the two-stage least squares model yields

R outputEstimate Std. Error

(Intercept) 20.6 3.7

watched 7.9 4.6

To incorporate other pre-treatment variables as controls, we must include them in
both equations; for example,



224 CAUSAL INFERENCE USING MORE ADVANCED MODELS

R code iv2 <- tsls (postlet ~ watched + prelet + as.factor(site) + setting,

~ encour + prelet + as.factor(site) + setting, data=sesame)

display(iv2)

yielding

R output Estimate Std. Error

(Intercept) 1.2 4.6

watched 14.0 3.9

prelet 0.7 0.1

as.factor(site)2 8.4 1.8

as.factor(site)3 -3.9 1.7

as.factor(site)4 0.9 2.4

as.factor(site)5 2.8 2.8

setting 1.6 1.4

The point estimate of the treatment calculated this way is the same as with the
preceding step-by-step procedure, but now we automatically get correct standard
errors.

More than one treatment variable; more than one instrument

In the experiment discussed in Section 10.3, the children randomly assigned to
the intervention group received several services (“treatments”) that the children in
the control group did not receive, most notably, access to high-quality child care
and home visits from trained professionals. Children assigned to the intervention
group did not make full use of these services. Simply conceptualized, some children
participated in the child care while some did not, and some children received home
visits while others did not. Can we use the randomization to treatment or control
groups as an instrument for these two treatments? The answer is no.

Similar arguments as those used in Section 10.6 can be given to demonstrate that
a single instrument cannot be used to identify more than one treatment variable.
In fact, as a general rule, we need to use at least as many instruments as treatment
variables in order for all the causal estimates to be identifiable.

Continuous treatment variables or instruments

When using two-stage least squares, the models we have discussed can easily be ex-
tended to accommodate continuous treatment variables and instruments, although
at the cost of complicating the interpretation of the causal effects.

Researchers must be careful, however, in the context of binary instruments and
continuous treatment variables. A binary instrument cannot in general identify a
continuous treatment or “dosage” effect (without further assumptions). If we map
this back to a randomized experiment, the randomization assigns someone only
to be encouraged or not. This encouragement may lead to different dosage levels,
but for those in the intervention group these levels will be chosen by the subject
(or subject’s parents in this case). In essence this is equivalent to a setting with
many different treatments (one at each dosage level) but only one instrument—
therefore causal effects for all these treatments are not identifiable (without further
assumptions). To identify such dosage effects, one would need to randomly assign
encouragement levels that lead to the different dosages or levels of participation.
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Have we really avoided the ignorability assumption? Natural experiments and
instrumental variables

We have motivated instrumental variables using the cleanest setting, within a con-
trolled, randomized experiment. The drawback of illustrating instrumental variables
using this example is that it de-emphasizes one of the most important assumptions
of the instrumental variables model, ignorability of the instrument. In the context
of a randomized experiment, this assumption should be trivially satisfied (assum-
ing the randomization was pristine). However, in practice an instrumental variables
strategy potentially is more useful in the context of a natural experiment, that is, an
observational study context in which a “randomized” variable (instrument) appears
to have occurred naturally. Examples of this include:

• The draft lottery in the Vietnam War as an instrument for estimating the effect
of military service on civilian health and earnings,

• The weather in New York as an instrument for estimating the effect of supply of
fish on their price,

• The sex of a second child (in an analysis of people who have at least two children)
as an instrument when estimating the effect of number of children on labor
supply.

In these examples we have simply traded one ignorability assumption (ignorability
of the treatment variable) for another (ignorability of the instrument) that we
believe to be more plausible. Additionally, we must assume monotonicity and the
exclusion restriction.

Assessing the plausibility of the instrumental variables assumptions

How can we assess the plausibility of the assumptions required for causal inference
from instrumental variables? As a first step, the “first stage” model (the model that
predicts the treatment using the instrument) should be examined closely to ensure
both that the instrument is strong enough and that the sign of the coefficient makes
sense. This is the only assumption that can be directly tested. If the association
between the instrument and the treatment is weak, instrumental variables can yield
incorrect estimates of the treatment effect even if all the other assumptions are
satisfied. If the association is not in the expected direction, then closer examination
is required because this might be the result of a mixture of two different mechanisms,
the expected process and one operating in the opposite direction, which could in
turn imply a violation of the monotonicity assumption.

Another consequence of a weak instrument is that it exacerbates the bias that
can result from failure to satisfy the monotonicity and exclusion restrictions. For
instance, for a binary treatment and instrument, when the exclusion restriction is
not satisfied, our estimates will be off by a quantity that is equal to the effect of
encouragement on the outcomes of noncompliers (in our example, never-watchers
and always-watchers) multiplied by the ratio of noncompliers to compliers (in our
example, induced watchers). The bias when monotonicity is not satisfied is slightly
more complicated but also increases as the percentage of compliers decreases.

The two primary assumptions of instrumental variables (ignorability, exclusion)
are not directly verifiable, but in some examples we can work to make them more
plausible. For instance, if unconditional ignorability of the instrument is being as-
sumed, yet there are differences in important pre-treatment characteristics across
groups defined by the instrument, then these characteristics should be included in
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the model. This will not ensure that ignorability is satisfied, but it removes the
observed problem with the ignorability assumption.

Example: Vietnam War draft lottery study. One strategy to assess the plausibility
of the exclusion restriction is to calculate an estimate within a sample that would
not be expected to be affected by the instrument. For instance, researchers esti-
mated the effect of military service on earnings (and other outcomes) using, as an
instrument, the draft lottery number for young men eligible for the draft during
the Vietnam War. This number was assigned randomly and strongly affected the
probability of military service. It was hoped that the lottery number would only
have an effect on earnings for those who served in the military only because they
were drafted (as determined by a low enough lottery number). Satisfaction of the
exclusion restriction is not certain, however, because, for instance, men with low
lottery numbers may have altered their educational plans so as to avoid or postpone
military service. So the researchers also ran their instrumental variables model for
a sample of men who were assigned numbers so late that the war ended before they
ever had to serve. This showed no significant relation between lottery number and
earnings, which provides some support for the exclusion restriction.

Structural equation models

A goal in many areas of social science is to infer causal relations among many vari-
ables, a generally difficult problem (as discussed in Section 9.8). Structural equation
modeling is a family of methods of multivariate data analysis that are sometimes
used for causal inference.6 In that setting, structural equation modeling relies on
conditional independence assumptions in order to identify causal effects, and the
resulting inferences can be sensitive to strong parametric assumptions (for instance,
linear relationships and multivariate normal errors). Instrumental variables can be
considered to be a special case of a structural equation model. As we have just
discussed, even in a relatively simple instrumental variables model, the assump-
tions needed to identify causal effects are difficult to satisfy and largely untestable.
A structural equation model that tries to estimate many causal effects at once
multiplies the number of assumptions required with each desired effect so that it
quickly becomes difficult to justify all of them. Therefore we do not discuss the
use of structural equation models for causal inference in any greater detail here.
We certainly have no objection to complicated models, as will become clear in the
rest of this book; however, we are cautious about attempting to estimate complex
causal structures from observational data.

10.7 Identification strategies that make use of variation within or

between groups

Comparisons within groups—so-called fixed effects models

What happens when you want to make a causal inference but no valid instrument
exists and ignorability does not seem plausible? Do alternative strategies exist?
Sometimes repeated observations within groups or within individuals over time can
provide a means for controlling for unobserved characteristics of these groups or
individuals. If comparisons are made across the observations within a group or

6 Structural equation modeling is also used to estimate latent factors in noncausal regression
settings with many inputs, and sometimes many outcome variables, which can be better un-
derstood by reducing to a smaller number of linear combinations.
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persons, implicitly such comparisons “hold constant” all characteristics intrinsic to
the group or individual that do not vary across observations (across members of
the group or across measures over time for the same person).

For example, suppose you want to examine the effect of low birth weight on chil-
dren’s mortality and other health outcomes. One difficulty in establishing a causal
effect here is that children with low birth weight are also typically disadvantaged in
genetic endowments and socioeconomic characteristics of the family, some of which
may not be easy or possible to measure. Rather than trying to directly control for all
of these characteristics, however, one could implicitly control for them by comparing
outcomes across twins. Twins share many of the same genetic endowments (all if
identical) and, in most cases, live in exactly the same household. However, there are
physiological reasons (based, for instance, on position in the uterus) why one child
in the pair may be born with a markedly different birth weight than the sibling.
So we may be able to consider birth weight to be randomly assigned (ignorable)
within twin pairs. Theoretically, if there is enough variation in birth weight, within
sets of twins, we can estimate the effect of birth weight on subsequent outcomes.
In essence each twin acts as a counterfactual for his or her sibling.

A regression model that is sometimes used to approximate this conceptual com-
parison simply adds an indicator variable for each of the groups to the standard
regression model that might otherwise have been fit. So, for instance, in our twins
example one might regress outcomes on birth weight (the “treatment” variable)
and one indicator variable for each pair of twins (keeping one pair as a baseline
category to avoid collinearity). More generally, we could control for the groups us-
ing a multilevel model, as we discuss in Part 2. In any case, the researcher might
want to control for other covariates to improve the plausibility of the ignorability
assumption (to control for the fact that the treatment may not be strictly randomly
assigned even within each group—here, the pair of twins). In this particular exam-
ple, however, it is difficult to find child-specific predictors that vary across children
within a pair but can still be considered “pre-treatment.”

In examples where the treatment is dichotomous, a substantial portion of the data
may not exhibit any variation at all in “treatment assignment” within groups. For
instance, if this strategy is used to estimate the effect of maternal employment on
child outcomes by including indicators for each family (set of siblings) in the dataset,
then in some families the mother may not have varied her employment status across
children. Therefore, no inferences about the effect of maternal employment status
can be made for these families. We can only estimate effects for the type of family
where the mother varied her employment choice across the children (for example,
working after her first child was born but staying home from work after the second).

Conditioning on post-treatment outcomes. Still more care must be taken when
considering variation over time. Consider examining the effect of marriage on men’s
earnings by looking at data that follows men over time and tracks marital status,
earnings, and predictors of each (confounding covariates such as race, education,
and occupation). Problems can easily arise in a model that includes an indicator
for each person and also controls for covariates at each time point (to help satisfy
ignorability). In this case the analysis would be implicitly conditioning on post-
treatment variables, which, as we know from Section 9.8, can lead to bias.

Better suited for a multilevel model framework? This model with indicators for
each group is often (particularly in the economics literature) called a “fixed effects”
model. We dislike this terminology because it is interpreted differently in different
settings, as discussed in Section 11.4. Further, this model is hierarchically struc-
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tured, so from our perspective it is best analyzed using a multilevel model. This is
not completely straightforward, however, because one of the key assumptions of a
simple multilevel model is that the individual-level effects are independent of the
other predictors in the model—a condition that is particularly problematic in this
setting where we are expecting that unobserved characteristics of the individuals
may be associated with observed characteristics of the individuals. In Chapter 23
we discuss how to appropriately extend this model to the multilevel framework
while relaxing this assumption.

Comparisons within and between groups: difference-in-differences estimation

Almost all causal strategies make use of comparisons across groups: one or more that
were exposed to a treatment, and one or more that were not. Difference-in-difference
strategies additionally make use of another source of variation in outcomes, typically
time, to help control for potential (observed and unobserved) differences across these
groups. For example, consider estimating the effect of a newly introduced school
busing program on housing prices in a school district where some neighborhoods
were affected by the program and others were not. A simple comparison of housing
prices across affected and unaffected areas sometime after the busing program went
into effect might not be appropriate because these neighborhoods might be different
in other ways that might be related to housing prices. A simple before-after com-
parison of housing prices may also be inappropriate if other changes that occurred
during this time period (for example, a recession) might also be influencing housing
prices. A difference-in-differences approach would instead calculate the difference in
the before-after change in housing prices in exposed and unexposed neighborhoods.
An important advantage of this strategy is that the units of observation (in this
case, houses) need not be the same across the two time periods.

The assumption needed with this strategy is a weaker than the (unconditional)
ignorability assumption because rather than assuming that potential outcomes are
the same across treatment groups, one only has to assume that the potential gains in
potential outcomes over time are the same across groups (for example, exposed and
unexposed neighborhoods). Therefore we need only believe that the difference in
housing prices over time would be the same across the two types of neighborhoods,
not that the average post-program potential housing prices if exposed or unexposed
would be the same.

Panel data. A special case of difference-in-differences estimation occurs when the
same set of units are observed at both time points. This is also a special case of the
so-called fixed effects model that includes indicators for treatment groups and for
time periods. A simple way to fit this model is with a regression of the outcome on
an indicator for the groups, an indicator for the time period, and the interaction
between the two. The coefficient on the interaction is the estimated treatment effect.

In this setting, however, the advantages of the difference-in-differences strategy
are less apparent because an alternative model would be to include an indicator
for treatment exposure but then simply regress on the pre-treatment version of
the outcome variable. In this framework it is unclear if the assumption of ran-
domly assigned changes in potential outcome is truly weaker than the assumption
of randomly assigned potential outcomes for those with the same value of the pre-
treatment variable.7

7 Strictly speaking, we need not assume actual random manipulation of treatment assignment
for either assumption to hold, only results that would be consistent with such manipulation.



BIBLIOGRAPHIC NOTE 229

Do not condition on post-treatment outcomes. Once again, to make the (new) ig-
norability assumption more plausible it may be desirable to condition on additional
predictor variables. For models where the variation takes place over time—for in-
stance, the differences-in-differences estimate that includes both pre-treatment and
post-treatment observations on the same units—a standard approach is to include
changes in characteristics for each observation over time. Implicitly, however, this
conditions on post-treatment variables. If these predictors can be reasonably as-
sumed to be unchanged by the treatment, then this is reasonable. However, as
discussed in Section 9.8, it is otherwise inappropriate to control for post-treatment
variables. A better strategy would be to control for pre-treatment variables only.

10.8 Bibliographic note

We have more references here than for any of the other chapters in this book because
causal inference is a particularly contentious and active research area, with meth-
ods and applications being pursued in many fields, including statistics, economics,
public policy, and medicine.

Imbalance and lack of complete overlap have been discussed in many places;
see, for example, Cochran and Rubin (1973), and King and Zeng (2006). The in-
tervention for low-birth-weight children is described by Brooks-Gunn, Liaw, and
Klebanov (1992) and Hill, Brooks-Gunn, and Waldfogel (2003). Imbalance plots
such as Figure 10.3 are commonly used; see Hansen (2004), for example.

Subclassification and its connection to regression are discussed by Cochran (1968).
Imbens and Angrist (1994) introduce the local average treatment effect. Cochran
and Rubin (1973), Rubin (1973), Rubin (1979), Rubin and Thomas (2000), and Ru-
bin (2006) discuss the use of matching, followed by regression, for causal inference.
Dehejia (2003) discusses an example of the interpretation of a treatment effect with
interactions.

Propensity scores were introduced by Rosenbaum and Rubin (1983a, 1984, 1985).
A discussion of common current usage is provided by D’Agostino (1998). Examples
across several fields include Lavori, Keller, and Endicott (1995), Lechner (1999),
Hill, Waldfogel, and Brooks-Gunn (2002), Vikram et al. (2003), and O’Keefe (2004).
Rosenbaum (1989) and Hansen (2004) discuss full matching. Diamond and Sekhon
(2005) present a genetic matching algorithm. Drake (1993) discusses robustness of
treatment effect estimates to misspecification of the propensity score model. Joffe
and Rosenbaum (1999), Imbens (2000), and Imai and van Dyk (2004) generalize
the propensity score beyond binary treatments. Rubin and Stuart (2005) extend
to matching with multiple control groups. Imbens (2004) provides a recent review
of methods for estimating causal effects assuming ignorability using matching and
other approaches.

Use of propensity scores as weights is discussed by Rosenbaum (1987), Ichimura
and Linton (2001), Hirano, Imbens, and Ridder (2003), and Frolich (2004) among
others. This work has been extended to a “doubly-robust” framework by Robins
and Rotnitzky (1995), Robins, Rotnitzsky, and Zhao (1995), and Robins and Ritov
(1997).

As far as we are aware, LaLonde (1986) was the first use of so-called con-
structed observational studies as a testing ground for nonexperimental methods.
Other examples include Friedlander and Robins (1995), Heckman, Ichimura, and
Todd (1997), Dehejia and Wahba (1999), Michalopoulos, Bloom, and Hill (2004),
and Agodini and Dynarski (2004). Dehejia (2005a, b), in response to Smith and
Todd (2005), provides useful guidance regarding appropriate uses of propensity
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scores (the need to think hard about ignorability and to specify propensity score
models that are specific to any given dataset). The constructed observational anal-
ysis presented in this chapter is based on a more complete analysis presented in
Hill, Reiter, and Zanutto (2004).

Interval estimation for treatment effect estimates obtained via propensity score
matching is discussed in Hill and Reiter (2006). Du (1998) and Tu and Zhou (2003)
discuss intervals for estimates obtained via propensity score subclassification. Hill
and McCulloch (2006) present a Bayesian nonparametric method for matching.

Several packages exist that automate different combinations of the propensity
score steps described here and are available as supplements to R and other sta-
tistical software. We mention some of these here without intending to provide a
comprehensive list. There is a program available for R called MatchIt that is avail-
able at gking.harvard.edu/matchit/ that implements several different matching
methods including full matching (using software called OptMatch; Hansen, 2006).
Three packages available for Stata are psmatch2, pscore, and nnmatch; any of
these can be installed easily using the “net search” (or comparable) feature in
Stata. Additionally, nnmatch produces valid standard errors for matching. Code is
also available in SAS for propensity score matching or subclassification; see, for
example, www.rx.uga.edu/main/home/cas/faculty/propensity.pdf.

Regression discontinuity analysis is described by Thistlethwaite and Campbell
(1960). Recent work in econometrics includes Hahn, Todd, and van der Klaauw
(2001) and Linden (2006). The political ideology example in Section 10.4 is de-
rived from Poole and Rosenthal (1997) and Gelman and Katz (2005); see also Lee,
Moretti, and Butler (2004) for related work. The example regarding children’s pro-
motion in school was drawn from work by Jacob and Lefgren (2004).

Instrumental variables formulations date back to work in the economics literature
by Tinbergen (1930) and Haavelmo (1943). Angrist and Krueger (2001) present an
upbeat applied review of instrumental variables. Imbens (2004) provides a review
of statistical methods for causal inference that is a little less enthusiastic about
instrumental variables. Woolridge (2001, chapter 5) provides a crisp overview of
instrumental variables from a classical econometric perspective; Lancaster (2004,
chapter 8) uses a Bayesian framework. The “always-watcher,” “induced watcher,”
and “never-watcher” categorizations here are alterations of the “never-taker,” “com-
plier,” and “always-taker” terminology first used by Angrist, Imbens, and Rubin
(1996), who reframe the classic econometric presentation of instrumental variables
in statistical language and clarify the assumptions and the implications when the
assumptions are not satisfied. For a discussion of all of the methods discussed in
this chapter from an econometric standpoint, see Angrist and Krueger (1999).

The Vietnam draft lottery example comes from several papers including Angrist
(1990). The weather and fish price example comes from Angrist, Graddy, and Im-
bens (2000). The sex of child example comes from Angrist and Evans (1998).

For models that link instrumental variables with the potential-outcomes frame-
work described in Chapter 9, see Angrist, Imbens, and Rubin (1996). Glickman
and Normand (2000) derive an instrumental variables estimate using a latent-data
model; see also Carroll et al. (2004).

Imbens and Rubin (1997) discuss a Bayesian approach to instrumental variables
in the context of a randomized experiment with noncompliance. Hirano et al. (2000)
extend this framework to include covariates. Barnard et al. (2003) describe further
extensions that additionally accommodate missing outcome and covariate data.
For discussions of prior distributions for instrumental variables models, see Dreze
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(1976), Maddala (1976), Kleibergen and Zivot (2003), and Hoogerheide, Kleibergen
and van Dijk (2006).

For a discussion of use of instrumental variables models to estimate bounds for
the average treatment effect (as opposed to the local average treatment effect), see
Robins (1989), Manski (1990), and Balke and Pearl (1997). Robins (1994) discusses
estimation issues.

For more on the Sesame Street encouragement study, see Bogatz and Ball (1971)
and Murphy (1991).

Wainer, Palmer, and Bradlow (1998) provide a friendly introduction to selection
bias. Heckman (1979) and Diggle and Kenward (1994) are influential works on
selection models in econometrics and biostatistics, respectively. Rosenbaum and
Rubin (1983b), Rosenbaum (2002a), and Greenland (2005) consider sensitivity of
inferences to ignorability assumptions.

Sobel (1990, 1998) discusses the assumptions needed for structural equation mod-
eling more generally.

Ashenfelter, Zimmerman, and Levine (2003) discuss “fixed effects” and difference-
in-differences methods for causal inference. The twins and birth weight example was
based on a paper by Almond, Chay, and Lee (2005). Another interesting twins ex-
ample examining the returns from education on earnings can be found in Ashenfelter
and Krueger (1994). Aaronson (1998) and Chay and Greenstone (2003) provide fur-
ther examples of the application of these approaches. The busing and housing prices
example is from Bogart and Cromwell (2000). Card and Krueger (1994) discuss a
classic example of a difference-in-differences model that uses panel data.

10.9 Exercises

1. Constructed observational studies: the folder lalonde contains data from an
observational study constructed by LaLonde (1986) based on a randomized ex-
periment that evaluated the effect on earnings of a job training program called
National Supported Work. The constructed observational study was formed by
replacing the randomized control group with a comparison group formed using
data from two national public-use surveys: the Current Population Survey (CPS)
and the Panel Study in Income Dynamics.

Dehejia and Wahba (1999) used a subsample of these data to evaluate the po-
tential efficacy of propensity score matching. The subsample they chose removes
men for whom only one pre-treatment measure of earnings is observed. (There is
substantial evidence in the economics literature that controlling for earnings from
only one pre-treatment period is insufficient to satisfy ignorability.) This exercise
replicates some of Dehejia and Wahba’s findings based on the CPS comparison
group.

(a) Estimate the treatment effect from the experimental data in two ways: (i)
a simple difference in means between treated and control units, and (ii) a
regression-adjusted estimate (that is, a regression of outcomes on the treat-
ment indicator as well as predictors corresponding to the pre-treatment char-
acteristics measured in the study).

(b) Now use a regression analysis to estimate the causal effect from Dehejia and
Wahba’s subset of the constructed observational study. Examine the sensitiv-
ity of the model to model specification (for instance, by excluding the em-
ployed indicator variables or by including interactions). How close are these
estimates to the experimental benchmark?



232 CAUSAL INFERENCE USING MORE ADVANCED MODELS

50 60 70 80 90

15
25

35

Patient age

H
os

pi
ta

l s
ta

y 
(d

ay
s)

Figure 10.10 Hypothetical data of length of hospital stay and age of patients, with separate
points and regression lines plotted for each treatment condition: the new procedure in gray
and the old procedure in black.

(c) Now estimate the causal effect from the Dehejia and Wahba subset using
propensity score matching. Do this by first trying several different specifica-
tions for the propensity score model and choosing the one that you judge to
yield the best balance on the most important covariates.

Perform this propensity score modeling without looking at the estimated treat-
ment effect that would arise from each of the resulting matching procedures.

For the matched dataset you construct using your preferred model, report
the estimated treatment effects using the difference-in-means and regression-
adjusted methods described in part (a) of this exercise. How close are these
estimates to the experimental benchmark (about $1800)?

(d) Assuming that the estimates from (b) and (c) can be interpreted causally,
what causal effect does each estimate? (Hint: what populations are we making
inferences about for each of these estimates?)

(e) Redo both the regression and the matching exercises, excluding the variable
for earnings in 1974 (two time periods before the start of this study). How im-
portant does the earnings-in-1974 variable appear to be in terms of satisfying
the ignorability assumption?

2. Regression discontinuity analysis: suppose you are trying to evaluate the effect
of a new procedure for coronary bypass surgery that is supposed to help with the
postoperative healing process. The new procedure is risky, however, and is rarely
performed in patients who are over 80 years old. Data from this (hypothetical)
example are displayed in Figure 10.10.

(a) Does this seem like an appropriate setting in which to implement a regression
discontinuity analysis?

(b) The folder bypass contains data for this example: stay is the length of hospital
stay after surgery, age is the age of the patient, and new is the indicator
variable indicating that the new surgical procedure was used. Preoperative
disease severity (severity) was unobserved by the researchers, but we have
access to it for illustrative purposes. Can you find any evidence using these
data that the regression discontinuity design is inappropriate?

(c) Estimate the treatment effect using a regression discontinuity estimate (ig-
noring) severity. Estimate the treatment effect in any way you like, taking
advantage of the information in severity. Explain the discrepancy between
these estimates.
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3. Instrumental variables: come up with a hypothetical example in which it would
be appropriate to estimate treatment effects using an instrumental variables
strategy. For simplicity, stick to an example with a binary instrument and binary
treatment variable.

(a) Simulate data for this imaginary example if all the assumptions are met. Esti-
mate the local average treatment effect for the data by dividing the intent-to-
treat effect by the percentage of compliers. Show that two-stage least squares
yields the same point estimate.

(b) Now simulate data in which the exclusion restriction is not met (so, for in-
stance, those whose treatment level is left unaffected by the instrument have
a treatment effect of half the magnitude of the compliers) but the instrument
is strong (say, 80% of the population are compliers), and see how far off your
estimate is.

(c) Finally, simulate data in which the exclusion restriction is violated in the
same way, but where the instrument is weak (only 20% of the population are
compliers), and see how far off your estimate is.

4. In Exercise 9.13, you estimated the effect of incumbency on votes for Congress.
Now consider an additional variable: money raised by the congressional candi-
dates. Assume this variable has been coded in some reasonable way to be positive
in districts where the Democrat has raised more money and negative in districts
where the Republican has raised more.

(a) Explain why it is inappropriate to include money as an additional input vari-
able to “improve” the estimate of incumbency advantage in the regression in
Exercise 9.13.

(b) Suppose you are interested in estimating the effect of money on the election
outcome. Set this up as a causal inference problem (that is, define the treat-
ments and potential outcomes).

(c) Explain why it is inappropriate to simply estimate the effect of money using
instrumental variables, with incumbency as the instrument. Which of the
instrumental variables assumptions would be reasonable in this example and
which would be implausible?

(d) How could you estimate the effect of money on congressional election out-
comes?

See Campbell (2002) and Gerber (2004) for more on this topic.




