
Neural Networks (and Gradient Ascent)

Frank Wood

December 3, 2009

Generalized Regression

Until now we have focused on linear regression techniques.

We generalized linear regression to include nonlinear functions of
the inputs – we called these features.

The remaining regression model remained linear in the parameters.
i.e.

y(x,w) = f

 M∑
j1=

wjφj(x)


where f () is the identity or is invertible such that a transform of t
can be employed.

Our goal has been to learn w. We’ve done this using least squares
or penalized least squares in the case of MAP estimation.

Fancy f ()’s

What if f () is not invertible? Then what? Can’t use
transformations of t.

Today (to start):

tanh(x) =
ex − e−x

ex + e−x

tanh regression (like logistic regression)

For pedagogical purpose assume that tanh() can’t be inverted.

Or that we observe targets that are tn ∈ {−1,+1} (note – not
continuous valued!)

Let’s consider a regression(/classification) function

y(xn,w) = tanh(xnw)

where w is a parameter vector and x is a vector of inputs
(potentially features). For each input x we have an observed
output tn which is either minus one or one.

We are interested in the general case of how to learn parameters
for such models.

tanh regression (like logistic regression)

Further, we will use the error that you are familiar with, namely,
the squared error. So, given a matrix of inputs X = [x1 · · · xn] and
a collection of output labels t = [t1 · · · tn] we consider the
following squared error function

E (X, t,w) =
1

2

∑
n

(tn − y(xn,w))2

We are interested in minimizing the error of our regressor/classifier.
How do we do this?

Error minimization

If we want to minimize

E (X, t,w) =
1

2

∑
n

(tn − y(xn,w))2

w.r.t. w we should start by deriving gradients and trying to find
places where the they disappear.

w1

w2

E(w)

wA wB wC

∇E

Figure taken from PRML, Bishop 2006

Error gradient w.r.t. w

The gradient of

∇wE (X, t,w) =
1

2

∑
n

∇w(tn − y(xn,w))2

= −
∑
n

(tn − y(xn,w))∇wy(xn,w)

A useful fact to know about tanh() is that

d tanh(a)

db
= (1− tanh(a)2)

da

db

which makes it easy to complete the last line of the gradient
computation straightforwardly for the choice of
y(xn,w) = tanh(xnw), namely

∇wE (X, t,w) = −
∑
n

(tn − y(xn,w))(1− tanh(xnw)2)xn

Solving

Unreasonable pedagogical assumptions aside, it is clear that
algebraically solving

∇wE (X, t,w) = −
∑
n

(tn − y(xn,w))(1− tanh(xnw)2)xn

= 0

for all the entries of w will be troublesome if not impossible.

This is OK, however, because we don’t always have to get an
analytic solution that directly gives us the value of w. We can
arrive at it’s value numerically.

Calculus 101

Even simpler – consider numerically minimizing the function

How do you do this?

Hint, start at some value x0, say x0 = −3 and use the gradient to
“walk” towards the minimum.

Calculus 101

The gradient of y = (x − 3)2 + 2 (or derivative w.r.t. x) is
∇xy = 2(x − 3).

Consider the sequence xn = xn−1 − λ∇xn−1y

It is clear that if λ is small enough that this sequence will converge
to limn→∞ xn → 3.

There are several important caveats worth mentioning here

I If λ (called the learning rate) is set too high this sequence
might oscillate

I Worse yet, the sequence might diverge.

I If the function has multiple minima (and/or saddles) this
procedure is not guaranteed to converge to the minimum
value.

Arbitrary error gradients

This is true for any function that one would like to minimize.

For instance we are interested in minimizing prediction error
E (X, t,w) in our “logistic” regression/classification example where
the gradient we computed is

∇wE (X, t,w) = −
∑
n

(tn − y(xn,w))(1− tanh(xnw)2)xn

So starting at some value of the weights w0 we can construct and
follow a sequence of guesses until convergence

wn = wn−1 − λ∇wn−1E (X, t,w)

Arbitrary error gradients

Convergence of a procedure like

wn = wn−1 − λ∇wn−1E (X, t,w)

can be assessed in multiple ways:

I The norm of the gradient grows sufficiently small

I The function value change is sufficiently small from one step
to the next.

I etc.

Gradient Min(Max)imization

There are several other important points worth mentioning here
and avenues for further study

I If the objective function is convex, such learning strategies are
guaranteed to converge to the global optimum. Special
techniques for convex optimization exist (e.g. Boyd and
Vandenberghe, http://www.stanford.edu/∼boyd/cvxbook/).

I If the objective function is not convex, multiple restarts of the
learning procedure should be performed to ensure reasonable
coverage of the parameter space.

I Even if the objective is not convex it might be worth the
computational cost of restarting multiple times to achieve a
good set of parameters.

I The “sum over observations” nature of the gradient
calculation makes online learning feasible.

I More (much more) sophisticated gradient search algorithms
exist, particularly ones that make use of the curvature of the
underlying function.

Example - Data for tanh regression/classification

Figure: Data in {+1,−1}

“Generative model” =

n = 100;
x = [rand(n,1) rand(n,1)]*20;
y = x*[-2;4]¿2;
y = y+ (y==0)*-1;

Example - Result from Learning

Figure: Learned regression surface.

Run logistic regression/tanh regression.m

Two more hints

1. Even analytic gradients are not required!

2. (Good) software exists to allow you to minimize whatever
function you want to minimize (matlab: fminunc)

For both, note the following. The definition of a derivative
(gradient) is given by

df (x)

dx
= lim

δ→0

f (x + δ)− f (x)

δ

but can be approximated quite well by a fixed size choise of δ, i.e.

df (x)

dx
≈ f (x + .00000001)− f (x)

.00000001

This means that learning algorithms can be implemented on a
computer using given nothing but the objective function to
minimize!

Neural Networks

It is from this perspective that we will approach neural networks.

A general two layer feedforward neural network is given by :

yk(x,w) = σ

 M∑
j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

)
Given what we have just covered, if given as set of targets
t = [t1 · · · tn] and a set of inputs X = [x1 · · · xn] one should
straightforwardly be able to learn w (the set of all weights wkj and
wji for all combinations kj and ji) for any choice of σ() and h().

Neural Networks

It is from this perspective that we will approach neural networks.

A general two layer feedforward neural network is given by :

yk(x,w) = σ

 M∑
j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

)
Given what we have just covered, if given as set of targets
t = [t1 · · · tn] and a set of inputs X = [x1 · · · xn] one should
straightforwardly be able to learn w (the set of all weights wkj and
wji for all combinations kj and ji) for any choice of σ() and h().

Neural Networks

Neural networks arose from trying to create mathematical
simplifications or representations of the kind of processing units
used in our brains.

We will not consider their biological feasibility, instead we will
focus on a particular class of neural network – the multi-layer
perceptron, which has proven to be of great practical value in both
regression and classification settings.

Neural Networks

To start – there should be list of important features and caveats

1. Neural networks are universal approximators, meaning that

a two-layer network with linear outputs can
uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy
provided that the network has a sufficiently large
number of hidden units [Bishop, PRML, 2006]

2. but... How many hidden units?

3. Generally the error surface as a function of the weights is
non-convex leading to a difficult and tricky optimization
problem.

4. The internal mechanism by which the network represents the
regression relationship is not usually examinable or testable in
the way that linear regression models are. i.e. What’s the
meaning of a statement like, the 95% confidence interval for
the i th hidden unit weight is [.2, .4]?

Neural network architecture

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Figure taken from PRML, Bishop 2006

Neural Networks

The specific neural network we will consider is a univariate
regression network where there is one output node and the output
nonlinearity is set to the identity σ(x) = x leaving only the hidden
layer nonlinearity h(a) which will will choose to be h(a) = tanh(a).
So

yk(x,w) = σ

 M∑
j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

)
simplifies to

y(x,w) =
M∑

j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

)
Note that the bias nodes x0 = 1 and z0 = 1 are included in this
notation.

Representational Power

Four regression functions learned using linear/tanh neural network
with three hidden units. Hidden unit activation shown in the
background colors.
Figure taken from PRML, Bishop 2006

Neural Network Training

Given a set of input vectors {xn}, n = 1, . . . ,N and a set of target
vectors {tn} (taken here to be univariate {tn} we wish to minimize
the error function

E (w) =
1

2

N∑
n=1

||y(xn,w)− tn||2

In this example we will assume that t ∈ Rand that t is Gaussian
distributed with mean a function of x

P(t|x,w, β) = N (t|y(xn,w), β−1)

which means that the targets are jointly distributed according to

P(t|X,w, β) =
N∏

n=1

P(tn|xn,w, β)

Neural Network Training and Prediction

If we take the negative logarithm of the error function

P(t|X,w, β) =
N∏

n=1

P(tn|xn,w, β)

we arrive at

β

2

N∑
n=1

{y(xn,w)− tn}2 −
N

2
lnβ +

N

2
ln(2π)

which we can minimize by first minimizing w.r.t. to w and then β.

Given a trained value of βML and wML prediction is straightforward.

Neural Network Training, Gradient Ascent

We therefore are interested in minimizing (in the case of
continuous valued, univariate, neural network regression)

E (w) =
N∑

n=1

{y(xn,w)− tn}2

where

y(x,w) =
M∑

j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

)
which we can perform numerically if we have gradient information

w(τ+1) = w(τ) − η∇E (w(τ))

where η is a learning rate and ∇E (w(τ)) is the gradient of the
error function.

Back Propagation

While numeric gradient computation can be used to estimate the
gradient and thereby adjust the weights of the neural net, doing so
is not very efficient.

A more efficient, if not slightly more confusing method of
computing the gradient, is to use backpropagation.

Back propagation is a fancy term for a dynamic programming-like
way of computing the gradient by running computations backwards
on the network.

Back Propagation

To perform back propagation we need to identify several
intermediate variables, the first of which is

aj =
∑

i

wjizi

where aj is a weighted sum of the inputs to a particular unit
(hidden or otherwise). The activiation zj of a unit is given by

zj = h(aj)

where in our example h(a) = tanh(a)

Here j could be an output.

Back Propagation

What we are interested in computing efficiently is dE
dwji

where

E (w) =
N∑

n=1

{y(xn,w)− tn}2

we will focus on the individual contribution from a single training
input/output pair dEn

dwji
realizing that the final gradient is the sum

of all of the individual gradients.

Note: Stochatistic gradient ascent approximates the gradient using
a single (or small group) of points at a time.

Back Propagation : Reuse of computation

Our goal is to reuse computation as much as possible. We will do
this by constructing a back-ward chaining set of partial derivatives
that use computation closer to the output nodes in the calculation
of the gradients of the error w.r.t. to weights closer to the input
nodes.

To start, note that En depends on the weights Wji only through
the input aj to unit j . For this reason we can applye the chain rule
to give

dEn

dwji
=

dEn

daj

daj

dwji

We will denote dEn
daj

= δj . The δj ’s are going to be the quantities

we use for dynamic programming.

Back Propagation : Reuse of computation

If we remember that

aj =
∑

i

wjizi

and our new notation dEn
daj

= δj .

We can re-write

dEn

dwji
=

dEn

daj

daj

dwji

as

dEn

dwji
= δjzi

This is almost it!

Back Propagation : Reuse of computation

For the output layer we have

dEn

dak
=

d

dak

1

2
(ak − t)2 = yk − tk

From this we can compute the gradient with respect to all of the
weights leading to the output layer simply using

dEn

dwki
= δkzi

where i ranges over the hidden layer closest to the output layer
and zi are the activations of that layer.

What remains is to figure out how to use the precomputed δ’s to
compute the gradients at all remaining hidden layers back to the
input nodes. For this we need the chain rule from calculus again.

Back Propagation : Reuse of computation

We want a way of computing δj , the error term for an arbitrary
hidden unit as a function of the weights and the error terms
already computed closer to the output node(s). The definition of
δj is δj = dEn

daj

When node j is connected to nodes k , k = 1, . . . ,K the following
is true: that the error is a function of the activations at all k nodes
and that the activations at each of these nodes is a function of the
activation at node j . That means the following is true

dEn

daj
=
∑
k

dEn

dak

dak

daj

but we have computed δk = dEn
dak

already for nodes closer to the
output already!

Back Propagation : Reuse of computation

To summarize, we know

dEn

daj
=
∑
k

δk
dak

daj

We also know ak =
∑

j wkjzj and zj = h(aj).
This means that

δj =
dEn

daj
=
∑
k

δkh′(aj)wkj = h′(aj)
∑
k

δkwkj

This means that we can compute the δ’s backwards, using only
information “local” to each unit.

Further we know that dEn
wji

= δjzi which is the “error” at the output

side times the activation on the input side. Since the activations
are computed on the forward pass and the errors are computed on
the backwards pass we are done!

Back Propagation : Full procedure

Error Backpropagation

Repeat for all input/output pairs:

1. Propagate activations forward through the network for an
input xn

2. Compute the δ’s for all the units starting at the output layer
and proceeding backwards through the network.

3. Compute the contribution to the gradient for that single input
(and sum into global gradient computation).

Conclusion

Neural networks are a powerful tool for regression analysis.

Neural networks are not without (significant) downsides. They lack
interpretability, they can be difficult to learn, and the model
selection issues that arise in any regression problem don’t go away.

Further treatment of neural networks include different activation
functions, multivalued outputs, classification, and Bayesian neural
networks.

Simple trailing question: what would MAP estimation of a neural
network look like (with standard weight decay regularization)?

	Gradient Min(Max)imization
	Neural Networks

