Training Products of Experts by Minimizing Contrastive Divergence

Geoffrey E. Hinton

presented by Frank Wood
Goal

- Learn parameters for probability distribution models of high dimensional data
 - (Images, Population Firing Rates, Securities Data, NLP data, etc)

Mixture Model

\[p(\tilde{d} | \theta_1, \ldots, \theta_n) = \sum_m \alpha_m f_m(\tilde{d} | \theta_m) \]

Use EM to learn parameters

Product of Experts

\[p(\tilde{d} | \theta_1, \ldots, \theta_n) = \frac{\prod_m f_m(\tilde{d} | \theta_m)}{\sum_{\tilde{c}} \prod_m f_m(\tilde{c} | \theta_m)} \]

Use Contrastive Divergence to learn parameters.
Take Home

• Contrastive divergence is a general MCMC gradient ascent learning algorithm particularly well suited to learning Product of Experts (PoE) and energy-based (Gibbs distributions, etc.) model parameters.

• The general algorithm:
 - Repeat Until “Convergence”
 • Draw samples from the current model starting from the training data.
 • Compute the expected gradient of the log probability w.r.t. all model parameters over both samples and the training data.
 • Update the model parameters according to the gradient.
Sampling - Critical to Understanding

- **Uniform**
 - \(\text{rand()} \)
 - Linear Congruential Generator
 - \(x(n) = a \times x(n-1) + b \mod M \)
 - 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565 0.0185

- **Normal**
 - \(\text{randn()} \)
 - Box-Mueller
 - \(x_1, x_2 \sim \text{U}(0,1) \rightarrow y_1, y_2 \sim \text{N}(0,1) \)
 - \(y_1 = \sqrt{-2 \ln(x_1)} \cos(2 \pi x_2) \)
 - \(y_2 = \sqrt{-2 \ln(x_1)} \sin(2 \pi x_2) \)

- **Binomial(p)**
 - if(rand()<p)

- **More Complicated Distributions**
 - Mixture Model
 - Sample from a Gaussian
 - Sample from a multinomial (CDF + uniform)
 - Product of Experts
 - Metropolis and/or Gibbs
The Flavor of Metropolis Sampling

- Given some distribution \(p(d | \theta) \), a random starting point \(d_{t-1} \), and a symmetric proposal distribution \(J(d_t | d_{t-1}) \).
- Calculate the ratio of densities where \(d_t \) is sampled from the proposal distribution.
- With probability \(\min(r, 1) \) accept \(d_t \).
- Given sufficiently many iterations

\[
\{d_n, d_{n+1}, d_{n+2}, \ldots\} \sim p(d | \theta)
\]

Only need to know the distribution up to a proportionality!
Contrastive Divergence (Final Result!)

\[\Delta \theta_m \propto \langle \frac{\partial \log f_{\theta_m}}{\partial \theta_m} \rangle_{p^0} - \langle \frac{\partial \log f_{\theta_m}}{\partial \theta_m} \rangle_{p^1} \]

- Law of Large Numbers, compute expectations using samples.

Model parameters.

Training data (empirical distribution).

Samples from model.

Now you know how to do it, let's see why this works!
But First: The last vestige of concreteness.

- Looking towards the future:
 - Take f to be a Student-t.

 $$f_{\theta_m}(\vec{d}) = f_{\alpha_m;j_m}(\vec{d}) = \frac{1}{\left(1 + \frac{1}{2}(j_m^T \vec{d})\right)^{\alpha_m}}$$

 - Then (for instance)

 $$\frac{\partial \log f_{\alpha_m;j_m}(\vec{d})}{\partial \alpha_m} = -\frac{\partial \alpha_m \log \left(1 + \frac{1}{2}(j_m^T \vec{d})\right)}{\partial \alpha_m} = -\log \left(1 + \frac{1}{2}(j_m^T \vec{d})\right)$$
Maximizing the training data log likelihood

- We want maximizing parameters
 \[
 \arg\max_{\theta_1, \ldots, \theta_n} \log p(D | \theta_1, \ldots, \theta_n) = \arg\max_{\theta_1, \ldots, \theta_n} \log \prod_{d \in D} \frac{\prod_m f_m(d | \theta_m)}{\sum_{c} \prod_m f_m(c | \theta_m)}
 \]

 Assuming \(d\)'s drawn independently from \(p()\)

- Differentiate w.r.t. to all parameters and perform gradient ascent to find optimal parameters.

- The derivation is somewhat nasty.
Maximizing the training data log likelihood

\[
\frac{\partial \log p(D | \theta_1, \ldots, \theta_n)}{\partial \theta_m} = \frac{\partial \log \prod_{d \in D} p(\tilde{d} | \theta_1, \ldots, \theta_n)}{\partial \theta_m}
\]

\[
= \sum_{d \in D} \frac{\partial}{\partial \theta_m} \log p(\tilde{d} | \theta_1, \ldots, \theta_n)
\]

\[
= N \left\langle \frac{\partial \log p(\tilde{d} | \theta_1, \ldots, \theta_n)}{\partial \theta_m} \right\rangle_{p_\theta^\infty}
\]

Remember this equivalence!
Maximizing the training data log likelihood

\[
\frac{1}{N} \sum_{d \in D} \frac{\partial \log f_m(d \mid \theta_m)}{\partial \theta_m} = \frac{1}{N} \sum_{d \in D} \frac{\partial \log \sum_{\tilde{c}} \prod_{m} f_m(\tilde{c} \mid \theta_m)}{\partial \theta_m} - \frac{1}{N} \sum_{d \in D} \frac{\partial \log \prod_{m} f_m(d \mid \theta_m)}{\partial \theta_m}
\]
Maximizing the training data log likelihood

\[
\begin{align*}
&= \frac{1}{N} \sum_{d \in D} \frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m} - \frac{\partial \log \sum \prod f_m(\tilde{c} | \theta_m)}{\partial \theta_m} \\
&= \left\langle \frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m} \right\rangle p^0 - \frac{\partial \log \sum \prod f_m(\tilde{c} | \theta_m)}{\partial \theta_m} \\
&= \left\langle \frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m} \right\rangle p^0 - \frac{1}{\sum \prod f_m(\tilde{c} | \theta_m)} \frac{\partial \sum \prod f_m(\tilde{c} | \theta_m)}{\partial \theta_m}
\end{align*}
\]

\[\log(x)' = x'/x\]
Maximizing the training data log likelihood

\[
\frac{\partial}{\partial \theta_m} \log f_m \left(\bar{d} \mid \theta_m \right) = \frac{\partial}{\partial \theta_m} \sum_{\tilde{c}} \prod_{m} f_m \left(\tilde{c} \mid \theta_m \right) - \sum_{\tilde{c}} \prod_{m} f_m \left(\tilde{c} \mid \theta_m \right) \frac{\partial}{\partial \theta_m} \frac{\sum_{j \neq m} f_j \left(\tilde{c} \mid \theta_j \right) f_m \left(\tilde{c} \mid \theta_m \right)}{\partial \theta_m}
\]

\[
\frac{\partial}{\partial \theta_m} \log f_m \left(\bar{d} \mid \theta_m \right) = \frac{\partial}{\partial \theta_m} \sum_{\tilde{c}} \prod_{m} f_m \left(\tilde{c} \mid \theta_m \right) \log f_m \left(\tilde{c} \mid \theta_m \right)
\]
Maximizing the training data log likelihood

\[
\begin{align*}
\mathbb{E}_{\pi^0}\left[\frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m}\right] & = -\sum_{\tilde{c}} \prod_m f_m(\tilde{c} | \theta_m) \sum_{\tilde{c}} \prod_m f_m(\tilde{c} | \theta_m) \frac{\partial \log f_m(\tilde{c} | \theta_m)}{\partial \theta_m} \\
= \mathbb{E}_{\pi^0}\left[\frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m}\right] & - \sum_{\tilde{c}} \left(\frac{\prod_m f_m(\tilde{c} | \theta_m)}{\sum_{\tilde{c}} \prod_m f_m(\tilde{c} | \theta_m)} \frac{\partial \log f_m(\tilde{c} | \theta_m)}{\partial \theta_m} \right) \\
= \mathbb{E}_{\pi^0}\left[\frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m}\right] & - \sum_{\tilde{c}} p(\tilde{c} | \theta_1, \ldots, \theta_n) \frac{\partial \log f_m(\tilde{c} | \theta_m)}{\partial \theta_m} \end{align*}
\]
Maximizing the training data log likelihood

\[
\mathbb{E}_{p^0} \left(\frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m} \right) - \sum_c p(c | \theta_1, \ldots, \theta_n) \frac{\partial \log f_m(c | \theta_m)}{\partial \theta_m} = \int \mathbb{E}_{p^0} \left(\frac{\partial \log f_m(\tilde{d} | \theta_m)}{\partial \theta_m} \right) - \mathbb{E}_{p^\infty} \left(\frac{\partial \log f_m(c | \theta_m)}{\partial \theta_m} \right)
\]

Phew! We’re done! So:

\[
\frac{\partial \log p(D | \theta_1, \ldots, \theta_n)}{\partial \theta_m} \propto \mathbb{E}_{p^0} \left(\frac{\partial \log p^\infty(\tilde{d} | \theta_m)}{\partial \theta_m} \right)
\]
Equilibrium Is Hard to Achieve

• With:

$$\frac{\partial \log p(D | \theta_1, \ldots, \theta_n)}{\partial \theta_m} \propto \left\langle \frac{\partial \log f_m(d | \theta_m)}{\partial \theta_m} \right\rangle_{P^0} - \left\langle \frac{\partial \log f_m(c | \theta_m)}{\partial \theta_m} \right\rangle_{P_\theta^\infty}$$

we can now train our PoE model.

• But... there’s a problem:
 - P_θ^∞ is computationally infeasible to obtain (esp. in an inner gradient ascent loop).
 - Sampling Markov Chain must converge to target distribution. Often this takes a very long time!
Solution: Contrastive Divergence!

\[\frac{\partial \log p(D | \theta_1, \ldots, \theta_n)}{\partial \theta_m} \propto \left(\frac{\partial \log f_m(d | \theta_m)}{\partial \theta_m} \right)_{p^0} - \left(\frac{\partial \log f_m(c | \theta_m)}{\partial \theta_m} \right)_{p_\theta} \]

- Now we don’t have to run the sampling Markov Chain to convergence, instead we can stop after 1 iteration (or perhaps a few iterations more typically)

- Why does this work?
 - Attempts to minimize the ways that the model distorts the data.
Equivalence of argmax log \(P() \) and argmax KL()

\[
P^0\|_{P_\theta^\infty} = \sum_{\tilde{d}} P^0(\tilde{d}) \log \frac{P^0(\tilde{d})}{P_\theta^\infty(\tilde{d})}
= \sum_{\tilde{d}} P^0(\tilde{d}) \log P^0(\tilde{d}) - \sum_{\tilde{d}} P^0(\tilde{d}) \log P_\theta^\infty(\tilde{d})
= H(P^0) - \left< \log P_\theta^\infty(\tilde{d}) \right>_{P^0}
\]

\[
\frac{\partial P^0\|_{P_\theta^\infty}}{\partial \theta_m} = -\left< \frac{\partial \log P_\theta^\infty(\tilde{d})}{\partial \theta_m} \right>_{P^0}
\]
Contrastive Divergence

- We want to “update the parameters to reduce the tendency of the chain to wander away from the initial distribution on the first step”.

$$\frac{\partial}{\partial \theta_m} \left(P^0 \beta P^\infty - P^l \beta P^\infty \right) = -\left\langle \frac{\partial \log P^\infty_{\theta_m} (\tilde{d})}{\partial \theta_m} \right\rangle_{P^0} - \left\langle \frac{\partial \log P^\infty_{\theta_m} (\tilde{d})}{\partial \theta_m} \right\rangle_{P^l_{\theta}}$$

$$\propto \left\langle \frac{\partial \log f_m (\tilde{d} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^0} - \left\langle \frac{\partial \log f_m (\tilde{c} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^\infty_{\theta}} - \left\langle \frac{\partial \log f_m (\tilde{d} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^l_{\theta}} + \left\langle \frac{\partial \log f_m (\tilde{c} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^\infty_{\theta}}$$

$$\propto \left\langle \frac{\partial \log f_m (\tilde{d} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^0} - \left\langle \frac{\partial \log f_m (\tilde{d} \mid \theta_m)}{\partial \theta_m} \right\rangle_{P^l_{\theta}}$$
Contrastive Divergence (Final Result!)

\[\Delta \theta_m \propto \left\langle \frac{\partial \log f_{\theta_m}}{\partial \theta_m} \right\rangle_{p^0} - \left\langle \frac{\partial \log f_{\theta_m}}{\partial \theta_m} \right\rangle_{p_{\theta}^1} \]

Law of Large Numbers, compute expectations using samples.

\[\Delta \theta_m \propto \frac{1}{N} \sum_{d \in D} \frac{\partial \log f_{\theta_m}(d)}{\partial \theta_m} - \frac{1}{N} \sum_{c \sim P_{\theta}^1} \frac{\partial \log f_{\theta_m}(c)}{\partial \theta_m} \]

Now you know how to do it and why it works!