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Executive Summary
• Model

– Smoothing Markov model of discrete sequences

– Extension of hierarchical Pitman Yor process [Teh 2006]

• Unbounded depth (context length)

• Algorithms and estimation
– Linear time suffix-tree graphical model identification and construction

– Standard Chinese restaurant franchise sampler

• Results
– Maximum contextual information used during inference

– Competitive language modelling results

• Limit of n-gram language model as n→∞

– Same computational cost as a Bayesian interpolating 5-gram language 
model



Executive Summary

• Uses

– Any situation in which a low-order Markov model of discrete 
sequences is insufficient

– Drop in replacement for smoothing Markov model

• Name?

– ‘‘A Stochastic Memoizer for Sequence Data’’ → Sequence 
Memoizer (SM) 

• Describes posterior inference [Goodman et al ‘08]



Statistically Characterizing a Sequence

• Sequence Markov models are usually constructed by treating a 
sequence as a set of (exchangeable) observations in fixed-length 
contexts
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Increasing context length / order of Markov model

Decreasing number of observations

Increasing number of conditional distributions to estimate (indexed by context)

Increasing power of model



Finite Order Markov Model

• Example

P (x1:N ) =

N∏

i=1

P (xi|x1, . . . xi−1)

≈

N∏

i=1

P (xi|xi−n+1, . . . xi−1), n = 2

= P (x1)P (x2|x1)P (x3|x2)P (x4|x3) . . .

P (oacac) = P (o)P (a|o)P (c|a)P (a|c)P (c|a)

= G[](o)G[o](a)G[c](a)G[a](c)G[c](a)



Learning Discrete Conditional Distributions

• Discrete distribution ↔ vector of parameters

• Counting / Maximum likelihood estimation 
– Training sequence x1:N

– Predictive inference

• Example
– Non-smoothed unigram model (u = ǫ)

G[u]

xi
i = 1 : N

Ĝ[u](X = k) = π̂k =
#{uk}
#{u}

P (Xn+1|x1 . . . xN ) = Ĝ[u](Xn+1)

G[u] = [π1, . . . , πK ],K ∈ |Σ|



Bayesian Smoothing
• Estimation

• Predictive inference

• Priors over distributions

• Net effect

– Inference is “smoothed” w.r.t. uncertainty about 
unknown distribution

• Example

– Smoothed unigram (u = ǫ) xi
i = 1 : N

P (G[u]|x1:n) ∝ P (x1:n|G[u])P (G[u])

P (Xn+1|x1:n) =
∫
P (Xn+1|G[u])P (G[u]|x1:n)dG[u] U

G[u] ∼ Dirichlet(U), G[u] ∼ PY(d, c,U)
G[u]



A Way To Tie Together Distributions

• Tool for tying together related distributions in hierarchical models

• Measure over measures

• Base measure is the “mean” measure

• A distribution drawn from a Pitman Yor process is related to its base 
distribution 
– (equal when c = ∞ or d = 1)

G[u] ∼ PY(d, c,G[σ(u)])

xi ∼ G[u]

concentrationdiscount

base distribution

E[G[u](dx)] = G[σ(u)](dx)

[Pitman and Yor ’97]



Pitman-Yor Process Continued
• Generalization of the Dirichlet process (d       = 0)

– Different (power-law) properties

– Better for text [Teh, 2006] and images [Sudderth and Jordan, 2009]

• Posterior predictive distribution

• Forms the basis for straightforward, simple samplers

• Rule for stochastic memoization

P (XN+1|x1:N ; c, d) ≈

∫
P (xN+1|G[u])P (G[u]|x1:N ; c, d)dG[u]

= E

[∑K

k=1(mk − d)I(φk = XN+1)

c+N
+
c+ dK

c+N
G[σ(u)](XN+1)

]

Can’t actually do this integral this way



Hierarchical Bayesian Smoothing
• Estimation

• Predictive inference

• Naturally related distributions tied 
together

• Net effect 
– Observations in one context affect 
inference in other context.

– Statistical strength is shared between 
similar contexts

• Example
– Smoothing bi-gram (w = ǫ, u,v ∈ Σ)

xjxi

UΘ = {G[u],G[v],G[w]}, w = σ(u) = σ(v)

P (Θ|x1:N ) ∝ P (x1:N |Θ)P (Θ)

P (XN+1|x1:N )

=

∫
P (XN+1|Θ)P (Θ|x1:N )dΘ

G[w]

j = 1 : N[v]i = 1 : N[u]

G[v]G[u]

G
[the United States] ∼ PY(d, c,G[United States])



SM/HPYP Sharing in Action

Conditional Distributions Posterior Predictive ProbabilitiesObservations

U
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CRF Particle Filter Posterior Update
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CRF Particle Filter Posterior Update

Conditional Distributions Posterior Predictive ProbabilitiesObservations
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HPYP LM Sharing Architecture
• Share statistical strength between 
sequentially related predictive 
conditional distributions

– Estimates of highly specific 
conditional distributions

– Are coupled with others that are 
related

– Through a single common, more-
general shared ancestor

• Corresponds intuitively to back-off
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Hierarchical Pitman Yor Process 

• Bayesian generalization of smoothing n-gram Markov model 

• Language model : outperforms interpolated Kneser-Ney (KN) smoothing

• Efficient inference algorithms exist 

– [Goldwater et al ’05; Teh, ’06; Teh, Kurihara, Welling, ’08]

• Sharing between contexts that differ in most distant symbol only

• Finite depth

G[] | d0,U ∼ PY(d0, 0,U)

G[u] | d|u|,G[σ(u)] ∼ PY(d|u|, 0,G[σ(u)])

xi | x1:i−1 = u ∼ G[u]

i = 1, . . . , T

∀u ∈ Σn−1

[Goldwater et al ’05, Teh ’06]



Alternative Sequence Characterization

• A sequence can be characterized by a set of single
observations in unique contexts of growing length

Increasing context length

Always a single observation

Foreshadowing: all suffixes of the string “cacao”
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‘‘Non-Markov’’ Model

• Example

• Smoothing essential

– Only one observation in each context!

• Solution

– Hierarchical sharing ala HPYP

P (x1:N ) =
N∏

i=1

P (xi|x1, . . . xi−1)

= P (x1)P (x2|x1)P (x3|x2, x1)P (x4|x3, . . . x1) . . .

P (oacac) = P (o)P (a|o)P (c|oa)P (a|oac)P (c|oaca)



Sequence Memoizer 

• Eliminates Markov order selection

• Always uses full context when making predictions

• Linear time, linear space (in length of observation sequence) graphical model 
identification

• Performance is limit of n-gram as n→∞

• Same or less overall cost as 5-gram interpolating Kneser Ney

G[] | d0,U ∼ PY(d0, 0,U)

G[u] | d|u|,G[σ(u)] ∼ PY(d|u|, 0,G[σ(u)])

xi | x1:i−1 = u ∼ G[u]

i = 1, . . . , T

∀u ∈ Σ+



Graphical Model Trie

Observations
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Latent conditional distributions with Pitman Yor priors / stochastic memoizers



Suffix Trie Datastructure
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All suffixes of the string “cacao”



Suffix Trie Datastructure
• Deterministic finite automata that recognizes all 
suffixes of an input string.

• Requires O(N2) time and space to build and store 
[Ukkonen, 95]

• Too intensive for any practical sequence modelling 
application.



Suffix Tree
• Deterministic finite automata that recognizes all 
suffixes of an input string

• Uses path compression to reduce storage and 
construction computational complexity.

• Requires only O(N) time and space to build and store 
[Ukkonen, 95]

• Practical for large scale sequence modelling 
applications



Suffix Trie Datastructure



Suffix Tree Datastructure



Graphical Model Identification
• This is a graphical model transformation under the 
covers.

• These compressed paths require being able to 
analytically marginalize out nodes from the graphical 
model

• The result of this marginalization can be thought of as 
providing a different set of caching rules to memoizers
on the path-compressed edges



Marginalization
• Theorem 1: Coagulation

If G2|G1 ∼ PY(d1, 0, G1) and G3|G2 ∼ PY(d2, 0, G2)
then G3|G1 ∼ PY(d1d2, 0, G1) with G2 marginalized out.

[Pitman ’99; Ho, James, Lau ’06; W., Archambeau, Gasthaus, James, Teh ‘09] 
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Graphical Model Trie



Graphical Model Tree



Graphical Model Initialization
• Given a single input sequence

– Ukkonen’s linear time suffix tree construction algorithm is 
run on its reverse to produce a prefix tree

– This identifies the nodes in the graphical model we need to 
represent

– The tree is traversed and path compressed parameters for 
the Pitman Yor processes are assigned to each remaining 
Pitman Yor process



Nodes In The Graphical Model



Never build more than a 5-gram



Sequence Memoizer Bounds N-Gram Performance

HPYP exceeds SM computational complexity



Language Modelling Results

[Mnih & Hinton, 2009] 112.1
[Bengio et al., 2003] 109.0
4-gram Modified Kneser-Ney [Teh, 2006] 102.4

4-gram HPYP [Teh, 2006] 101.9

Sequence Memoizer (SM) Sequence Memoizer (SM) Sequence Memoizer (SM) Sequence Memoizer (SM) 96.996.996.996.9

AP News Test PerplexityAP News Test PerplexityAP News Test PerplexityAP News Test Perplexity



The Sequence Memoizer
• The Sequence Memoizer is a deep (unbounded) smoothing 
Markov model 

• It can be used to learn a joint distribution over discrete 
sequences in time and space linear in the length of a single 
observation sequence

• It is equivalent to a smoothing ∞-gram but costs no more to 
compute than a 5-gram


