Regression Introduction and Estimation Review

Dr. Frank Wood
Quick Example - Scatter Plot

Use `linear_regression/demo.m`
Linear Regression

- Want to find parameters for a function of the form

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

- Distribution of error random variable not specified
Quick Example - Scatter Plot
Formal Statement of Model

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

- \(Y_i \) value of the response variable in the \(i^{th} \) trial
- \(\beta_0 \) and \(\beta_1 \) are parameters
- \(X_i \) is a known constant, the value of the predictor variable in the \(i^{th} \) trial
- \(\epsilon_i \) is a random error term with mean \(\mathbb{E}(\epsilon_i) \) and variance \(\text{Var}(\epsilon_i) = \sigma^2 \)
- \(i = 1, \ldots, n \)
Properties

- The response Y_i is the sum of two components
 - Constant term $\beta_0 + \beta_1 X_i$
 - Random term ϵ_i
- The expected response is

\[
E(Y_i) = E(\beta_0 + \beta_1 X_i + \epsilon_i) \\
= \beta_0 + \beta_1 X_i + E(\epsilon_i) \\
= \beta_0 + \beta_1 X_i
\]
Expectation Review

- Definition

\[E(X) = E(X) = \int XP(X) \, dX, \; X \in \mathcal{R} \]

- Linearity property

\[
E(aX) = aE(X) \\
E(aX + bY) = aE(X) + bE(Y)
\]

- Obvious from definition
Example Expectation Derivation

\(P(X) = 2X, 0 \leq X \leq 1 \)

Expectation

\[
\mathbb{E}(X) = \int_0^1 X P(X) dX \\
= \int_0^1 2X^3 dX \\
= \left. \frac{2X^2}{3} \right|_0^1 \\
= \frac{2}{3}
\]
Expectation of a Product of Random Variables

If X,Y are random variables with joint distribution $P(X, Y)$ then the expectation of the product is given by

$$
E(XY) = \int_{XY} XYP(X, Y)dXdY.
$$
Expectation of a product of random variables

What if X and Y are independent? If X and Y are independent with density functions f and g respectively then

$$
\mathbb{E}(XY) = \int_{XY} XYf(X)g(Y)dXdY
$$

$$
= \int_{X} \int_{Y} XYf(X)g(Y)dXdY
$$

$$
= \int_{X} Xf(X)[\int_{Y} Yg(Y)dY]dX
$$

$$
= \int_{X} Xf(X)\mathbb{E}(Y)dX
$$

$$
= \mathbb{E}(X)\mathbb{E}(Y)
$$
Regression Function

- The response Y_i comes from a probability distribution with mean

\[\mathbb{E}(Y_i) = \beta_0 + \beta_1 X_i \]

- This means the regression function is

\[\mathbb{E}(Y) = \beta_0 + \beta_1 X \]

Since the regression function relates the means of the probability distributions of Y for a given X to the level of X
Error Terms

- The response Y_i in the i^{th} trial exceeds or falls short of the value of the regression function by the error term amount ϵ_i.
- The error terms ϵ_i are assumed to have constant variance σ^2.
Response Variance

Responses Y_i have the same constant variance

$$\text{Var}(Y_i) = \text{Var}(\beta_0 + \beta_1 X_i + \epsilon_i)$$
$$= \text{Var}(\epsilon_i)$$
$$= \sigma^2$$
Variance (2^{nd} central moment) Review

- Continuous distribution

\[\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \int (X - \mathbb{E}(X))^2 P(X) dX, \ X \in \mathcal{R} \]

- Discrete distribution

\[\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \sum_i (X_i - \mathbb{E}(X))^2 P(X_i), \ X \in \mathcal{Z} \]
Alternative Form for Variance

\[\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) \]
\[= \mathbb{E}((X^2 - 2X \mathbb{E}(X) + \mathbb{E}(X)^2)) \]
\[= \mathbb{E}(X^2) - 2 \mathbb{E}(X) \mathbb{E}(X) + \mathbb{E}(X)^2 \]
\[= \mathbb{E}(X^2) - 2 \mathbb{E}(X)^2 + \mathbb{E}(X)^2 \]
\[= \mathbb{E}(X^2) - \mathbb{E}(X)^2. \]
Example Variance Derivation

\[P(X) = 2X, \, 0 \leq X \leq 1 \]

\[
\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2
\]

\[
= \int_{0}^{1} 2XX^2 \, dX - \left(\frac{2}{3} \right)^2
\]

\[
= \left. \frac{2X^4}{4} \right|_0^1 - \frac{4}{9}
\]

\[
= \frac{1}{2} - \frac{4}{9} = \frac{1}{18}
\]
Variance Properties

\[
\text{Var}(aX) = a^2 \text{Var}(X)
\]
\[
\text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) \text{ if } X \perp Y
\]
\[
\text{Var}(a + cX) = c^2 \text{Var}(X) \text{ if } a, c \text{ both constant}
\]

More generally

\[
\text{Var}\left(\sum a_i X_i\right) = \sum \sum a_i a_j \text{Cov}(X_i, X_j)
\]
Covariance

- The covariance between two real-valued random variables X and Y, with expected values $E(X) = \mu$ and $E(Y) = \nu$ is defined as

\[
\text{Cov}(X, Y) = E((X - \mu)(Y - \nu))
\]

- Which can be rewritten as

\[
\begin{align*}
\text{Cov}(X, Y) &= E(XY - \nu X - \mu Y + \mu \nu), \\
\text{Cov}(X, Y) &= E(XY) - \nu E(X) - \mu E(Y) + \mu \nu, \\
\text{Cov}(X, Y) &= E(XY) - \mu \nu.
\end{align*}
\]
Covariance of Independent Variables

If X and Y are independent, then their covariance is zero. This follows because under independence

$$E(XY) = E(X)E(Y) = \mu\nu.$$

and then

$$\text{Cov}(XY) = \mu\nu - \mu\nu = 0.$$
Least Squares Linear Regression

- Seek to minimize

\[Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2 \]

- By careful choice of \(b_0 \) and \(b_1 \) where \(b_0 \) is a point estimator for \(\beta_0 \) and \(b_1 \) is the same for \(\beta_1 \)

How?
Guess #1

![Graph showing data points and trend lines with regression equation and MSE values. The graph compares the guess equation $y = 0x + 21.2$, MSE: 37.1, and the true equation $y = 2x + 9$, MSE: 4.22.]
Guess #2
Function maximization

- Important technique to remember!
 - Take derivative
 - Set result equal to zero and solve
 - Test second derivative at that point

- Question: does this always give you the maximum?
- Going further: multiple variables, convex optimization
Function Maximization

Find

$$\arg\max_x -x^2 + \ln(x)$$
Least Squares Max(min)imization

- Function to minimize w.r.t. b_0 and b_1, b_0 and b_1 are called point estimators of β_0 and β_1 respectively

$$Q = \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

- Minimize this by maximizing $-Q$
- Either way, find partials and set both equal to zero

$$\frac{dQ}{db_0} = 0$$
$$\frac{dQ}{db_1} = 0$$
Normal Equations

- The result of this maximization step are called the normal equations.

\[
\sum Y_i = nb_0 + b_1 \sum X_i \\
\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2
\]

- This is a system of two equations and two unknowns. The solution is given by...
Solution to Normal Equations

After a lot of algebra one arrives at

\[
\begin{align*}
b_1 &= \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \\
b_0 &= \bar{Y} - b_1 \bar{X} \\
\bar{X} &= \frac{\sum X_i}{n} \\
\bar{Y} &= \frac{\sum Y_i}{n}
\end{align*}
\]