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Least Squares Max(min)imization

1. Function to minimize w.r.t. β0, β1

Q =
n∑

i=1

(Yi − (β0 + β1Xi ))2

2. Minimize this by maximizing −Q

3. Find partials and set both equal to zero

dQ

dβ0
= 0

dQ

dβ1
= 0



Normal Equations

1. The result of this maximization step are called the normal
equations. b0 and b1 are called point estimators of β0 and β1

respectively. ∑
Yi = nb0 + b1

∑
Xi∑

XiYi = b0

∑
Xi + b1

∑
X 2

i

2. This is a system of two equations and two unknowns. The
solution is given by . . .



Solution to Normal Equations

After a lot of algebra one arrives at

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄

X̄ =

∑
Xi

n

Ȳ =

∑
Yi

n



Least Squares Fit



Guess #1



Guess #2



Looking Ahead: Matrix Least Squares


Y1

Y2
...

Yn

 =


X1 1
X2 1
...

Xn 1


[
β1

β0

]

Solution to this equation is solution to least squares linear
regression (and maximum likelihood under normal error
distribution assumption)



Questions to Ask

1. Is the relationship really linear?

2. What is the distribution of the of “errors”?

3. Is the fit good?

4. How much of the variability of the response is accounted for
by including the predictor variable?

5. Is the chosen predictor variable the best one?



Is This Better?



Goals for First Half of Course

1. How to do linear regression

1.1 Self familiarization with software tools

2. How to interpret standard linear regression results

3. How to derive tests

4. How to assess and address deficiencies in regression models



Estimators for β0, β1, σ
2

1. We want to establish properties of estimators for β0, β1, and
σ2 so that we can construct hypothesis tests and so forth

2. We will start by establishing some properties of the regression
solution.



Properties of Solution

1. The i th residual is defined to be

ei = Yi − Ŷi

2. The sum of the residuals is zero:∑
i

ei =
∑

(Yi − b0 − b1Xi )

=
∑

Yi − nb0 − b1

∑
Xi

= 0



Properties of Solution

The sum of the observed values Yi equals the sum of the fitted
values Ŷi ∑

i

Yi =
∑

i

Ŷi

=
∑

i

(b1Xi + b0)

=
∑

i

(b1Xi + Ȳ − b1X̄ )

= b1

∑
i

Xi + nȲ − b1nX̄

= b1nX̄ +
∑

i

Yi − b1nX̄



Properties of Solution

The sum of the weighted residuals is zero when the residual in the
i th trial is weighted by the level of the predictor variable in the i th

trial ∑
i

Xiei =
∑

(Xi (Yi − b0 − b1Xi ))

=
∑

i

XiYi − b0

∑
Xi − b1

∑
(X 2

i )

= 0



Properties of Solution

The regression line always goes through the point

X̄ , Ȳ



Estimating Error Term Variance σ2

1. Review estimation in non-regression setting.

2. Show estimation results for regression setting.



Estimation Review

1. An estimator is a rule that tells how to calculate the value of
an estimate based on the measurements contained in a sample

2. i.e. the sample mean

Ȳ =
1

n

n∑
i=1

Yi



Point Estimators and Bias

1. Point estimator
θ̂ = f ({Y1, . . . ,Yn})

2. Unknown quantity / parameter

θ

3. Definition: Bias of estimator

B(θ̂) = E(θ̂)− θ



One Sample Example



Distribution of Estimator

1. If the estimator is a function of the samples and the
distribution of the samples is known then the distribution of
the estimator can (often) be determined
1.1 Methods

1.1.1 Distribution (CDF) functions
1.1.2 Transformations
1.1.3 Moment generating functions
1.1.4 Jacobians (change of variable)



Example

1. Samples from a Normal(µ, σ2) distribution

Yi ∼ Normal(µ, σ2)

2. Estimate the population mean

θ = µ, θ̂ = Ȳ =
1

n

n∑
i=1

Yi



Sampling Distribution of the Estimator

1. First moment

E (θ̂) = E (
1

n

n∑
i=1

Yi )

=
1

n

n∑
i=1

E (Yi ) =
nµ

n
= θ

2. This is an example of an unbiased estimator

B(θ̂) = E (θ̂)− θ = 0



Variance of Estimator

1. Definition: Variance of estimator

V (θ̂) = E ([θ̂ − E (θ̂)]2)

2. Remember:

V (cY ) = c2V (Y )

V (
n∑

i=1

Yi ) =
n∑

i=1

V (Yi )

Only if the Yi are independent with finite variance



Example Estimator Variance

1. For N(0, 1) mean estimator

V (θ̂) = V (
1

n

n∑
i=1

Yi )

=
1

n2

n∑
i=1

V (Yi ) =
nσ2

n2
=
σ2

n

2. Note assumptions



Distribution of sample mean estimator



Bias Variance Trade-off

1. The mean squared error of an estimator

MSE (θ̂) = E ([θ̂ − θ]2)

2. Can be re-expressed

MSE (θ̂) = V (θ̂) + (B(θ̂)2)



MSE = VAR + BIAS2

Proof

MSE (θ̂) = E ((θ̂ − θ)2)

= E (([θ̂ − E (θ̂)] + [E (θ̂)− θ])2)

= E ([θ̂ − E (θ̂)]2) + 2E ([E (θ̂)− θ][θ̂ − E (θ̂)]) + E ([E (θ̂)− θ]2)

= V (θ̂) + 2E ([E (θ̂)[θ̂ − E (θ̂)]− θ[θ̂ − E (θ̂)])) + (B(θ̂))2

= V (θ̂) + 2(0 + 0) + (B(θ̂))2

= V (θ̂) + (B(θ̂))2



Trade-off

1. Think of variance as confidence and bias as correctness.

1.1 Intuitions (largely) apply

2. Sometimes a biased estimator can produce lower MSE if it
lowers the variance.



Estimating Error Term Variance σ2

1. Regression model

2. Variance of each observation Yi is σ2 (the same as for the
error term εi )

3. Each Yi comes from a different probability distribution with
different means that depend on the level Xi

4. The deviation of an observation Yi must be calculated around
its own estimated mean.



s2 estimator for σ2

s2 = MSE =
SSE

n − 2
=

∑
(Yi − Ŷi )

2

n − 2
=

∑
e2
i

n − 2

1. MSE is an unbiased estimator of σ2

E (MSE ) = σ2

2. The sum of squares SSE has n-2 degrees of freedom
associated with it.



Normal Error Regression Model

1. No matter how the error terms εi are distributed, the least
squares method provides unbiased point estimators of β0 and
β1

1.1 that also have minimum variance among all unbiased linear
estimators

2. To set up interval estimates and make tests we need to
specify the distribution of the εi

3. We will assume that the εi are normally distributed.



Normal Error Regression Model

Yi = β0 + β1Xi + εi

1. Yi value of the response variable in the i th trial

2. β0 and β1 are parameters

3. Xi is a known constant, the value of the predictor variable in
the i th trial

4. εi ∼iid N(0, σ2)

5. i = 1, . . . , n



Notational Convention

1. When you see εi ∼iid N(0, σ2)

2. It is read as εi is distributed identically and independently
according to a normal distribution with mean 0 and variance
σ2

3. Examples

3.1 θ ∼ Poisson(λ)
3.2 z ∼ G (θ)



Maximum Likelihood Principle

The method of maximum likelihood chooses as estimates those
values of the parameters that are most consistent with the sample
data.



Likelihood Function

If
Xi ∼ F (Θ), i = 1 . . . n

then the likelihood function is

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)



Example, N(10, 3) Density, Single Obs.



Example, N(10, 3) Density, Single Obs. Again



Example, N(10, 3) Density, Multiple Obs.



Maximum Likelihood Estimation

1. The likelihood function can be maximized w.r.t. the
parameter(s) Θ, doing this one can arrive at estimators for
parameters as well.

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)

2. To do this, find solutions to (analytically or by following
gradient)

dL({Xi}ni=1,Θ)

dΘ
= 0



Important Trick

Never (almost) maximize the likelihood function, maximize the log
likelihood function instead.

log(L({Xi}ni=1,Θ)) = log(
n∏

i=1

F (Xi ; Θ))

=
n∑

i=1

log(F (Xi ; Θ))

Quite often the log of the density is easier to work with
mathematically.



ML Normal Regression

Likelihood function

L(β0, β1, σ
2) =

n∏
i=1

1

(2πσ2)1/2
e−

1
2σ2 (Yi−β0−β1Xi )

2

=
1

(2πσ2)n/2
e−

1
2σ2

Pn
i=1(Yi−β0−β1Xi )

2

which if you maximize (how?) w.r.t. to the parameters you get. . .



Maximum Likelihood Estimator(s)

1. β0

b0 same as in least squares case

2. β1

b1 same as in least squares case

3. σ2

σ̂2 =

∑
i (Yi − Ŷi )

2

n

4. Note that ML estimator is biased as s2 is unbiased and

s2 = MSE =
n

n − 2
σ̂2



Comments

1. Least squares minimizes the squared error between the
prediction and the true output

2. The normal distribution is fully characterized by its first two
central moments (mean and variance)

3. Food for thought:

3.1 What does the bias in the ML estimator of the error variance
mean? And where does it come from?


