Approximate Inference

Variational Inference

Task: eval the posterior distribution
\[p(\mathcal{Z} | X) \]

\[p(\mathcal{Z} | X, \phi) \]

latent variables / params

Often the case that

- space in which \(\mathcal{Z} \) lives is very, eval'ing all possible (enumerating all) \(\mathcal{Z}'s \)
- posterior doesn't have a nice analytic form
 - continuous vars: integrations might not be closed for
 - discrete

alternative MCMC

Variational Inference

Applied to the Bayesian inference prob. (section 10.1 of PRML)

\(\mathcal{Z} \) latent vars + params (set)

\(X \) set of observed vars \(\mathcal{Z} \) might be \(\mathcal{N} \) iid obs

\(X = \{ x_1, \ldots, x_N \} \)

\(\mathcal{Z} = \{ z_1, \ldots, z_N \} \)

Probabilistic model

\[p(X, \mathcal{Z}) \]

Goal:

Find posterior dist \(p(\mathcal{Z} | X) \) and evidence \(p(X) \)

\[\ln p(X) = \mathcal{L}(q) + KL(q || p) \]

where

\[\mathcal{L}(q) = \int q(\mathcal{Z}) \cdot \ln \left\{ \frac{p(X, \mathcal{Z})}{q(\mathcal{Z})} \right\} d\mathcal{Z} \]

\[KL(q || p) = - \int q(\mathcal{Z}) \ln \left\{ \frac{p(X | \mathcal{Z})}{q(\mathcal{Z})} \right\} d\mathcal{Z} \]

multi-dimensional ints dimensionally

dim is # \(\mathcal{Z} \) vars and dimensionality of each
\[
\ln p(x) = \mathbb{L}(q) + \text{KL}(q || p)
\]

\[
= \int q(z) \ln \left\{ \frac{p(x, z)}{q(z)} \right\} dz - \int q(z) \ln q(z) dz
\]

\[
= \int q(z) \ln \left\{ \frac{p(z|x) \frac{p(x)}{q(z)}}{q(z)} \right\} dz - \int q(z) \ln p(z|x) dz + \int q(z) \ln q(z) dz
\]

\[
= \int q(z) \ln p(x) dz = \ln p(x) \int q(z) dz = \ln p(x) \cdot 1
\]

- Differs EM step only in that \(\theta \) no longer appears

- Case: maximize \(\mathbb{L}(q) \) (lower bound on the evidence) - equivalent to minimizing the KL div.

If all \(q \)'s possible then \(q(z) = p(z|x) \) is minimax but \(p(z|x) \) is complicated.

Approach

Restrict the family of distribution \(q(z) \) to "simple" distributions, and then to seek the member of this family that most closely approx \(p(x) \)

Note:

- choice of \(q(z) \) all about tractability
- more complex \(q(z) \)'s are limited by computation
- no overfitting
Choices for $Q(z)$
- Parameterized $Q(z|\omega)$ is governed by
- Factorized $Q(z) = \prod_{i=1}^{M} Q_i(z_i)$ family of approximately

$Q(z) = \prod_{i=1}^{M} Q_i(z_i)$

no restrictions on the
form of ind. q_i's dists

Amongst all dists in this family, which
makes $L(q)$ the largest?

$L(q) = \int q(z) \ln \left\{ \frac{p(x,z)}{q(z)} \right\} dz$

Use family $Q(z) = \prod_{i=1}^{M} Q_i(z_i)$ where Z_0 is a subset
of the latest vars

cell $Q_i(z_i) = q_i$

$L(q) = \int \left(\prod_{i} q_i \right) \ln \left\{ \frac{p(x,z)}{\prod_{i} q_i} \right\} dz$

EM-like objective, find conditions at optimal $L(q)$
for each q_i. Split out a single term q_i. Max $L(q)$
\[L(q) = \int \left(\prod_{i} q_{i} \right) \left(\ln P(X, Z) - \frac{1}{Z} \sum_{i} \ln q_{i} \right) dZ \]

Extract single factor \(q_{j} \)

\[= \frac{\int q_{j} \left(\prod_{i \neq j} q_{i} \right) \ln P(X, Z) dZ}{\int \left(\prod_{i} q_{i} \right) \left(\sum_{i} \ln q_{i} \right) dZ} \]

\(\text{where} \ q_{j} = q_{j}(Z_{j}), \ Z_{j} \in Z \)

\[= \int q_{j}(Z_{j}) \prod_{i \neq j} q_{i} \ln P(X, Z) dZ_{1} \cdots dZ_{j} \cdots dZ_{m} dZ_{j} \]

\[= -\int q_{j} \left(\prod_{i \neq j} q_{i} \right) \left(\ln q_{j} + \sum_{i \neq j} \ln q_{i} \right) dZ \]

Opening \(\text{a boxed quantity} \)

\[= -\int q_{j} \ln q_{j} dZ_{j} + \int q_{j} \left(\prod_{i \neq j} q_{i} \right) \left(\sum_{i \neq j} \ln q_{i} \right) dZ \]

Integrate \(dZ_{j} \)

\[\text{Mess - clean it up} \]

\[L(q) = \int q_{j} \left(\prod_{i \neq j} \ln P(X, Z) dZ_{1} \cdots dZ_{j} \cdots dZ_{m} \right) dZ_{j} \]

\[- \int q_{j} \ln q_{j} dZ_{j} \]

If we define

\[\ln \hat{p}(X, Z_{j}) = \mathbb{E}_{q_{j}} \left[\ln p(X, Z) \right] \]

\[= \int \cdots \int \ln P(X, Z) dZ_{1} \cdots dZ_{m} q_{j} dZ_{j} \]

\[L(q) = \int q_{j} \ln \hat{p}(X, Z_{j}) dZ_{j} - \int q_{j} \ln q_{j} dZ_{j} + \text{const} \]
\[L(q) = \sum_{z_j} \ln \tilde{p}(x, z_j) dZ_j - \sum_{z_j} \ln q_j(z_j) dZ_j \quad \text{const} \]

Goal: coordinate-wise maximization of \(L(q) \)

- In particular, right now we aim \(L(q) \) with \(q_j \)

Recognize the \(L(q) \) is a coordinate KL div. between \(\tilde{p}(x, z_j) \) and \(q_j(z_j) \)

Minimize KL divergence between \(\tilde{p}(x, z_j) \) and \(q_j(z_j) \).

The optimal \(q_j^*(z_j) \) is given by

\[
\ln q_j^*(z_j) = \mathbb{E}_{\tilde{p}} \left[\ln \tilde{p}(x, z) \right] + const
\]

- Consider this form a second the "coordinate component" now is a function of \(z_j \) (subject of poster lat. vars.). The right hand side is the joint dist. of all obs. & latent variables, but with all latent vars. besides \(z_j \) integrated out - this leaves a function of some vars. \(z_j \) on right hand side as well.

- The specific dist. form of \(q_j^*(z_j) \) will often emerge from this rule.

- \(\tilde{p}(x, z) \) probably has interesting cond. dependencies to exploit.
- In expectation (actually \(\log \) norm) many/worst of the terms will be absorbed into the constant but not all
- Coupling between approximating factors, e.g.

\[r_k \in \mathbb{R} \]

- No closed form sol'n in general.
\[\ln q^*_j(z_j) = \mathcal{E}_{i,j} \left[\ln p(x, z_i) \right] + \text{const} \]

Lacks normalization (const)

- sole yields \(q^*_j \) up to a multiplicative factor

- one can normalize this distribution by either

- (usually)
 - inspection (will be become clear)
 - or by explicit normalization

\[q^*_j(z_j) = \frac{\exp \left(\mathcal{E}_{i,j} \left[\ln p(x, z_i) \right] \right)}{\int \exp \left(\mathcal{E}_{i,j} \left[\ln p(x, z_i) \right] \right) dz_j} \]

- Set of the equals for all \(q^*_i, i = 1 \ldots M \) is a set of "consistencies" conditions for the max. They are not an explicit soln, nor in general closed form, and have to be cycled through until numerical convergence.

State without proof

Convergence of these interdependent updates is guaranteed because the objective is convex.

Teaching Example

Variational approximation to a full covariance Gaussian (\(\mathbb{R}^D \))

Recall, in general \(z \in \mathbb{R}^D \) \(\sim \mathcal{N}(m, \Sigma) \)

\[p(z) \neq p(z_1) p(z_2) \] unless \(\Sigma = \mathcal{D}_m \)

and \(z_1, \ldots, z_2 \)

Goal: find the independent Gaussian dist (diagonal Gaussian) that best approximates \(p(z) \).

Factorization \(q(z_1, z_2) \)