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Goal

• Learn parameters for probability distribution models of 
high dimensional data
– (Images, Population Firing Rates, Securities Data, NLP data, etc)

Product of Experts

Use Contrastive Divergence to learn 
parameters.

Mixture Model

Use EM to learn parameters
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Take Home

• Contrastive divergence is a general MCMC 
gradient ascent learning algorithm particularly 
well suited to learning Product of Experts (PoE) 
and energy- based (Gibbs distributions, etc.) 
model parameters.

• The general algorithm:
– Repeat Until “Convergence”

• Draw samples from the current model starting from the training 
data.

• Compute the expected gradient of the log probability w.r.t. all 
model parameters over both samples and the training data.

• Update the model parameters according to the gradient.



Frank Wood - fwood@cs.brown.edu

Sampling – Critical to Understanding

• Uniform
– rand()      Linear Congruential Generator

• x(n) = a * x(n-1) + b mod M     
0.2311    0.6068    0.4860    0.8913    0.7621    0.4565    0.0185

• Normal
– randn() Box-Mueller 

• x1,x2 ~ U(0,1) -> y1,y2 ~N(0,1)
– y1 = sqrt( - 2 ln(x1) ) cos( 2 pi x2 ) 
– y2 = sqrt( - 2 ln(x1) ) sin( 2 pi x2 ) 

• Binomial(p)
– if(rand()<p)

• More Complicated Distributions
– Mixture Model

• Sample from a Gaussian
• Sample from a multinomial (CDF + uniform)

– Product of Experts
• Metropolis and/or Gibbs
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The Flavor of Metropolis Sampling

• Given some distribution            , a random 
starting point     , and a symmetric proposal 
distribution              .

• Calculate the ratio of densities

where     is sampled from the proposal 
distribution.

• With probability            accept    .

• Given sufficiently many iterations
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Contrastive Divergence (Final Result!)

10

loglog

θ

θθ
θ

θθ

PmPm

m
mm

ff

∂

∂
−

∂

∂
∝∆

∑∑
∂

∂
−

∂

∂
∝∆

∈ 1~D

)(log1)(log1

θ
θθ

θ
θθ

Pc md m

m

cf

N

df

N

mm

Law of Large Numbers, compute 

expectations using samples.

Law of Large Numbers, compute 

expectations using samples.

Now you know how to do it, let’s see why this works!

Model 

parameters.

Model 

parameters.

Training data 

(empirical distribution).

Training data 

(empirical distribution).

Samples from 

model.

Samples from 

model.
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But First:  The last vestige of concreteness.

• Looking towards the future:
– Take f to be a Student-t.

– Then (for instance)
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Maximizing the training data log likelihood

• We want maximizing parameters

• Differentiate w.r.t. to all parameters and 
perform gradient ascent to find optimal 
parameters.

• The derivation is somewhat nasty.
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Maximizing the training data log likelihood
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Maximizing the training data log likelihood
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Maximizing the training data log likelihood
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Maximizing the training data log likelihood
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Maximizing the training data log likelihood
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Maximizing the training data log likelihood
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Phew! We’re done!  So:

( ) ( )

∞
∂

∂
−

∂

∂
∝

θ

θ

θ

θ

θ

Pm

mm

Pm

mm cfdf |log|log

0

rr

( )
0

|log

Pm

mdp
N

θ

θθ

∂

∂
⇔

∞
r

m

np

θ

θθ

∂

∂ ),,|(Dlog 1 K



Frank Wood - fwood@cs.brown.edu

Equilibrium Is Hard to Achieve

• With:

we can now train our PoE model.  

• But… there’s a problem:
– is computationally infeasible to obtain (esp. in an 
inner gradient ascent loop).

– Sampling Markov Chain must converge to target 
distribution.  Often this takes a very long time!
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Solution: Contrastive Divergence!

• Now we don’t have to run the sampling Markov 
Chain to convergence, instead we can stop after 
1 iteration (or perhaps a few iterations more 
typically)

• Why does this work?
– Attempts to minimize the ways that the model 
distorts the data.
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Equivalence of argmax log P() and argmax KL()
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Contrastive Divergence
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• We want to “update the parameters to reduce 
the tendency of the chain to wander away from 
the initial distribution on the first step”.
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Contrastive Divergence (Final Result!)
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Now you know how to do it and why it works!

Model 

parameters.
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parameters.

Training data 

(empirical distribution).
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