The Sequence Memoizer

Frank Wood

Cedric Archambeau

Jan Gasthaus

Lancelot James

Yee Whye Teh

Gatsby

UCL

Gatsby

HKUST

Gatsby

Executive Summary

- Model
 - Smoothing Markov model of discrete sequences
 - Extension of hierarchical Pitman Yor process [Teh 2006]
 - Unbounded depth (context length)
- Algorithms and estimation
 - Linear time suffix-tree graphical model identification and construction
 - Standard Chinese restaurant franchise sampler
- Results
 - Maximum contextual information used during inference
 - Competitive language modelling results
 - Limit of *n*-gram language model as $n \rightarrow \infty$
 - Same computational cost as a Bayesian interpolating 5-gram language model

Executive Summary

- Uses
 - Any situation in which a low-order Markov model of discrete sequences is insufficient
 - Drop in replacement for smoothing Markov model
- Name?
 - "A Stochastic Memoizer for Sequence Data" \rightarrow Sequence Memoizer (SM)
 - Describes posterior inference [Goodman et al '08]

Statistically Characterizing a Sequence

• Sequence Markov models are usually constructed by treating a sequence as a set of (exchangeable) observations in fixed-length contexts

$$oacac
ightarrow egin{cases} o|[] \ a|[] \ c|[] \ a|[] \ c|[] \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|o \ c|a \ a|c \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} c|ao \ a|ca \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cao \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cac \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cac \ c|ac \ \end{bmatrix} \quad oacac
ightarrow egin{cases} a|cac \ c|cac \ \end{bmatrix}$$

Increasing context length / order of Markov model

Decreasing number of observations

Increasing number of conditional distributions to estimate (indexed by context)

Increasing power of model

Finite Order Markov Model

$$P(x_{1:N}) = \prod_{i=1}^{N} P(x_i|x_1, \dots x_{i-1})$$

$$\approx \prod_{i=1}^{N} P(x_i|x_{i-n+1}, \dots x_{i-1}), \quad n = 2$$

$$= P(x_1)P(x_2|x_1)P(x_3|x_2)P(x_4|x_3)\dots$$

• Example

$$P(\text{oacac}) = P(\text{o})P(\text{a}|\text{o})P(\text{c}|\text{a})P(\text{a}|\text{c})P(\text{c}|\text{a})$$
$$= \mathcal{G}_{[]}(\text{o})\mathcal{G}_{[\text{o}]}(\text{a})\mathcal{G}_{[\text{c}]}(\text{a})\mathcal{G}_{[\text{a}]}(\text{c})\mathcal{G}_{[\text{c}]}(\text{a})$$

Learning Discrete Conditional Distributions

• Discrete distribution \leftrightarrow vector of parameters

$$\mathcal{G}_{[\mathbf{u}]} = [\pi_1, \dots, \pi_K], K \in |\Sigma|$$

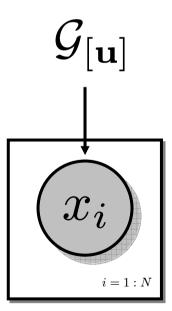
- Counting / Maximum likelihood estimation
 - Training sequence $x_{1:N}$

$$\hat{\mathcal{G}}_{[\mathbf{u}]}(X=k) = \hat{\pi}_k = \frac{\#\{\mathbf{u}k\}}{\#\{\mathbf{u}\}}$$

- Predictive inference

$$P(X_{n+1}|x_1\ldots x_N) = \hat{\mathcal{G}}_{[\mathbf{u}]}(X_{n+1})$$

- Example
 - Non-smoothed unigram model ($\mathbf{u} = \epsilon$)



Bayesian Smoothing

• Estimation

$$P(\mathcal{G}_{[\mathbf{u}]}|x_{1:n}) \propto P(x_{1:n}|\mathcal{G}_{[\mathbf{u}]})P(\mathcal{G}_{[\mathbf{u}]})$$

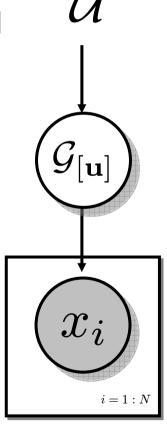
Predictive inference

$$P(X_{n+1}|x_{1:n}) = \int P(X_{n+1}|\mathcal{G}_{[\mathbf{u}]})P(\mathcal{G}_{[\mathbf{u}]}|x_{1:n})d\mathcal{G}_{[\mathbf{u}]}$$

• Priors over distributions

$$\mathcal{G}_{[\mathbf{u}]} \sim \text{Dirichlet}(\mathcal{U}), \quad \mathcal{G}_{[\mathbf{u}]} \sim \text{PY}(d, c, \mathcal{U})$$

- Net effect
 - Inference is "smoothed" w.r.t. uncertainty about unknown distribution
- Example
 - Smoothed unigram ($\mathbf{u} = \epsilon$)



A Way To Tie Together Distributions

 $egin{array}{lll} ext{discount} & ext{concentration} \ \mathcal{G}_{[\mathbf{u}]} & \sim & ext{PY}(d,c,G_{[\sigma(\mathbf{u})]}) \ x_i & \sim & \mathcal{G}_{[\mathbf{u}]} \end{array}$ base distribution

- Tool for tying together related distributions in hierarchical models
- Measure over measures
- Base measure is the "mean" measure

$$E[\mathcal{G}_{[\mathbf{u}]}(dx)] = \mathcal{G}_{[\sigma(\mathbf{u})]}(dx)$$

- A distribution drawn from a Pitman Yor process is related to its base distribution
 - (equal when $c = \infty$ or d = 1)

Pitman-Yor Process Continued

- Generalization of the Dirichlet process (d=0)
 - Different (power-law) properties
 - Better for text [Teh, 2006] and images [Sudderth and Jordan, 2009]
- Posterior predictive distribution

Can't actually do this integral this way

$$P(X_{N+1}|x_{1:N};c,d) \approx \int P(x_{N+1}|\mathcal{G}_{[\mathbf{u}]})P(\mathcal{G}_{[\mathbf{u}]}|x_{1:N};c,d)d\mathcal{G}_{[\mathbf{u}]}$$

$$= \mathbb{E}\left[\frac{\sum_{k=1}^{K}(m_k-d)\mathbb{I}(\phi_k=X_{N+1})}{c+N} + \frac{c+dK}{c+N}\mathcal{G}_{[\sigma(\mathbf{u})]}(X_{N+1})\right]$$

- Forms the basis for straightforward, simple samplers
- Rule for stochastic memoization

Hierarchical Bayesian Smoothing

• Estimation

$$\Theta = \{\mathcal{G}_{[\mathbf{u}]}, \mathcal{G}_{[\mathbf{v}]}, \mathcal{G}_{[\mathbf{w}]}\}, \quad \mathbf{w} = \sigma(\mathbf{u}) = \sigma(\mathbf{v})$$

$$P(\Theta|x_{1:N}) \propto P(x_{1:N}|\Theta)P(\Theta)$$

Predictive inference

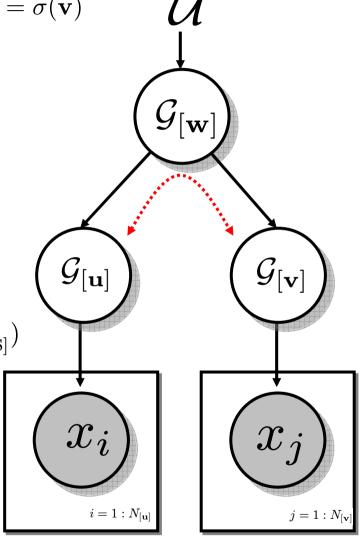
$$P(X_{N+1}|x_{1:N})$$

$$= \int P(X_{N+1}|\Theta)P(\Theta|x_{1:N})d\Theta$$

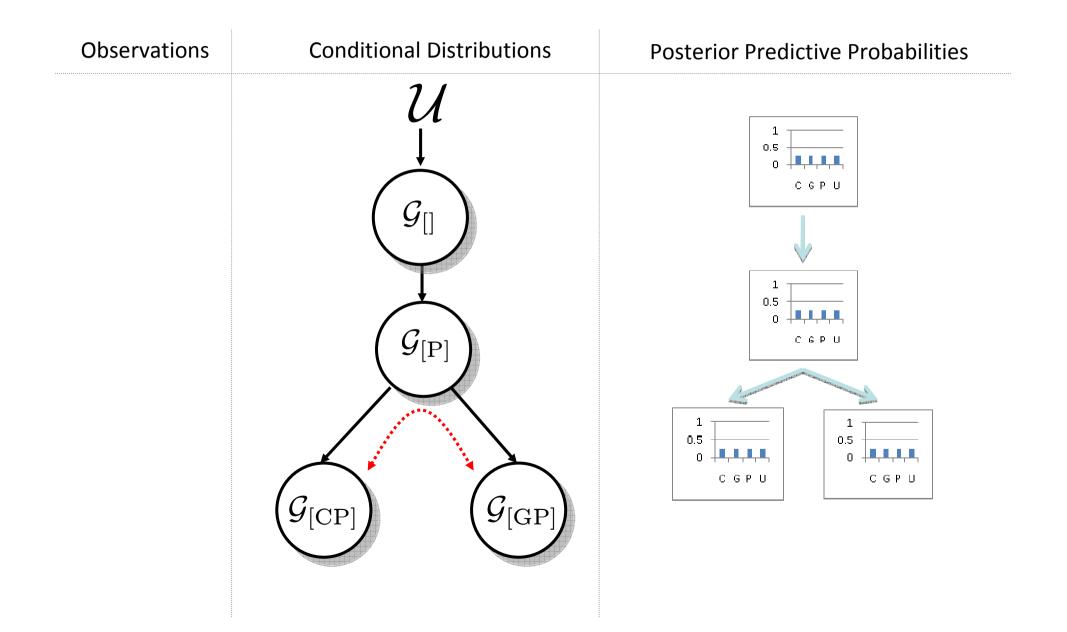
• Naturally related distributions tied together

 $\mathcal{G}_{[\text{the United States}]} \sim \text{PY}(d, c, \mathcal{G}_{[\text{United States}]})$

- Net effect
 - Observations in one context affect inference in other context.
 - Statistical strength is shared between similar contexts
- Example
 - Smoothing bi-gram ($\mathbf{w} = \epsilon, \mathbf{u}, \mathbf{v} \in \Sigma$)



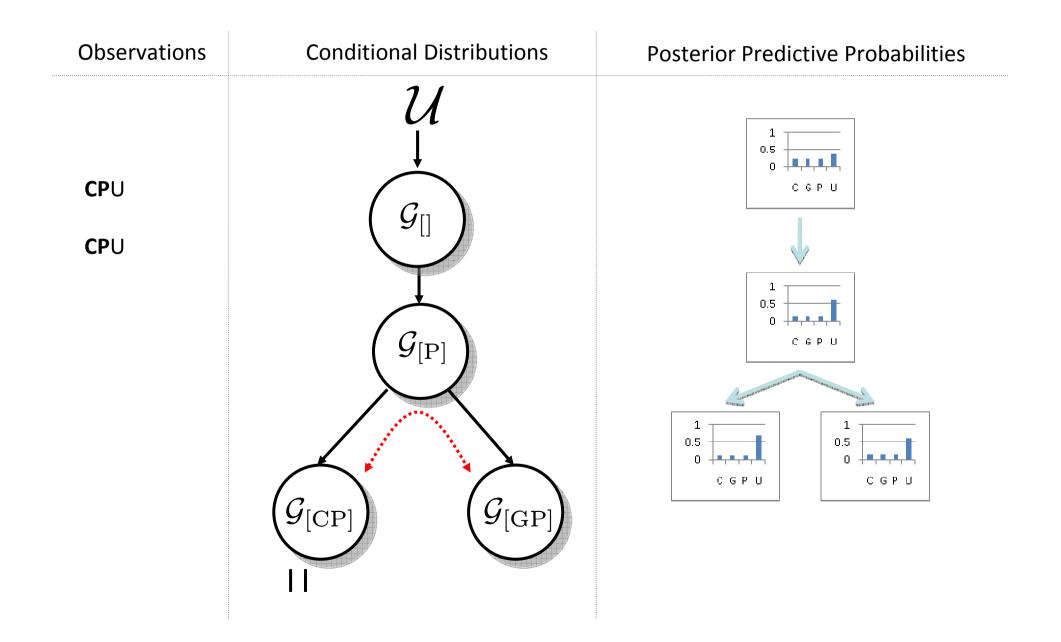
SM/HPYP Sharing in Action



CRF Particle Filter Posterior Update

Observations	Conditional Distributions	Posterior Predictive Probabilities
CPU	$\mathcal{G}_{[\mathrm{P}]}$	1
	$\mathcal{G}_{ ext{[CP]}}$ $\mathcal{G}_{ ext{[GP]}}$	1 0.5 0 C G P U

CRF Particle Filter Posterior Update



HPYP LM Sharing Architecture

- Share statistical strength between sequentially related predictive conditional distributions
 - Estimates of highly specific conditional distributions

 $\mathcal{G}_{[ext{was on the}]}$

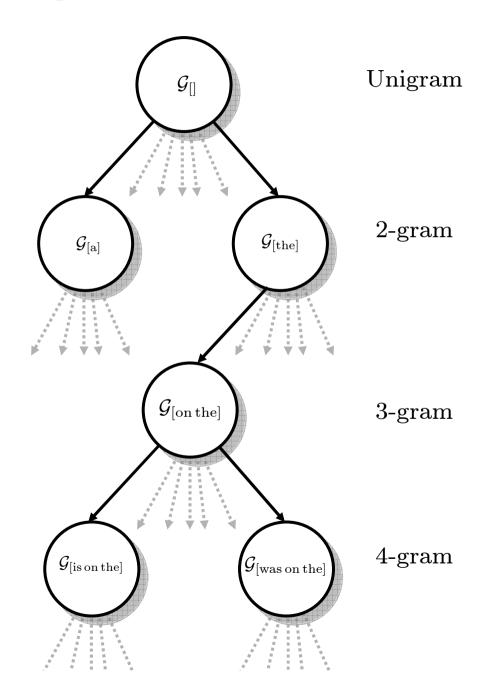
 Are coupled with others that are related

 $\mathcal{G}_{ ext{[is on the]}}$

- Through a single common, moregeneral shared ancestor

 $\mathcal{G}_{ ext{[on the]}}$

• Corresponds intuitively to back-off



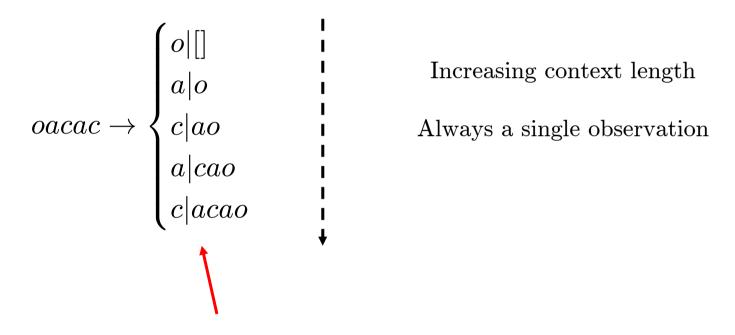
Hierarchical Pitman Yor Process

$$\mathcal{G}_{[]} \mid d_0, \mathcal{U} \quad \sim \quad \mathrm{PY}(d_0, 0, \mathcal{U})$$
 $\mathcal{G}_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \mathcal{G}_{[\sigma(\mathbf{u})]} \quad \sim \quad \mathrm{PY}(d_{|\mathbf{u}|}, 0, \mathcal{G}_{[\sigma(\mathbf{u})]})$
 $x_i \mid \mathbf{x}_{1:i-1} = \mathbf{u} \quad \sim \quad \mathcal{G}_{[\mathbf{u}]}$
 $i = 1, \dots, T$
 $\forall \mathbf{u} \in \Sigma^{n-1}$

- Bayesian generalization of smoothing n-gram Markov model
- Language model: outperforms interpolated Kneser-Ney (KN) smoothing
- Efficient inference algorithms exist
 - [Goldwater et al '05; Teh, '06; Teh, Kurihara, Welling, '08]
- Sharing between contexts that differ in most distant symbol only
- Finite depth

Alternative Sequence Characterization

• A sequence can be characterized by a set of *single* observations in unique contexts of growing length



Foreshadowing: all suffixes of the string "cacao"

"Non-Markov" Model

$$P(x_{1:N}) = \prod_{i=1}^{N} P(x_i|x_1, \dots x_{i-1})$$

= $P(x_1)P(x_2|x_1)P(x_3|x_2, x_1)P(x_4|x_3, \dots x_1)\dots$

• Example

$$P(\text{oacac}) = P(\text{o})P(\text{a}|\text{o})P(\text{c}|\text{oa})P(\text{a}|\text{oac})P(\text{c}|\text{oaca})$$

- Smoothing essential
 - Only one observation in each context!
- Solution
 - Hierarchical sharing ala HPYP

Sequence Memoizer

$$\mathcal{G}_{[]} \mid d_{0}, \mathcal{U} \quad \sim \quad \mathrm{PY}(d_{0}, 0, \mathcal{U})$$

$$\mathcal{G}_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \mathcal{G}_{[\sigma(\mathbf{u})]} \quad \sim \quad \mathrm{PY}(d_{|\mathbf{u}|}, 0, \mathcal{G}_{[\sigma(\mathbf{u})]})$$

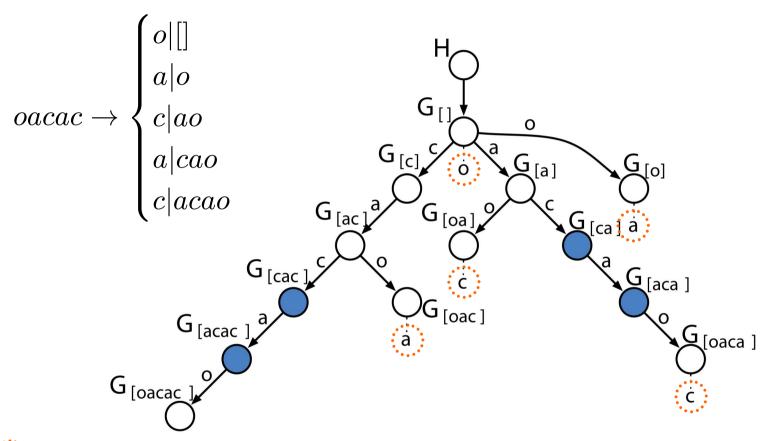
$$x_{i} \mid \mathbf{x}_{1:i-1} = \mathbf{u} \quad \sim \quad \mathcal{G}_{[\mathbf{u}]}$$

$$i = 1, \dots, T$$

$$\forall \mathbf{u} \in \Sigma^{+}$$

- Eliminates Markov order selection
- Always uses full context when making predictions
- Linear time, linear space (in length of observation sequence) graphical model identification
- Performance is limit of n-gram as $n \rightarrow \infty$
- Same or less overall cost as 5-gram interpolating Kneser Ney

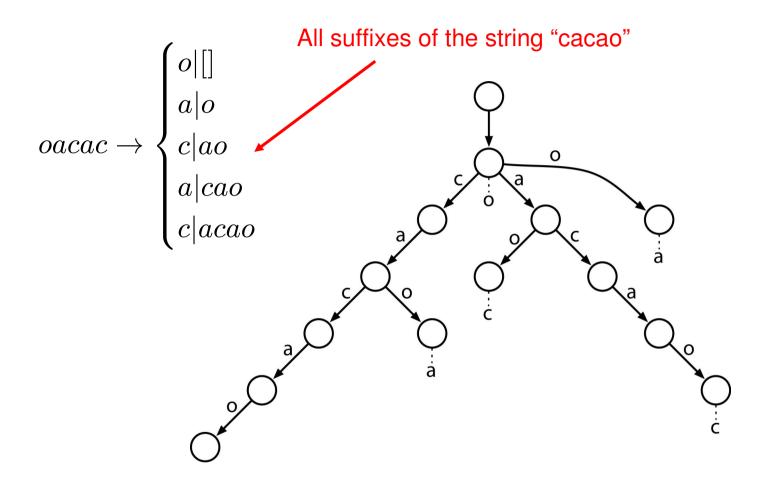
Graphical Model Trie



Observations

Latent conditional distributions with Pitman Yor priors / stochastic memoizers

Suffix Trie Datastructure



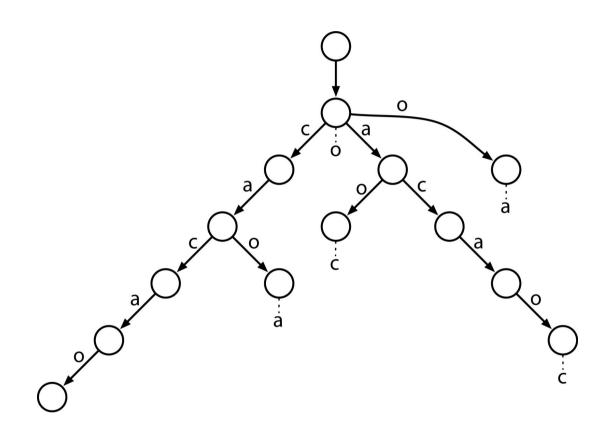
Suffix Trie Datastructure

- Deterministic finite automata that recognizes all suffixes of an input string.
- Requires $O(N^2)$ time and space to build and store [Ukkonen, 95]
- Too intensive for any practical sequence modelling application.

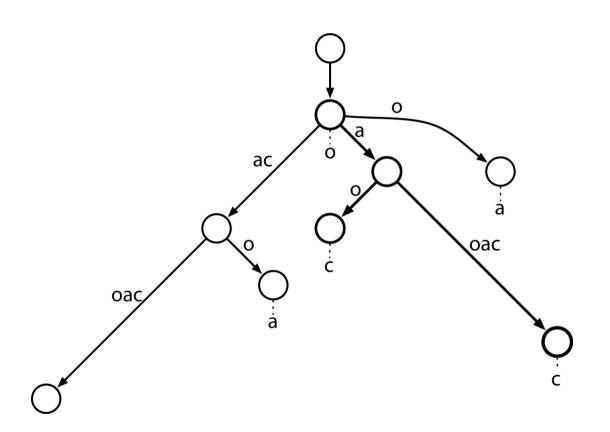
Suffix Tree

- Deterministic finite automata that recognizes all suffixes of an input string
- Uses path compression to reduce storage and construction computational complexity.
- Requires only O(N) time and space to build and store [Ukkonen, 95]
- Practical for large scale sequence modelling applications

Suffix Trie Datastructure



Suffix Tree Datastructure



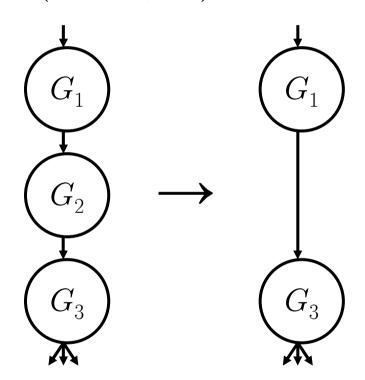
Graphical Model Identification

- This is a graphical model transformation under the covers.
- These compressed paths require being able to analytically marginalize out nodes from the graphical model
- The result of this marginalization can be thought of as providing a different set of caching rules to memoizers on the path-compressed edges

Marginalization

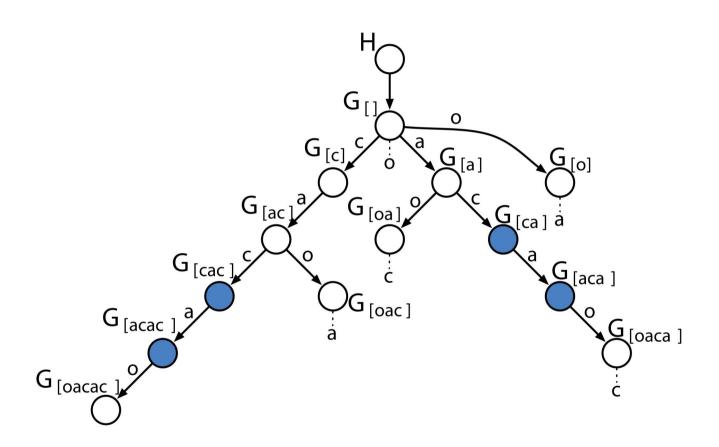
• Theorem 1: Coagulation

If $G_2|G_1 \sim \text{PY}(d_1, 0, G_1)$ and $G_3|G_2 \sim \text{PY}(d_2, 0, G_2)$ then $G_3|G_1 \sim \text{PY}(d_1d_2, 0, G_1)$ with G_2 marginalized out.

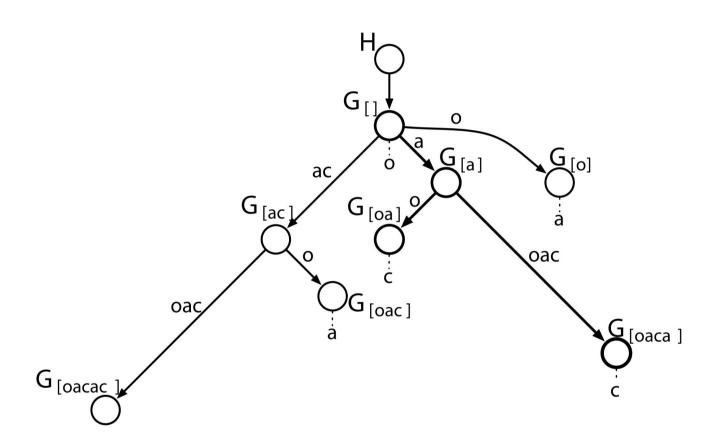


[Pitman '99; Ho, James, Lau '06; W., Archambeau, Gasthaus, James, Teh '09]

Graphical Model Trie



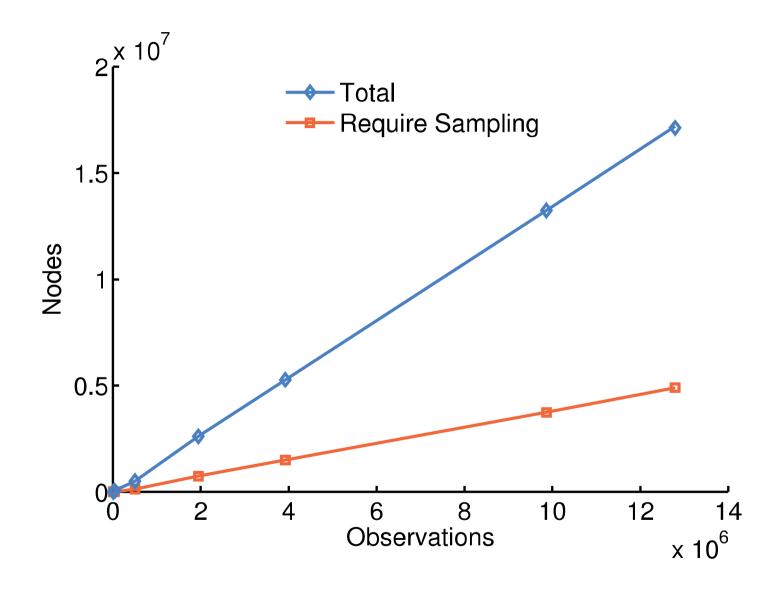
Graphical Model Tree



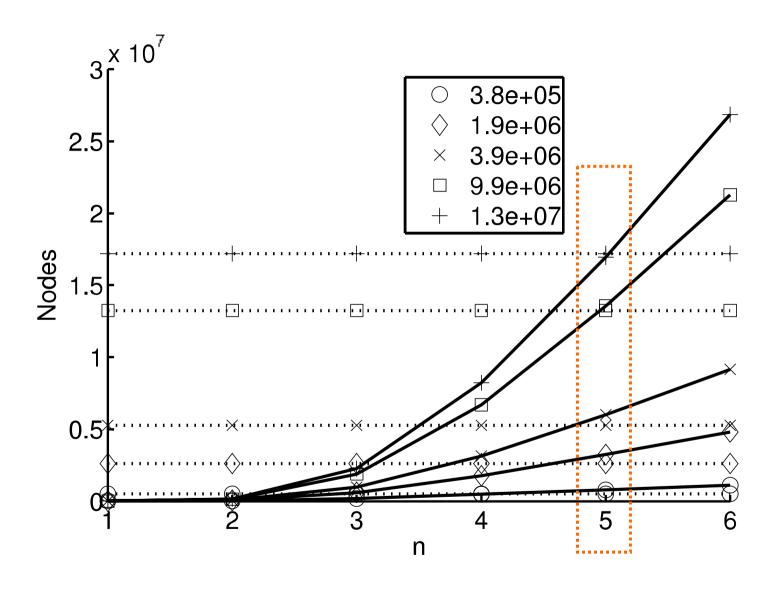
Graphical Model Initialization

- Given a single input sequence
 - Ukkonen's linear time suffix tree construction algorithm is run on its reverse to produce a prefix tree
 - This identifies the nodes in the graphical model we need to represent
 - The tree is traversed and path compressed parameters for the Pitman Yor processes are assigned to each remaining Pitman Yor process

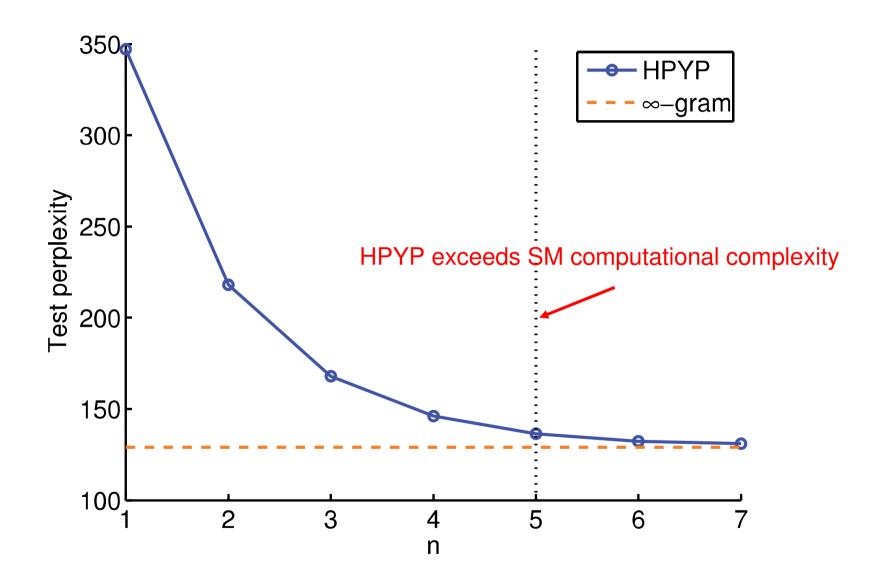
Nodes In The Graphical Model



Never build more than a 5-gram



Sequence Memoizer Bounds N-Gram Performance



Language Modelling Results

AP News Test Perplexity

[Mnih & Hinton, 2009]	112.1
[Bengio et al., 2003]	109.0
4-gram Modified Kneser-Ney [Teh, 2006]	102.4
4-gram HPYP [Teh, 2006]	101.9
Sequence Memoizer (SM)	96.9

The Sequence Memoizer

- The Sequence Memoizer is a deep (unbounded) smoothing Markov model
- It can be used to learn a joint distribution over discrete sequences in time and space linear in the length of a single observation sequence
- It is equivalent to a smoothing ∞-gram but costs no more to compute than a 5-gram