Regression Estimation – Least Squares and Maximum Likelihood

Dr. Frank Wood
Least Squares Max(min)imization

• Function to minimize w.r.t. β_0, β_1

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

• Minimize this by maximizing $-Q$
• Find partials and set both equal to zero

$$\frac{dQ}{d\beta_0} = 0$$
$$\frac{dQ}{d\beta_1} = 0$$
Normal Equations

• The result of this maximization step are called the normal equations. b_0 and b_1 are called point estimators of β_0 and β_1 respectively

\[
\sum Y_i = nb_0 + b_1 \sum X_i
\]
\[
\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2
\]

• This is a system of two equations and two unknowns. The solution is given by…

Write these on board
Solution to Normal Equations

• After a lot of algebra one arrives at

\[b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}\]

\[b_0 = \bar{Y} - b_1 \bar{X}\]

\[\bar{X} = \frac{\sum X_i}{n}\]

\[\bar{Y} = \frac{\sum Y_i}{n}\]
Least Squares Fit

Predictor/Input	Response/Output

Estimate: $y = 2.09x + 8.36$, mse: 4.15
True: $y = 2x + 9$, mse: 4.22
Guess #1

- **Guess**: $y = 0x + 21.2$, mse: 37.1
- **True**: $y = 2x + 9$, mse: 4.22

![Graph showing a scatter plot with two regression lines. The green line represents the guessed model $y = 0x + 21.2$ with an mse of 37.1, and the red line represents the true model $y = 2x + 9$ with an mse of 4.22. The plotted points suggest a better fit for the true model.]
Guess #2

Guess, $y = 1.5x + 13$, mse: 7.84
True, $y = 2x + 9$, mse: 4.22
Looking Ahead: Matrix Least Squares

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix}
=
\begin{bmatrix}
X_1 & 1 \\
X_2 & 1 \\
\vdots & \vdots \\
X_n & 1
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_0
\end{bmatrix}
\]

- Solution to this equation is solution to least squares linear regression (and maximum likelihood under normal error distribution assumption)
Questions to Ask

• Is the relationship really linear?
• What is the distribution of the of “errors”?
• Is the fit good?
• How much of the variability of the response is accounted for by including the predictor variable?
• Is the chosen predictor variable the best one?
Is This Better?

7 Order, mse: 3.18
Goals for First Half of Course

• How to do linear regression
 – Self familiarization with software tools
• How to interpret standard linear regression results
• How to derive tests
• How to assess and address deficiencies in regression models
Properties of Solution

- The \(i \)th residual is defined to be

\[e_i = Y_i - \hat{Y}_i \]

- The sum of the residuals is zero:

\[
\sum_{i} e_i = \sum_{i} (Y_i - b_0 - b_1 X_i) \\
= \sum_{i} Y_i - nb_0 - b_1 \sum_{i} X_i \\
= 0
\]

By first normal equation.
Properties of Solution

- The sum of the observed values Y_i equals the sum of the fitted values \hat{Y}_i

\[
\sum_i Y_i = \sum_i \hat{Y}_i
\]
\[
= \sum_i (b_1 X_i + b_0)
\]
\[
= \sum_i (b_1 X_i + \bar{Y} - b_1 \bar{X})
\]
\[
= b_1 \sum_i X_i + n\bar{Y} - b_1 n\bar{X}
\]
\[
= b_1 n\bar{X} + \sum_i Y_i - b_1 n\bar{X}
\]
Properties of Solution

- The sum of the weighted residuals is zero when the residual in the i^{th} trial is weighted by the level of the predictor variable in the i^{th} trial.

\[
\sum_{i} X_i e_i = \sum_{i} (X_i (Y_i - b_0 - b_1 X_i))
\]

\[
= \sum_{i} X_i Y_i - b_0 \sum_{i} X_i - b_1 \sum_{i} (X_i^2)
\]

\[
= 0
\]

By second normal equation.
Properties of Solution

- The sum of the weighted residuals is zero when the residual in the \(i^{th} \) trial is weighted by the fitted value of the response variable for the \(i^{th} \) trial

\[
\sum_{i} \hat{Y}_i e_i = \sum_{i} (b_0 + b_1 X_i) e_i \\
= b_0 \sum_{i} e_i + b_1 \sum_{i} e_i X_i \\
= 0
\]

By previous properties.
Properties of Solution

• The regression line always goes through the point \(\bar{X}, \bar{Y} \)
Estimating Error Term Variance σ^2

- Review estimation in non-regression setting.
- Show estimation results for regression setting.
Estimation Review

• An estimator is a rule that tells how to calculate the value of an estimate based on the measurements contained in a sample

• i.e. the sample mean

\[\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \]
Point Estimators and Bias

• Point estimator

\[\hat{\theta} = f(\{Y_1, \ldots, Y_n\}) \]

• Unknown quantity / parameter

\[\theta \]

• Definition: Bias of estimator

\[B(\hat{\theta}) = E(\hat{\theta}) - \theta \]
One Sample Example

μ = 5, σ = 0.75
samples
θ
est. θ

run bias_example_plot.m
Distribution of Estimator

• If the estimator is a function of the samples and the distribution of the samples is known then the distribution of the estimator can (often) be determined
 – Methods
 • Distribution (CDF) functions
 • Transformations
 • Moment generating functions
 • Jacobians (change of variable)
Example

• Samples from a Normal(μ, σ^2) distribution

\[Y_i \sim \text{Normal}(\mu, \sigma^2) \]

• Estimate the population mean

\[\theta = \mu, \quad \hat{\theta} = \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \]
Sampling Distribution of the Estimator

- First moment

\[E(\hat{\theta}) = E\left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right) \]

\[= \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{n\mu}{n} = \theta \]

- This is an example of an unbiased estimator

\[B(\hat{\theta}) = E(\hat{\theta}) - \theta = 0 \]
Variance of Estimator

• Definition: Variance of estimator

\[V(\hat{\theta}) = E((\hat{\theta} - E(\hat{\theta}))^2) \]

• Remember:

\[V(cY) = c^2 V(Y) \]

\[V(\sum_{i=1}^{n} Y_i) = \sum_{i=1}^{n} V(Y_i) \]

Only if the \(Y_i \) are independent with finite variance
Example Estimator Variance

• For N(0,1) mean estimator

\[V(\hat{\theta}) = V\left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right) \]

\[= \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n} \]

• Note assumptions
Distribution of sample mean estimator

1000 samples
Bias Variance Trade-off

- The mean squared error of an estimator

\[MSE(\hat{\theta}) = E([\hat{\theta} - \theta]^2) \]

- Can be re-expressed

\[MSE(\hat{\theta}) = V(\hat{\theta}) + (B(\hat{\theta})^2) \]
MSE = VAR + BIAS^2

• Proof

\[MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) \]
\[= E(\left(\left[\hat{\theta} - E(\hat{\theta})\right] + \left[E(\hat{\theta}) - \theta\right]\right)^2) \]
\[= E(\left[\hat{\theta} - E(\hat{\theta})\right]^2) + 2E(\left[E(\hat{\theta}) - \theta\right]\left[\hat{\theta} - E(\hat{\theta})\right]) + E(\left[E(\hat{\theta}) - \theta\right]^2) \]
\[= V(\hat{\theta}) + 2E(\left[E(\hat{\theta})\left[\hat{\theta} - E(\hat{\theta})\right] - \theta\left[\hat{\theta} - E(\hat{\theta})\right]\right]) + (B(\hat{\theta}))^2 \]
\[= V(\hat{\theta}) + 2(0 + 0) + (B(\hat{\theta}))^2 \]
\[= V(\hat{\theta}) + (B(\hat{\theta}))^2 \]
Trade-off

• Think of variance as confidence and bias as correctness.
 – Intuitions (largely) apply

• Sometimes a biased estimator can produce lower MSE if it lowers the variance.
Estimating Error Term Variance σ^2

- Regression model
- Variance of each observation Y_i is σ^2 (the same as for the error term ϵ_i)
- Each Y_i comes from a different probability distribution with different means that depend on the level X_i
- The deviation of an observation Y_i must be calculated around its own estimated mean.
s^2 estimator for σ^2

$$s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum(Y_i - \hat{Y}_i)^2}{n-2} = \frac{\sum e_i^2}{n-2}$$

- MSE is an unbiased estimator of σ^2

$$E(MSE) = \sigma^2$$

- The sum of squares SSE has n-2 degrees of freedom associated with it.
Normal Error Regression Model

• No matter how the error terms ϵ_i are distributed, the least squares method provides unbiased point estimators of β_0 and β_1
 – that also have minimum variance among all unbiased linear estimators

• To set up interval estimates and make tests we need to specify the distribution of the ϵ_i

• We will assume that the ϵ_i are normally distributed.
Normal Error Regression Model

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

- \(Y_i \): value of the response variable in the \(i^{th} \) trial
- \(\beta_0 \) and \(\beta_1 \): parameters
- \(X_i \): known constant, the value of the predictor variable in the \(i^{th} \) trial
- \(\epsilon_i \): error term, \(\sim_{iid} N(0, \sigma^2) \)
- \(i = 1, \ldots, n \)
Notational Convention

• When you see $\epsilon_i \sim_{iid} \text{N}(0,\sigma^2)$

• It is read as ϵ_i is distributed identically and independently according to a normal distribution with mean 0 and variance σ^2

• Examples
 – $\theta \sim \text{Poisson}(\lambda)$
 – $z \sim G(\theta)$
Maximum Likelihood Principle

• The method of maximum likelihood chooses as estimates those values of the parameters that are most consistent with the sample data.
Likelihood Function

- If

\[X_i \sim F(\Theta), \ i = 1 \ldots n \]

then the likelihood function is

\[\mathcal{L}(\{X_i\}_{i=1}^n, \Theta) = \prod_{i=1}^n F(X_i; \Theta) \]
Example, N(10,3) Density, Single Obs.

N=10, - log likelihood = 4.3038
Example, $N(10,3)$ Density, Single Obs. Again

$N=10$, $-\text{log likelihood} = 4.3038$
Example, N(10,3) Density, Multiple Obs.

N=10, - log likelihood = 36.2204
Maximum Likelihood Estimation

• The likelihood function can be maximized w.r.t. the parameter(s) Θ, doing this one can arrive at estimators for parameters as well.

\[
\mathcal{L}(\{X_i\}_{i=1}^n, \Theta) = \prod_{i=1}^n F(X_i; \Theta)
\]

• To do this, find solutions to (analytically or by following gradient)

\[
\frac{d\mathcal{L}(\{X_i\}_{i=1}^n, \Theta)}{d\Theta} = 0
\]
Important Trick

• Never (almost) maximize the likelihood function, maximize the \(\log \) likelihood function instead.

\[
\log(\mathcal{L}(\{X_i\}_{i=1}^n, \Theta)) = \log(\prod_{i=1}^n F(X_i; \Theta)) \\
= \sum_{i=1}^n \log(F(X_i; \Theta))
\]

Quite often the log of the density is easier to work with mathematically.
ML Normal Regression

• Likelihood function

\[
\mathcal{L}(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2} \\
= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2}
\]

which if you maximize (how?) w.r.t. to the parameters you get…
Maximum Likelihood Estimator(s)

- β_0
 - b_0 same as in least squares case
- β_1
 - b_1 same as in least squares case
- σ^2

$$\hat{\sigma}^2 = \frac{\sum_i (Y_i - \hat{Y}_i)^2}{n}$$

- Note that ML estimator is biased as s^2 is unbiased and

$$s^2 = MSE = \frac{n}{n-2} \hat{\sigma}^2$$
Comments

• Least squares minimizes the squared error between the prediction and the true output.

• The normal distribution is fully characterized by its first two central moments (mean and variance).

• Food for thought:
 – What does the bias in the ML estimator of the error variance mean? And where does it come from?