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Abstract

Current medical record keeping technology relies heavily upon human capacity to effectively summarize and infer infor-
mation from free-text physician notes. We propose a novel method to suggest diagnostic code assignment for patient visits,
based upon narrative medical notes. We applied a supervised latent Dirichlet allocation model to a corpora of free-text med-
ical notes from NewYork - Presbyterian Hospital to infer a set of specific ICD-9 codes for each patient note. Evaluation of
the predictions were conducted by comparison to a gold-standard set of ICD-9s assigned to a set of patient notes.

1 Introduction

Despite the growing emphasis on meaningful use of technology in medicine, many aspects of medical record-keeping remain a manual
process. Diagnostic coding for billing and insurance purposes is often handled by professional medical coders who must explore a patient’s
extensive clinical record before assigning the proper codes. So while electronic health records (EHRs) should be adopted by most medical
institutions within the next several years, largely due to the provisions of HITECH under the American Recovery and Reinvestment Act [4],
there has been little movement forward in automating medical coding.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [15].

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[14, 8, 13, 5], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [12] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: International Challenge: Classifying Clinical Free Text Using Natural
Language Processing (website). Most of the classification strategies included word matching and rule-based algorithms. [9, 6, 7]. The data
set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports - clearly
limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document scope as
large as ours was the 2008 Lita et al publication [11]. Lita proposed support vector machine and bayesian ridge regression methods to assign
appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Methods

2.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patients chief complaint, diagnostic findings, therapy
administered, patients response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
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a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

2.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patients visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

2.3 Supervised Topic Models

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

2.4 Generative Model

Given a fixed set of parameters: β1:K , the K topics, α, the parameter for the document specific dirichlet distribution, and η, the response
variable parameter, the generative process for documents and responses is as follows:

1. Draw topic proportions θ | α ∼ Dir (α)

2. For each word:

(a) Draw topic assignment zn | θ ∼Mult (θ)
(b) Draw word wn | zn, β1:K ∼Mult (βzn)

3. For each ICD-9 code from the root of the hierarchy and recursively descending the tree:

(a) Draw regression coefficient ηi | µ ∼ N (µ, 1)

(b) Draw a response variable yi | z̄, ηi, Y, ξ ∼ Φ(ηT
i z̄)ψ(Y )

Z where z̄ = N−1
∑N
n=1 zn and ψ (Y ) = exp

{∑
{p,c} f(p, c)

}
and

f(0, 0) = ξ0
f(0, 1) = −∞
f(1, 0) = ξ1
f(1, 1) = ξ2
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Figure 1: adapted sLDA model

We will employ a data augmentation scheme with auxiliary variables ai in the probit model such that:

yi ∼
{

1,
0,

ai ≥ 0
ai < 0

(1)

ai ∼ N
(
ηTi z̄, 1

)
(2)

ηi ∼ N (µ = 0, 1) (3)

2.5 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation 4.

The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: markov chain monte carlo (MCMC). Since in this model it is possible
to sample from the conditional distributions for all variables we will use the gibbs sampling algorithm to obtain an approximation to this
posterior. In particular, we will derive a Rao-Blackwellized gibbs sampler for the supervised topic model for general exponential family
response variables and then for our model with a probit response variable.

2.6 Rao-Blackwellization

To derive the Rao-Blackwellized gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint
distribution shown in Equations 5-8.
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2.7 Gibbs Sampling

To derive the gibbs sampler for the general exponential family form as well as the probit regression model, we derive the individual conditional
probability distributions for all latent variables and parameters.

2.7.1 p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, m. The conditional probability with respect to this latent variable is proportional to the joint
distribution up to a constant.

p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

) ∝ p (zm,n, z−(m,n),Y,w, η, α, β, µ, ξ
)

(9)

Due to the factorization of this model we can rewrite the joint distribution as the following:

∝
I∏
i=1

[p (ηi;µ) p (ym,i | zm,1:N , ηiξ)] p
(
zm,n, z−(m,n),w, η, α, β, µ

)
(10)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [10].

∝
I∏
i=1

[p (ym,i | zm,1:N , ηi, ξ)]
(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(•),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(•),wm,n

+ βk,v

) (11)

Here, nk,−(m,n)
m,v represents the count of word v in document m assigned to topic k omitting the (m,n)th word count. For exponential family

distributions, the normalization contant, h(ym,i), does not depend on zm,n.

∝ exp

{
I∑
i=1

(
ηTi z̄

)
ym,i −A

(
ηTi z̄

)}(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(•),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(•),wm,n

+ βk,v

) (12)

Given this expression, p
(
zm,n | z−(m,n),Y,w, η, α, β, µ

)
can be sampled through enumeration as seen in Equation 13. In the case of

probit regression, the expression for 12 evaluates to Equation 14. Equivalently we can parameterize the model with an auxiliary variable ai,
resulting in Equation 15.
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2.7.2 p (ηi | z,Y, µ) or p (ηi | z,a, µ)in the augmented probit regression model

Given that ηi and am,i are distributed normally, this posterior distribution is also normal. In the case for general exponential family distribu-
tions, ηi can remain a parameter without a prior, fit with maximimum likelihood in the usual fashion.

p (ηi | z,a, µ) = N
(
ηi | µ̂i, Ŝi

)
(16)

µ̂i = ŜiZ̄Ta(•),i

Ŝi
−1

= I + Z̄T Z̄

2.7.3 p (am,i | z,Y, η) in the augmented probit regression model

In the augmented probit regression model, the posterior distribution of ai is distributed according to a truncated normal distribution.

p (am,i | z,Y, η) = truncN (am,i | ηTi z̄,1, ym,i)
2.7.4 p (ym,i | η,a, ξ)
In our model, response variables are not always observed and are treated as latent and sampled where appropriate. There are two factors
influencing predictions of the response variable, ym,i. There is an undirected model enforcing the aforementioned constraints and providing
a prior and there is the probit regression.

p (ym,i | η,a, ξ) ∝ ψ (Y) δ (sign (am,i) = ym,i)N
(
am,i | ηTi z̄,1

)
(17)

p (ym,i | η,a, ξ) ∝ ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (18)

Again, this conditional distribution can be evaluated through enumerations and normalization.

p (ym,i | η,a, ξ) =
ψ (Y) truncN (am,i | ηTi z̄,1, ym,i)∑
ym,i

ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (19)

3 Results

4 Conclusion
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Abstract

Current medical record keeping technology relies heavily upon human capacity to effectively summarize and infer infor-
mation from free-text physician notes. We propose a novel method to suggest diagnostic code assignment for patient visits,
based upon narrative medical notes. We applied a supervised latent Dirichlet allocation model to a corpora of free-text med-
ical notes from NewYork - Presbyterian Hospital to infer a set of specific ICD-9 codes for each patient note. Evaluation of
the predictions were conducted by comparison to a gold-standard set of ICD-9s assigned to a set of patient notes.

1 Introduction

Despite the growing emphasis on meaningful use of technology in medicine, many aspects of medical record-keeping remain a manual
process. Diagnostic coding for billing and insurance purposes is often handled by professional medical coders who must explore a patient’s
extensive clinical record before assigning the proper codes. So while electronic health records (EHRs) should be adopted by most medical
institutions within the next several years, largely due to the provisions of HITECH under the American Recovery and Reinvestment Act [4],
there has been little movement forward in automating medical coding.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [15].

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[14, 8, 13, 5], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [12] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: International Challenge: Classifying Clinical Free Text Using Natural
Language Processing (website). Most of the classification strategies included word matching and rule-based algorithms. [9, 6, 7]. The data
set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports - clearly
limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document scope as
large as ours was the 2008 Lita et al publication [11]. Lita proposed support vector machine and bayesian ridge regression methods to assign
appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Methods

2.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patients chief complaint, diagnostic findings, therapy
administered, patients response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
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a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

2.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patients visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

2.3 Supervised Topic Models

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

2.4 Generative Model

Given the number of topics, K, the global prior over topic proportions, α′, and the prior over topics, γ, the generative process for documents
and responses is as follows:

1. For each topic:

(a) Draw a distribution over words βk ∼ Dir (u, γ)

2. For each ICD9 Code:

(a) Draw regression coefficient ηi | µ, σ ∼ N (µ, σ)

3. Draw a prior over topic proportions m | α′ ∼ Dir (u, α′)

4. For each document:

(a) Draw topic proportions θd | α ∼ Dir (m,α)
(b) For each word:

i. Draw topic assignment zn,d | θd ∼Mult (θd)
ii. Draw word wn,d | zn,d, β1:K ∼Mult (βzn

)
(c) For each ICD-9 code from the root of the hierarchy and recursively descending the tree:
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I

a d,i

Yd,i

Figure 1: adapted sLDA model

i. Draw a response variable yi | z̄, ηi, yparent ∼ Φ(ηTi z̄, yparent) where z̄ = N−1
∑N
n=1 zn and Φ refers to a conditional

probit model.

We will employ a data augmentation scheme with auxiliary variables ai in the probit model where:

yi ∼
{

1,
0,

ai > 0 and yparent = 1
otherwise

(1)

ai ∼ N
(
ηTi z̄, 1

)
(2)

2.5 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation 4.

The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler for the supervised topic model.

2.6 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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2.7 Gibbs Sampling

To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved variables.

2.7.1 p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, m. The conditional probability with respect to this latent variable is proportional to the joint
distribution up to a constant.

p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

) ∝ p (zm,n, z−(m,n),Y,w, η, α, β, µ, ξ
)

(8)

Due to the factorization of this model we can rewrite the joint distribution as the following:

∝
I∏
i=1

[p (ηi;µ) p (ym,i | zm,1:N , ηiξ)] p
(
zm,n, z−(m,n),w, η, α, β, µ

)
(9)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [10].

∝
I∏
i=1

[p (ym,i | zm,1:N , ηi, ξ)]
(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(·),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(·),wm,n

+ βk,v

) (10)

Here, nk,−(m,n)
m,v represents the count of word v in document m assigned to topic k omitting the (m,n)th word count. For exponential family

distributions, the normalization contant, h(ym,i), does not depend on zm,n.

∝ exp

{
I∑
i=1

(
ηTi z̄

)
ym,i −A

(
ηTi z̄

)}(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(•),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(•),wm,n

+ βk,v

) (11)

Given this expression, p
(
zm,n | z−(m,n),Y,w, η, α, β, µ

)
can be sampled through enumeration as seen in Equation 13. In the case of

probit regression, the expression for 11 evaluates to Equation 14. Equivalently we can parameterize the model with an auxiliary variable ai,
resulting in Equation 15.
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2.7.2 p (ηi | z,Y, µ) or p (ηi | z,a, µ)in the augmented probit regression model

Given that ηi and am,i are distributed normally, this posterior distribution is also normal. In the case for general exponential family distribu-
tions, ηi can remain a parameter without a prior, fit with maximimum likelihood in the usual fashion.

p (ηi | z,a, µ) = N
(
ηi | µ̂i, Ŝi

)
(15)

µ̂i = ŜiZ̄Ta(•),i

Ŝi
−1

= I + Z̄T Z̄

2.7.3 p (am,i | z,Y, η) in the augmented probit regression model

In the augmented probit regression model, the posterior distribution of ai is distributed according to a truncated normal distribution.

p (am,i | z,Y, η) = truncN (am,i | ηTi z̄,1, ym,i)
2.7.4 p (ym,i | η,a, ξ)
In our model, response variables are not always observed and are treated as latent and sampled where appropriate. There are two factors
influencing predictions of the response variable, ym,i. There is an undirected model enforcing the aforementioned constraints and providing
a prior and there is the probit regression.

p (ym,i | η,a, ξ) ∝ ψ (Y) δ (sign (am,i) = ym,i)N
(
am,i | ηTi z̄,1

)
(16)

p (ym,i | η,a, ξ) ∝ ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (17)

Again, this conditional distribution can be evaluated through enumerations and normalization.

p (ym,i | η,a, ξ) =
ψ (Y) truncN (am,i | ηTi z̄,1, ym,i)∑
ym,i

ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (18)

3 Results

4 Conclusion
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Abstract

Current medical record keeping technology relies heavily upon human capacity to effectively summarize and infer infor-
mation from free-text physician notes. We propose a novel method to suggest diagnostic code assignment for patient visits,
based upon narrative medical notes. We applied a supervised latent Dirichlet allocation model to a corpora of free-text med-
ical notes from NewYork - Presbyterian Hospital to infer a set of specific ICD-9 codes for each patient note. Evaluation of
the predictions were conducted by comparison to a gold-standard set of ICD-9s assigned to a set of patient notes.

1 Introduction

Despite the growing emphasis on meaningful use of technology in medicine, many aspects of medical record-keeping remain a manual
process. Diagnostic coding for billing and insurance purposes is often handled by professional medical coders who must explore a patient’s
extensive clinical record before assigning the proper codes. So while electronic health records (EHRs) should be adopted by most medical
institutions within the next several years, largely due to the provisions of HITECH under the American Recovery and Reinvestment Act [? ],
there has been little movement forward in automating medical coding.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [? ].

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[? ? ? ? ], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years. A
subset of earlier work proposed various methods on small corpora, based on a few specific diseases [? ] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: International Challenge: Classifying Clinical Free Text Using Natural
Language Processing (website). Most of the classification strategies included word matching and rule-based algorithms. [? ? ? ]. The data
set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports - clearly
limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document scope as
large as ours was the 2008 Lita et al publication [? ]. Lita proposed support vector machine and bayesian ridge regression methods to assign
appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Methods

2.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patients chief complaint, diagnostic findings, therapy
administered, patients response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within

1

a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

2.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patients visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

2.3 Supervised Topic Models

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [? ].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [? ].

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [? ].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [? ]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

2.4 Generative Model

Given the number of topics, K, the global prior over topic proportions, α′, and the prior over topics, γ, the generative process for documents
and responses is as follows:

1. For each topic:

(a) Draw a distribution over words βk ∼ Dir (u, γ)

2. For each ICD9 Code:

(a) Draw regression coefficient ηi | µ, σ ∼ N (µ, σ)

3. Draw a prior over topic proportions m | α′ ∼ Dir (u, α′)

4. For each document:

(a) Draw topic proportions θd | α ∼ Dir (m,α)
(b) For each word:

i. Draw topic assignment zn,d | θd ∼Mult (θd)
ii. Draw word wn,d | zn,d, β1:K ∼Mult (βzn

)
(c) For each ICD-9 code from the root of the hierarchy and recursively descending the tree:
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Figure 1: adapted sLDA model

i. Draw a response variable yi | z̄, ηi, yparent ∼ Φ(ηTi z̄, yparent) where z̄ = N−1
∑N
n=1 zn and Φ refers to a conditional

probit model.

We will employ a data augmentation scheme with auxiliary variables ai in the probit model where:

yi ∼
{

1,
0,

ai > 0 and yparent = 1
otherwise

(1)

ai ∼ N
(
ηTi z̄, 1

)
(2)

2.5 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation 4.

The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler for the supervised topic model.

2.6 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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2.7 Gibbs Sampling

To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved variables.

2.7.1 p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, m. The conditional probability with respect to this latent variable is proportional to the joint
distribution up to a constant.

p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

) ∝ p (zm,n, z−(m,n),Y,w, η, α, β, µ, ξ
)

(8)

Due to the factorization of this model we can rewrite the joint distribution as the following:

∝
I∏
i=1

[p (ηi;µ) p (ym,i | zm,1:N , ηiξ)] p
(
zm,n, z−(m,n),w, η, α, β, µ

)
(9)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [? ].

∝
I∏
i=1

[p (ym,i | zm,1:N , ηi, ξ)]
(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(·),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(·),wm,n

+ βk,v

) (10)

Here, nk,−(m,n)
m,v represents the count of word v in document m assigned to topic k omitting the (m,n)th word count. For exponential family

distributions, the normalization contant, h(ym,i), does not depend on zm,n.

∝ exp

{
I∑
i=1

(
ηTi z̄

)
ym,i −A

(
ηTi z̄

)}(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(•),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(•),wm,n

+ βk,v

) (11)

Given this expression, p
(
zm,n | z−(m,n),Y,w, η, α, β, µ

)
can be sampled through enumeration as seen in Equation 13. In the case of

probit regression, the expression for ?? evaluates to Equation 14. Equivalently we can parameterize the model with an auxiliary variable ai,
resulting in Equation 15.
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2.7.2 p (ηi | z,Y, µ) or p (ηi | z,a, µ)in the augmented probit regression model

Given that ηi and am,i are distributed normally, this posterior distribution is also normal. In the case for general exponential family distribu-
tions, ηi can remain a parameter without a prior, fit with maximimum likelihood in the usual fashion.

p (ηi | z,a, µ) = N
(
ηi | µ̂i, Ŝi

)
(15)

µ̂i = ŜiZ̄Ta(•),i

Ŝi
−1

= I + Z̄T Z̄

2.7.3 p (am,i | z,Y, η) in the augmented probit regression model

In the augmented probit regression model, the posterior distribution of ai is distributed according to a truncated normal distribution.

p (am,i | z,Y, η) = truncN (am,i | ηTi z̄,1, ym,i)
2.7.4 p (ym,i | η,a, ξ)
In our model, response variables are not always observed and are treated as latent and sampled where appropriate. There are two factors
influencing predictions of the response variable, ym,i. There is an undirected model enforcing the aforementioned constraints and providing
a prior and there is the probit regression.

p (ym,i | η,a, ξ) ∝ ψ (Y) δ (sign (am,i) = ym,i)N
(
am,i | ηTi z̄,1

)
(16)

p (ym,i | η,a, ξ) ∝ ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (17)

Again, this conditional distribution can be evaluated through enumerations and normalization.

p (ym,i | η,a, ξ) =
ψ (Y) truncN (am,i | ηTi z̄,1, ym,i)∑
ym,i

ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (18)

3 Results

4 Conclusion
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Abstract

Current medical record keeping technology relies heavily upon human capacity to effectively summarize and infer infor-
mation from free-text physician notes. We propose a novel method to suggest diagnostic code assignment for patient visits,
based upon narrative medical notes. We applied a supervised latent Dirichlet allocation model to a corpora of free-text med-
ical notes from NewYork - Presbyterian Hospital to infer a set of specific ICD-9 codes for each patient note. Evaluation of
the predictions were conducted by comparison to a gold-standard set of ICD-9s assigned to a set of patient notes.

1 Introduction

Despite the growing emphasis on meaningful use of technology in medicine, many aspects of medical record-keeping remain a manual
process. Diagnostic coding for billing and insurance purposes is often handled by professional medical coders who must explore a patient’s
extensive clinical record before assigning the proper codes. So while electronic health records (EHRs) should be adopted by most medical
institutions within the next several years, largely due to the provisions of HITECH under the American Recovery and Reinvestment Act [? ],
there has been little movement forward in automating medical coding.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [? ].

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[? ? ? ? ], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years. A
subset of earlier work proposed various methods on small corpora, based on a few specific diseases [? ] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: International Challenge: Classifying Clinical Free Text Using Natural
Language Processing (website). Most of the classification strategies included word matching and rule-based algorithms. [? ? ? ]. The data
set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports - clearly
limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document scope as
large as ours was the 2008 Lita et al publication [? ]. Lita proposed support vector machine and bayesian ridge regression methods to assign
appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Methods

2.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patients chief complaint, diagnostic findings, therapy
administered, patients response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
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a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

2.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patients visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

2.3 Supervised Topic Models

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [? ].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [? ].

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [? ].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [? ]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

2.4 Generative Model

Given the number of topics, K, the global prior over topic proportions, α′, and the prior over topics, γ, the generative process for documents
and responses is as follows:

1. For each topic:

(a) Draw a distribution over words βk ∼ Dir (u, γ)

2. For each ICD9 Code:

(a) Draw regression coefficient ηi | µ, σ ∼ N (µ, σ)

3. Draw a prior over topic proportions m | α′ ∼ Dir (u, α′)

4. For each document:

(a) Draw topic proportions θd | α ∼ Dir (m,α)
(b) For each word:

i. Draw topic assignment zn,d | θd ∼Mult (θd)
ii. Draw word wn,d | zn,d, β1:K ∼Mult (βzn

)
(c) For each ICD-9 code from the root of the hierarchy and recursively descending the tree:

2

D

N

I

θd

α
Zd,n Wd,n

Yd,i

KΦk

ηi

β

a d,i μ
I

a d,i

Yd,i

Figure 1: adapted sLDA model

i. Draw a response variable yi | z̄, ηi, yparent ∼ Φ(ηTi z̄, yparent) where z̄ = N−1
∑N
n=1 zn and Φ refers to a conditional

probit model.

We will employ a data augmentation scheme with auxiliary variables ai in the probit model where:

yi ∼
{

1,
0,

ai > 0 and yparent = 1
otherwise

(1)

ai ∼ N
(
ηTi z̄, 1

)
(2)

2.5 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation 4.

The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler for the supervised topic model.

2.6 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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2.7 Gibbs Sampling

To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved variables.

2.7.1 p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, m. The conditional probability with respect to this latent variable is proportional to the joint
distribution up to a constant.

p
(
zm,n | z−(m,n),Y,w, η, α, β, µ, ξ

) ∝ p (zm,n, z−(m,n),Y,w, η, α, β, µ, ξ
)

(8)

Due to the factorization of this model we can rewrite the joint distribution as the following:

∝
I∏
i=1

[p (ηi;µ) p (ym,i | zm,1:N , ηiξ)] p
(
zm,n, z−(m,n),w, η, α, β, µ

)
(9)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [? ].

∝
I∏
i=1

[p (ym,i | zm,1:N , ηi, ξ)]
(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(·),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(·),wm,n

+ βk,v

) (10)

Here, nk,−(m,n)
m,v represents the count of word v in document m assigned to topic k omitting the (m,n)th word count. For exponential family

distributions, the normalization contant, h(ym,i), does not depend on zm,n.

∝ exp

{
I∑
i=1

(
ηTi z̄

)
ym,i −A

(
ηTi z̄

)}(
n
k,−(m,n)
m,(•) + αk

) n
k,−(m,n)
(•),wm,n

+ βk,wm,n∑V
v=1

(
n
k,−(m,n)
(•),wm,n

+ βk,v

) (11)

Given this expression, p
(
zm,n | z−(m,n),Y,w, η, α, β, µ

)
can be sampled through enumeration as seen in Equation 13. In the case of

probit regression, the expression for 11 evaluates to Equation 14. Equivalently we can parameterize the model with an auxiliary variable ai,
resulting in Equation 15.
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2.7.2 p (ηi | z,Y, µ) or p (ηi | z,a, µ)in the augmented probit regression model

Given that ηi and am,i are distributed normally, this posterior distribution is also normal. In the case for general exponential family distribu-
tions, ηi can remain a parameter without a prior, fit with maximimum likelihood in the usual fashion.

p (ηi | z,a, µ) = N
(
ηi | µ̂i, Ŝi

)
(15)

µ̂i = ŜiZ̄Ta(•),i

Ŝi
−1

= I + Z̄T Z̄

2.7.3 p (am,i | z,Y, η) in the augmented probit regression model

In the augmented probit regression model, the posterior distribution of ai is distributed according to a truncated normal distribution.

p (am,i | z,Y, η) = truncN (am,i | ηTi z̄,1, ym,i)
2.7.4 p (ym,i | η,a, ξ)
In our model, response variables are not always observed and are treated as latent and sampled where appropriate. There are two factors
influencing predictions of the response variable, ym,i. There is an undirected model enforcing the aforementioned constraints and providing
a prior and there is the probit regression.

p (ym,i | η,a, ξ) ∝ ψ (Y) δ (sign (am,i) = ym,i)N
(
am,i | ηTi z̄,1

)
(16)

p (ym,i | η,a, ξ) ∝ ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (17)

Again, this conditional distribution can be evaluated through enumerations and normalization.

p (ym,i | η,a, ξ) =
ψ (Y) truncN (am,i | ηTi z̄,1, ym,i)∑
ym,i

ψ (Y) truncN (am,i | ηTi z̄,1, ym,i) (18)

3 Results

4 Conclusion
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Abstract

Current medical record keeping technology relies heavily upon human capacity to effectively summarize and infer infor-
mation from free-text physician notes. We propose a novel method to suggest diagnostic code assignment for patient visits,
based upon narrative medical notes. We applied a supervised latent Dirichlet allocation model to a corpora of free-text med-
ical notes from NewYork - Presbyterian Hospital to infer a set of specific ICD-9 codes for each patient note. Evaluation of
the predictions were conducted by comparison to a gold-standard set of ICD-9s assigned to a set of patient notes.

1 Introduction

Despite the growing emphasis on meaningful use of technology in medicine, many aspects of medical record-keeping remain a manual
process. Diagnostic coding for billing and insurance purposes is often handled by professional medical coders who must explore a patient’s
extensive clinical record before assigning the proper codes. So while electronic health records (EHRs) should be adopted by most medical
institutions within the next several years, largely due to the provisions of HITECH under the American Recovery and Reinvestment Act [4],
there has been little movement forward in automating medical coding.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [15].

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[14, 8, 13, 5], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [12] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [9, 6, 7].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [11]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

2.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within

1

a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

2.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

2.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

3 Methods

Figure 1: adapted sLDA model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

2

(a) Draw a distribution over words φk ∼ DirV (1, γ)
2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [10]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [10].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}
p
(
ail,c | ηil,c

) (
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation ??, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) , δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics ? ].

Posterior inference was performed using the “direct assignment” method of ? ].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

4

3.3 Prediction

3.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

4 Results

5 Conclusion
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5

5.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

• Benefits of combining human categorization information into “topic models”

•

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [15].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Figure 1: adapted sLDA model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)

(c) For each level of the ICD-9 code tree, l:
i. For each ICD-9 code at this level, c:

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [10]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [10].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}
p
(
ail,c | ηil,c

) (
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

2

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) , δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics ? ].

Posterior inference was performed using the “direct assignment” method of ? ].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.

4

In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[14, 8, 13, 5], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [12] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [9, 6, 7].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [11]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

• Benefits of combining human categorization information into “topic models”

•

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [15].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Figure 1: adapted sLDA model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)

(c) For each level of the ICD-9 code tree, l:
i. For each ICD-9 code at this level, c:

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [10]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [10].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}
p
(
ail,c | ηil,c

) (
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

2

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [17].

Posterior inference was performed using the “direct assignment” method of Teh et al. [16].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.
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3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.

4

In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[14, 8, 13, 5], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [12] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [9, 6, 7].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [11]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

• Benefits of combining human categorization information into “topic models”

•

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Figure 1: adapted sLDA model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)

(c) For each level of the ICD-9 code tree, l:
i. For each ICD-9 code at this level, c:

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

2

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.
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3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.

4

In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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5

6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

• Benefits of combining human categorization information into “topic models”
• LDA solved free text
• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)
• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

1

Figure 1: adapted sLDA model

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].
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∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}
p
(
ail,c | ηil,c

) (
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) , δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)
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p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is

4

represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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5

6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

• Benefits of combining human categorization information into “topic models”
• LDA solved free text
• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)
• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

1

Figure 1: adapted sLDA model

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

2

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)
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p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is

4

represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist surprisingly many sources of unstructured text data that have been partially or completely categorized by human editors. Examples
include hierarchical directories of webpages [? ], large hierarchically annotated product catalogs (e.g. [? ] as available from [? ]), manually
annotated patient medical records, and many more. In this work we show how to combine these two sources of information in a single model
that allows us to, amongst other things, automatically annotate and/or categorize new text documents, effectively inserting them into the
category

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:

1

Figure 1: adapted sLDA model

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

2

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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5

6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist surprisingly many sources of unstructured text data that have been partially or completely categorized by human editors. Examples
include hierarchical directories of webpages [? ], large hierarchically annotated product catalogs (e.g. [? ] as available from [? ]), manually
annotated patient medical records, and many more. In this work we show how to combine these two sources of information in a single model
that allows us to, amongst other things, automatically annotate and/or categorize new text documents, effectively inserting them into the
category

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:

1

Figure 1: adapted sLDA model

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

2

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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5

6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist surprisingly many sources of unstructured text data that have been partially or completely categorized by human editors. Examples
include hierarchical directories of webpages [? ], large hierarchically annotated product catalogs (e.g. [? ] as available from [? ]), manually
annotated patient medical records, and many more. In this work we show how to combine these two sources of information in a single model
that allows us to, amongst other things, automatically annotate and/or categorize new text documents, effectively inserting them into the
category

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:

1

Figure 1: adapted sLDA model

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

2

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [? ], product descriptions and catalogs (e.g. [? ] as available from [? ]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records and the International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned to them[]). In this work we show how to combine
these two sources of information using a single model that allows one, among other things, to automatically categorize new text documents,
suggest labels that might be inaccurate, and compute improved similarities between documents for information retrieval purposes. The
models and techniques that we develop in this paper are applicable in other domains as well, for instance, unstructured representations of
data that have been hierarchically classified (e.g. image catalogs with bags of features image representations).

In this work we extent supervised latent Dirichlet allocation (sLDA) [2] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) augmented with per document “supervision” often taking the form of a single numerical or categorical “label.”
More generally this “supervision” can be seen as extra data generated about a document; for instance its quality or relevance (e.g. online
reviews), marks given to written work (e.g. graded essays), or the number of times a web document is linked. These labels are usually
modeled as having been generated conditioned on the mix of topics found in a document. It has been demonstrated that the signal provided
by this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
As one concrete example consider web retailers. They often have both a browse-able hierarchy and free-text descriptions of all products
they sell. The situation of each product in the product hierarchy (often multiply situated) can be seen as a form of multiple labeling and as
a similar products based on the similarity of their textual description is an u. An equivalent challenge, particularly for larger retailers, is to
situate the merchandise in as many categories as possible.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

1

Figure 1: adapted sLDA model

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.
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3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Conclusion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist surprisingly many sources of unstructured text data that have been partially or completely categorized by human editors. Examples
include hierarchical directories of webpages [? ], large hierarchically annotated product catalogs (e.g. [? ] as available from [? ]), manually
annotated patient medical records, and many more. In this work we show how to combine these two sources of information in a single model
that allows us to, amongst other things, automatically annotate and/or categorize new text documents, effectively inserting them into the
category

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

An automated process would ideally produce a more complete and accurate diagnosis lists. Also, this model will reveal information about
the medical records themselves. For example, we may gain an understanding of what a specific code actually means in terms of clinical
narratives. Similarly, viewing the distribution of topics over discharge summaries may reveal information about the latent structure of
clinician documentation. Lastly, the sLDA model would provide a novel approach to dealing with the problem of high dimensionality when
representing narrative text in a vector space specifically by reducing dimensions from an entire vocabulary of potentially tens of thousands
of words to a set of several dozen topics.

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:

1

Figure 1: adapted sLDA model

A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

2

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Conclusion

References
[1] International classification of disease. http://bioportal.bioontology.org/ontologies/35686, May 2008.

[2] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[4] P Brown, DG Cochrane, and JR Allegra. The ngram cc classifier: A novel method of automatically creating cc classifiers based on icd9 groupings.
Advances in Disease Surveillance, 1:30, 2006.

[5] K Crammer, M Dredze, K Ganchev, PP Talukdar, and S Carroll. Automatic code assignment to medical text. Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Language Processing, pages 129–136, 2007.

[6] R Farkas and G Szarvas. Automatic construction of rule-based icd-9-cm coding systems. BMC bioinformatics, 9(Suppl 3):S10, 2008.

[7] HR FreitasJunior, B RibeiroNeto, RF Vale, AHF Laender, and LRS Lima. Categorizationdriven crosslanguage retrieval of medical information. Journal
of the American Society for Information Science and Technology, 57(4):501–510, 2006.
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5

6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [? ], product descriptions and catalogs (e.g. [? ] as available from [? ]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records and the International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned to them[]). In this work we show how to combine
these two sources of information using a single model that allows one, among other things, to automatically categorize new text documents,
suggest labels that might be inaccurate, and compute improved similarities between documents for information retrieval purposes. The
models and techniques that we develop in this paper are applicable in other domains as well, for instance, unstructured representations of
data that have been hierarchically classified (e.g. image catalogs with bags of features image representations).

In this work we extent supervised latent Dirichlet allocation (sLDA) [2] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) augmented with per document “supervision” often taking the form of a single numerical or categorical “label.”
More generally this “supervision” can be seen as extra data generated about a document; for instance its quality or relevance (e.g. online
reviews), marks given to written work (e.g. graded essays), or the number of times a web document is linked. These labels are usually
modeled as having been generated conditioned on the mix of topics found in a document. It has been demonstrated that the signal provided
by this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
As one concrete example consider web retailers. They often have both a browse-able hierarchy and free-text descriptions of all products
they sell. The situation of each product in the product hierarchy (often multiply situated) can be seen as a form of multiple labeling and as
a similar products based on the similarity of their textual description is an u. An equivalent challenge, particularly for larger retailers, is to
situate the merchandise in as many categories as possible.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

1

Figure 1: adapted sLDA model

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Conclusion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

The benefits of supervision in topic modeling

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [? ], product descriptions and catalogs (e.g. [? ] as available from [? ]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records and the International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned to them[]). In this work we show how to combine
these two sources of information using a single model that allows one, among other things, to automatically categorize new text documents,
suggest labels that might be inaccurate, and compute improved similarities between documents for information retrieval purposes. The
models and techniques that we develop in this paper are applicable in other domains as well, for instance, unstructured representations of
data that have been hierarchically classified (e.g. image catalogs with bags of features image representations).

In this work we extent supervised latent Dirichlet allocation (sLDA) [2] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) augmented with per document “supervision” often taking the form of a single numerical or categorical “label.”
More generally this “supervision” can be seen as extra data generated about a document; for instance its quality or relevance (e.g. online
reviews), marks given to written work (e.g. graded essays), or the number of times a web document is linked. These labels are usually
modeled as having been generated conditioned on the mix of topics found in a document. It has been demonstrated that the signal provided
by this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
As one concrete example consider web retailers. They often have both a browse-able hierarchy and free-text descriptions of all products
they sell. The situation of each product in the product hierarchy (often multiply situated) can be seen as a form of multiple labeling and as
a similar products based on the similarity of their textual description is an u. An equivalent challenge, particularly for larger retailers, is to
situate the merchandise in as many categories as possible.

In this paper we describe the use of a topic model based on supervised latent Dirichlet allocation (sLDA) to identify topics within narrative
discharge summaries and to automate the assignment of diagnostic codes, specifically International Classification of Disease 9th Revision,
Clinical Modification (ICD-9-CM) codes. There are a number of advantages to this approach. First, manually coding diagnoses is a time-
consuming and notoriously unreliable process. Many diagnoses are omitted in the final record, and a high error rate is found even in the
principal diagnoses [14].

• Benefits of combining human categorization information into “topic models”

• LDA solved free text

• supervised LDA improves LDA (extra info) and allows new inference (predict links, etc.)

• amazon, freshdirect, netflix, dmoz, pandora (music genome)

2 Background

3 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)

1

Figure 1: adapted sLDA model

4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn

)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2

3.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.3 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Conclusion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA) in the same manner as was done in supervised LDA (SLDA) prior art. We find that
the additional supervision signal that comes from multiple, hierarchically constrained labels substantially improves out-of-
sample label prediction in medical document labeling and product categorization tasks. Additionally, held-out likelihood

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [? ], product descriptions and catalogs (e.g. [? ] as available from [? ]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [2] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [3] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section ?? we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
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Figure 1: adapted sLDA model

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

2.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

2.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

2

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

2.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

2.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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2.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

2.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

2.3 Prediction

3 Experiments

3.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

3.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

3.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

3.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4 Results

5 Discussion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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5.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.

9

p
(θ
,z

1
:N
|w

1
:N
,y

1
:I
,φ

1
:K
,η

1
:I
,α
,β
,µ
,ξ

)
=

p
(θ
|α

)
“ Q N n

=
1
p

(z
n
|θ

)
p

(w
n
|z
n
,φ

1
:K

)”“ Q
K k
=

1
p

(φ
k
|β

)”“ Q
I i=

1
p

(y
i
|z

1
:N
,η
i
,ξ

)
p

(η
i
|µ

)”
R θ
p

(θ
|α

)
P K k=

1

“ Q N n
=

1
p

(z
n
|θ

)
p

(w
n
|z
n
,φ

1
:K

)”“ Q
K k
=

1
p

(φ
k
|β

)”“ Q
I i=

1
p

(y
i
|z

1
:N
,η
i
,ξ

)
p

(η
i
|µ

)” d
θ

(1
3)

Z θ

Z
φ
1
:K

p
(Y
,w
,z
,θ
,φ
,η
,α
,β
,µ
,ξ

)
d
θ
d
φ

1
:K

=

Z θ

Z
φ
1
:K

K Y k
=

1

p
(φ
k
;β

)
M Y m
=

1

( p
(θ
m

;α
)
N Y n
=

1

ˆ p(z
m
,n
|θ
m

)
p
` w m

,n
|φ

z
m

,n

´˜I Y i=
1

p
(y
m
,i
|z
m
,1

:N
,η
i
,ξ

)) I Y i=
1

p
(η
i
;µ

)
d
θ
d
φ

1
:K

(1
4)

p
(Y
,w
,z
,η
,α
,β
,µ
,ξ

)
=

I Y i=
1

" p
(η
i
;µ

)
M Y m
=

1

p
(y
m
,i
|z
m
,1

:N
,η
i
,ξ

)# Z φ
1
:K

K Y k
=

1

p
(φ
k
;β

)
M Y m
=

1

N Y n
=

1

p
` w m

,n
|φ

z
m

,n

´ dφ 1
:K

Z θ

M Y m
=

1

p
(θ
m

;α
)
N Y n
=

1

p
(z
m
,n
|θ
m

)
d
θ

(1
5)

=
I Y i=
1

" p
(η
i
;µ

)
M Y m
=

1

p
(y
m
,i
|z
m
,1

:N
,η
i
,ξ

)# K Y k
=

1

Γ
“ P V v

=
1
β
v

”
Q V v=

1
Γ

(β
v
)

Q V v=
1

Γ
` nk (·)

,v
+
β
v

´
Γ
“ P V v

=
1
n
k (·)
,v

+
β
v

”M Y m
=

1

Γ
“ P K k

=
1
α
k

”
Q K k=

1
Γ

(α
k
)

Q K k=
1

Γ
` nk m,

(·)
+
α
k

´
Γ
“ P K k

=
1
n
k m
,(
·)

+
α
k

”
(1

6)

=
I Y i=
1

" N
(η
i
|µ
,1

)
M Y m
=

1

h
(y

)
ex

p
n“ η

T i
z̄
” y
−
A
“ η

T i
z̄
”o#

K Y k
=

1

Γ
“ P V v

=
1
β
v

”
Q V v=

1
Γ

(β
v
)

Q V v=
1

Γ
` nk (•

),
v

+
β
v

´
Γ
“ P V v

=
1
n
k (•

),
v

+
β
v

”M Y m
=

1

Γ
“ P K k

=
1
α
k

”
Q K k=

1
Γ

(α
k
)

Q K k=
1

Γ
` nk m,

(•
)

+
α
k

´
Γ
“ P K k

=
1
n
k m
,(
•)

+
α
k

”
(1

7)

10



Hierarchically Supervised Latent Dirichlet Allocation

Adler Perotte Nicholas Bartlett Noemie Elhadad Frank Wood
Columbia University, New York, NY 10027, USA

{ajp9009@dbmi,bartlett@stat,noemie@dbmi,fwood@stat}.columbia.edu

Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA) in the same manner as was done in supervised LDA (SLDA) prior art. We find that
the additional supervision signal that comes from multiple, hierarchically constrained labels substantially improves out-of-
sample label prediction in medical document labeling and product categorization tasks. Additionally, held-out likelihood

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [? ], product descriptions and catalogs (e.g. [? ] as available from [? ]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [2] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [3] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 2 we introduce hierarchically supervised LDA (HSLDA), in Section 3.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
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Figure 1: adapted sLDA model

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

2.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

2.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [9]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

2

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [9].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

2.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

2.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.

3

2.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [16].

Posterior inference was performed using the “direct assignment” method of Teh et al. [15].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

2.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

2.3 Prediction

3 Experiments

3.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

3.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

3.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [1].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [1]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

3.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [3].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [2].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[13, 7, 12, 4], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [11] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [8, 5, 6].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [10]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

3.5 Evaluation

4 Results

5 Discussion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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5.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA) in the same manner as was done in supervised LDA (SLDA) prior art. We find that
the additional supervision signal that comes from multiple, hierarchically constrained labels substantially improves out-of-
sample label prediction in medical document labeling and product categorization tasks. Additionally, held-out likelihood

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 2 we introduce hierarchically supervised LDA (HSLDA), in Section 3.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)
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Figure 1: adapted sLDA model

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

2.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

2.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

2

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

2.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

2.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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2.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

2.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

2.3 Prediction

3 Experiments

3.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

3.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

3.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

3.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

3.5 Evaluation

4 Results

5 Discussion
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Figure 2: default
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Figure 3: default
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Figure 4: default
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5.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA) in the same manner as was done in supervised LDA (SLDA) prior art. We find that
the additional supervision signal that comes from multiple, hierarchically constrained labels substantially improves out-of-
sample label prediction in medical document labeling and product categorization tasks. Additionally, held-out likelihood

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 2 we introduce hierarchically supervised LDA (HSLDA), in Section 3.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Methods

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)
(b) For each word, n:

i. Draw topic assignment zn,d | θd ∼MultK (θd)

1

Figure 1: adapted sLDA model

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

2.1 Posterior Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

2.2 Gibbs Sampling

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2.2.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

2

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

2.2.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

2.2.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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2.2.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

2.2.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

2.3 Prediction

3 Experiments

3.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

3.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

3.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

3.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

3.5 Evaluation

4 Results

5 Discussion

• what about the nonparametric version of this?
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records.
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5.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 2 we introduce hierarchically supervised LDA (HSLDA), in Section 3.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)

1

Figure 1: adapted sLDA model

(b) For each word, n:
i. Draw topic assignment zn,d | θd ∼MultK (θd)

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3 Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2

3.1.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.1.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed is ADLER,
dotted is ADLER, and dot-dashed is ADLER.
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)

1

Figure 1: adapted sLDA model

(b) For each word, n:
i. Draw topic assignment zn,d | θd ∼MultK (θd)

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3 Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2

3.1.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.1.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed is ADLER,
dotted is ADLER, and dot-dashed is ADLER.
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)

1

Figure 1: adapted sLDA model

(b) For each word, n:
i. Draw topic assignment zn,d | θd ∼MultK (θd)

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3 Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.

2

3.1.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 4, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.1.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: ?? includes ancestor prediction performance, ??
results are for given (leaf) labels alone. Bottom row: ?? are the sensitivity curves from ?? aligned on threshold value, ?? are the 1-specificity
curves from ?? aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: ?? includes ancestor prediction
performance, ?? results are for given (leaf) labels alone. Bottom row: ?? are the sensitivity curves from ?? aligned on threshold value, ??
are the 1-specificity curves from ?? aligned on threshold value.
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

We define here a hierarchically supervised LDA model. We assume a pre-specified set of labels L. Each document is assigned a response of
either -1 or 1 for at least one, but potentially many, label(s) in L. A response of 1 or -1 to label l indicates if the document respectively is or
is not l. The label l for a document d will be used interchangeably to refer the observed response of document d to label l. The label set is
assumed to be an “is a” hieararchy. This means that if a label l1 is a parent of label l2 in the hierarchy and document d has a positive response
to the label l2 then document d also has a positive response to the label l1. Seen in a negative light, if document d has a negative response
to the l1 label then document d also has a negative response to the l2 label. To capture this hierarchical structure we model the labeling of
documents using a generative cascade of conditional probit regression models. Approximate inference is performed using Gibbs sampling.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, and the standard deviation σ used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight parameters for Dirichlet
prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional normal distribution asNk(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.
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Figure 1: adapted sLDA model

1. For each topic k = 1, . . . ,K:
• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:
• Draw the regression coefficients ηl | σ ∼ NK (−1, σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)
4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd:

– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl ∼ N
(
z̄Td ηl, 1

)
, where z̄d = N−1

d

∑Nd

n=1 zn,d
– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression is like logistic regression except instead of modeling
the logit of P (y = 1) using a linear form we model Φ−1(P (y = 1)) using a linear form, where Φ(·) is the CDF for a standard normal
distribution. In this case, the regression is conditional on the parents according to the constraints of the labeling hierarchy. The latent
variables al,d utilized here are also known as an auxiliary variables because the are introduced to make exact Gibbs sampling possible and
are not of primary interest.

3 Inference

In the Bayesian approach to statistical modeling the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it will often be the case that the set of labels L is not fully observed for every document. We will define
Ld to be the subset of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d
for l′ ∈ L\Ld from the full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [12].
Therefore, in our model the latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al,d}l∈L,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior. In particular, we will
derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.
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3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [12]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket, explicitly this means

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant [12] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 4,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients etal for l ∈ L. Given that ηl and al,d are distributed normally,
the posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(−1σ−1 + Z̄Tal
)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{−1
2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [18].

Posterior inference is performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir
(
m(·),1,m(·),2, . . . ,m(·),K

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(2, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
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epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.
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4.5 Evaluation

5 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

Given the number of topics, K, and broad gamma priors on hyperparameters, the generative process is as follows:

1. For each topic, k:

(a) Draw a distribution over words φk ∼ DirV (1, γ)

2. For each ICD9 code, c, at all levels in the tree, l:

(a) Draw regression coefficient ηil,c | σ ∼ NK (−1, σ)

3. Draw a prior over topic proportions β | α′ ∼ DirK (1, α′)
4. For each document, d:

(a) Draw topic proportions θd | β, α ∼ DirK (β, α)

1

Figure 1: adapted sLDA model

(b) For each word, n:
i. Draw topic assignment zn,d | θd ∼MultK (θd)

ii. Draw word wn,d | zn,d, β1:K ∼MultV (βzn)
(c) For each level of the ICD-9 code tree, l:

i. For each ICD-9 code at this level, c:
A. Draw a latent variable

ad,il,c ∼
{N (z̄T ηil,c , 1) , yparentl,c = 1
truncN− (z̄T ηil,c , 1) , yparentl,c = −1

where z̄ = N−1
∑N
n=1 zn and I = {i0, i1, ..., iL} and il = {il,0, il,1, ..., il,Cl

}
B. Draw a response variable yd,il,c | ad,il,c ∼

{
1,
−1,

ad,il,c > 0
otherwise

The generative model for the ICD-9 codes is equivalent to a probit regression model. In our case, the regression is conditional on the parents
according to the constraints of the ICD-9 code tree. The latent variable utilized here is also known as an auxiliary variable.

3 Inference

Given an observation of a set of ICD-9 codes and a document, the posterior distribution for the latent variables is given by Equation .

p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ | w1:N , yil,c∈I ;σ, λ
)

(1)

=
p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α

′, γ, w1:N , yil,c∈I ;σ, λ
)∫

θ,φ,a,η,α,α′,β,γ

∑
z p
(
θ, z1:N , φ1:K , ηil,c∈I , ail,c∈I , β, α, α′, γ, w1:N , yil,c∈I ;σ, λ

)
The denominator for this distribution is the marginal probability of the data and cannot be solved in closed form. This is often the case
in evaluating posterior distributions of non-trivial probabilistic models. We will appeal to one of the common methods for approximating
posterior distributions in the face of intractable normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it
is possible to sample from the conditional distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation
to this posterior. In particular, we will derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model, marginalizing θ1:D and φ1:K . For details regarding collapsing in LDA models see
Griffiths and Steyvers [12]. To derive the Gibbs sampler we evaluate the individual conditional probability distributions for all unobserved
variables.
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3.1.1 p
(
zm,n | z−(m,n),a,w, η, α, β, γ

)
For the purposes of sampling, we will be able to derive a representation of the joint distribution isolating a particular latent variable, z, for
a word instance, n, in a document instance, d. The conditional probability with respect to this latent variable is proportional to the joint
distribution of its markov blanket up to a constant.

p
(
zd,n | z−(d,n),a,w, η, α, β, γ

) ∝ p (zd,n, z−(d,n),a,w, η, α, β, γ
)

(2)

Due to the factorization of this model, we can rewrite the joint distribution as the following:

∝
∏
il,c∈I

p
(
ail,c | z, ηil,c

)
p
(
zd,n, z−(d,n),a,w, α, β, γ

)
(3)

We isolate only terms that depend on zm,n and absorb all other constant terms into the normalization constant [12].

∝
∏
il,c∈I

exp

{
−
(
z̄T ηil,c − ail,c

)2
2

}(
n
k,−(d,n)
d,(·) + αβk

) n
k,−(d,n)
(·),wd,n

+ γ∑V
v=1

(
n
k,−(d,n)
(·),wd,n

+ γ
) (4)

Here, nk,−(d,n)
d,v represents the count of word v in document d assigned to topic k omitting the (d, n)th word count.

Given Equation 2, p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p
(
ηil,c | z1:D,a;σ

)
Given that ηil,c and ad,il,c are distributed normally, this posterior distribution is also normal. We evaluated the model over various values of
σ where σ = {0.01, 0.1, 0.25, 1, 2}.

p
(
ηil,c | z1:D,a;σ

)
= N

(
ηil,c | µ̂i, Σ̂i

)
(5)

µ̂i = Σ̂i

(−1σ−1 + Z̄Ta(·),il,c
)

Σ̂−1
i = Iσ−1 + Z̄T Z̄

3.1.3 p
(
ad,il,c | z,Y, η

)
and p (ym,i | a)

In the augmented probit regression model, the posterior distribution of ail,c is distributed according to a truncated normal distribution where
the response variable is observed.

p
(
ad,il,c | z,Y, η

)
=
{
truncN+

(
ad,il,c | ηTi z̄,1, yd,il,c

)
if yd,il,c = 1

truncN− (ad,il,c | ηTi z̄,1, yd,il,c) if yd,il,c = −1
(6)

However, if yd,il,c is unobserved then ad,il,cmust be sampled jointly with yd,il,c to ensure that the Markov chain is ergodic. Suppose that
ad,il,c is sampled to have a negative value and yd,il,c is apporopriately sampled at -1. Although there exist valid states where ad,il,c > 0 and
yd,il,c = 1, they will never be reached by such a Markov chain since p

(
ad,il,c < 0 | yd,il,c = −1

)
= 1 and p

(
yd,il,c = −1 | ad,il,c < 0

)
= 1.

Therefore, to ensure ergodicity, ad,il,cand yd,il,c must be sampled from the joint distribution as shown in Equation ??.

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

) ∝ p (yil,c | a,y−(l,c)

)
p
(
ad,il,c | z,Y, η

)
(7)

p
(
yil,c | a,y−(l,c)

)
= δ

(
sign

(
ad,il,c

)
= yil,c

)
p
(
yil,c | yparentsl,c

) ∏
il̂,ĉ∈childrenl,c

p
(
yil̂,ĉ | yil,c

)
(8)

p
(
yil,c = −1 | yparentl,c

)
=
{

1, yparentl,c = −1
0.5, yparentl,c = 1

(9)

p
(
ad,il,c , yd,il,c | z,Y−(d,il,c), η

)

=


N (ad,il,c | z̄T ηil,c , 1) p (yd,il,c | ad,il,c) , yparentl,c = 1,∀yil̂,ĉ ∈ ychildrenl,c

, yil̂,ĉ = −1
truncN− (ad,il,c | z̄T ηil,c , 1) δ (yd,il,c = −1

)
, yparentl,c = −1

truncN+
(
ad,il,c | z̄T ηil,c , 1

)
δ
(
yd,il,c = 1

)
, ∃yil̂,ĉ ∈ ychildrenl,c

\ yil̂,ĉ = 1
0 otherwise

(10)

where Y−(d,il,c) denotes all of the response variables excluding the response variable being sampled.
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3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics Wallach et al. [18].

Posterior inference was performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir (m(·),1,m(·),2, . . . ,m(·),K
)

(11)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (12)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α;λ), p (α′;λ), p (β;λ)

All hyperparameters were given broad gamma priors (λ = {shape = 2, scale = 1000}) and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
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(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

We define here a hierarchically supervised LDA model. We assume a pre-specified set of labels L. Each document is assigned a response of
either -1 or 1 for at least one, but potentially many, label(s) in L. A response of 1 or -1 to label l indicates if the document respectively is or
is not l. The label l for a document d will be used interchangeably to refer the observed response of document d to label l. The label set is
assumed to be an “is a” hieararchy. This means that if a label l1 is a parent of label l2 in the hierarchy and document d has a positive response
to the label l2 then document d also has a positive response to the label l1. Seen in a negative light, if document d has a negative response
to the l1 label then document d also has a negative response to the l2 label. To capture this hierarchical structure we model the labeling of
documents using a generative cascade of conditional probit regression models. Approximate inference is performed using Gibbs sampling.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, and the standard deviation σ used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight parameters for Dirichlet
prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional normal distribution asNk(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.
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Figure 1: adapted sLDA model

1. For each topic k = 1, . . . ,K:
• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:
• Draw the regression coefficients ηl | σ ∼ NK (−1, σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)
4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd:

– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl ∼ N
(
z̄Td ηl, 1

)
, where z̄d = N−1

d

∑Nd

n=1 zn,d
– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression is like logistic regression except instead of modeling
the logit of P (y = 1) using a linear form we model Φ−1(P (y = 1)) using a linear form, where Φ(·) is the CDF for a standard normal
distribution. In this case, the regression is conditional on the parents according to the constraints of the labeling hierarchy. The latent
variables al,d utilized here are also known as an auxiliary variables because the are introduced to make exact Gibbs sampling possible and
are not of primary interest.

3 Inference

In the Bayesian approach to statistical modeling the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it will often be the case that the set of labels L is not fully observed for every document. We will define
Ld to be the subset of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d
for l′ ∈ L\Ld from the full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [12].
Therefore, in our model the latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al,d}l∈L,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior. In particular, we will
derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

2

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [12]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket, explicitly this means

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant [12] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 4,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients etal for l ∈ L. Given that ηl and al,d are distributed normally,
the posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(−1σ−1 + Z̄Tal
)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{−1
2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [18].

Posterior inference is performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir
(
m(·),1,m(·),2, . . . ,m(·),K

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(2, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

4.1 Data

Our data set was gathered from the clinical data warehouse of NewYork - Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification for
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epidemiological, health management, and clinical purposes (http://www.who.int/classifications/icd/en/). The codes are classified in a rooted-
tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child
diagnosis. In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge
summary. For the purposes of sLDA, ICD-9 codes will be used as labels for discharge summaries.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. Before beginning data processing, we generated a PHI-free dataset (see Data Pre-processing below).

4.2 Pre-Processing

Patient discharge summaries and their associated ICD-9 diagnoses are stored in two different places in the NewYork - Presbyterian data
warehouse, and so had to be linked together before being fed into the sLDA algorithm. Each discharge note and set of diagnoses were
assigned a patient unique identifier (PUID) and a visit unique identifier (VUID), allowing the two types of data to be linked.

Natural Language Processsing (NLP) techniques were used to process the free-text discharge summaries. First, the Natural Language Toolkit
(http://www.nltk.org/) was used to tokenize the text. Next, feature selection was performed using a term frequency - inverse document
frequency (TF-IDF) algorithm on the entire document set and sorting the words by their TF-IDF values. The top 10,000 words were
manually evaluated to eliminate all potentially identifying information. Finally, each discharge summary was converted to a bag-of-words,
listing the frequencies of the remaining, free of protected health information, top 10,000 words.

Preparation of the diagnostic codes involved inference over the ICD-9 hierarchy. The is-a relationships of the hierarchy allowed us to make
two important assumptions. First, if a diagnosis was observed to be present, all of its ancestors could be assumed to be present as well (e.g.,
if a patient had malignant hypertension, it could be assumed that they also had essential hypertension. Second, if a diagnosis was observed
to be absent, it could be assumed that all of its descendants were also absent (e.g. if a patient did not have essential hypertension, it could
be assumed that they did not have malignant hypertension). Unfortunately, ICD-9 code observations never include observations of disease
absence. ICD-9 codes are only documented when the condition is observed to be present. Additionally, ICD-9 codes are known to have
relatively low sensitivity; conditions that are present are often not documented in a set of ICD-9 codes (Surjan, 1999). Given these facts,
we made the following assumptions regarding each visit: recorded diagnoses and their ancestors were labeled as true; diagnoses that were
observed at some time for a patient but not at the current visit were labeled as unobserved; and diagnoses that had never been listed for a
patient were labeled as false for all of that patient’s visits. This last assumption captures the belief that parts of the ICD-9 hierarchy that are
never observed for a particular patient are almost certain to be false. Additionally, for computational purposes, we decided not to include an
ICD-9 code at all if neither it nor one of its descendants had been assigned to a patient in any of the records in our dataset.

4.3 ICD-9 Code Hierarchy

Here, we augment the sLDA model such that the supervised signal is distribution over the ICD-9 code tree, which is an is-a hierarchy [3].
An is-a hierarchy is represented by the tree data structure where each node has only a single parent and nodes cannot be parents of ancestors
(ie. there are no loops). In this particular case, the ICD-9 code hierarchy is also partially a prefix trie where the labels for certain nodes
are prefixes for child nodes. Given that this rule does not apply to all nodes in the hierarchy, we did not use this feature to determine the
structure of the hierarchy. Instead we acquired a dataset that explicitly defined the relationships between the nodes of the hierarchy [3]. In
documentation of ICD-9 codes for billing purposes, only a subset of the nodes can be used, however the nodes higher in the hierarchy contain
semantic information about the categories of codes that are their descendants. For this reason, we included these nodes in our model.

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.
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4.5 Evaluation

5 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

We define here a hierarchically supervised LDA model. We assume a pre-specified set of labels L. Each document is assigned a response of
either -1 or 1 for at least one, but potentially many, label(s) in L. A response of 1 or -1 to label l indicates if the document respectively is or
is not l. The label l for a document d will be used interchangeably to refer the observed response of document d to label l. The label set is
assumed to be an “is a” hieararchy. This means that if a label l1 is a parent of label l2 in the hierarchy and document d has a positive response
to the label l2 then document d also has a positive response to the label l1. Seen in a negative light, if document d has a negative response
to the l1 label then document d also has a negative response to the l2 label. To capture this hierarchical structure we model the labeling of
documents using a generative cascade of conditional probit regression models. Approximate inference is performed using Gibbs sampling.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, and the standard deviation σ used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight parameters for Dirichlet
prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional normal distribution asNk(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.
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Figure 1: adapted sLDA model

1. For each topic k = 1, . . . ,K:
• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:
• Draw the regression coefficients ηl | σ ∼ NK (−1, σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)
4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd:

– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl ∼ N
(
z̄Td ηl, 1

)
, where z̄d = N−1

d

∑Nd

n=1 zn,d
– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression is like logistic regression except instead of modeling
the logit of P (y = 1) using a linear form we model Φ−1(P (y = 1)) using a linear form, where Φ(·) is the CDF for a standard normal
distribution. In this case, the regression is conditional on the parents according to the constraints of the labeling hierarchy. The latent
variables al,d utilized here are also known as an auxiliary variables because the are introduced to make exact Gibbs sampling possible and
are not of primary interest.

3 Inference

In the Bayesian approach to statistical modeling the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it will often be the case that the set of labels L is not fully observed for every document. We will define
Ld to be the subset of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d
for l′ ∈ L\Ld from the full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [12].
Therefore, in our model the latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al,d}l∈L,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior. In particular, we will
derive a collapsed Gibbs sampler.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

2

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [12]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket, explicitly this means

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant [12] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients etal for l ∈ L. Given that ηl and al,d are distributed normally,
the posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(−1σ−1 + Z̄Tal
)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{−1
2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [18].

Posterior inference is performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir
(
m(·),1,m(·),2, . . . ,m(·),K

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(2, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

3.2 Prediction

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of someone who has been hospitalized. ICD-9 codes are used mainly for billing purposes to indicate the conditions
for which a patient was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.
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4.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [citation]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free
text. Aside from prediction, one of the goals is to compare the sensitivity of predictions from the HSLDA model in comparison to the codes
in a case where a test closer to ground truth is available. For this we will compare whether predictions for the ICD-9 code associated with
anemia are better predicted by HSLDA or by the ICD-9 codes. Anemia was chosen because hemoglobin values are readily available and
the definition of anemia according the World Health Organization is approximately 12.5, with a threshold of 12 for women and 13 for men
[citation].

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
and partially directly from the the Amazon.com website. The product ID’s and categorizations were obtained from the SNAP dataset and the
product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4.3 Evaluation

The two main methods of evaluation for the model are prediction and topic quality. We compare model performance against 3 similar models
to demonstrate that each component of the model is important for performance. Specifically, we evaluate models including independent
regressors + sLDA (hierarchical constraints on labels ignored), HSLDA fit by running LDA first then running tree-conditional regressions,
and HSLDA fit with fixed random regression parameters.

4.3.1 Prediction

Given the expectation o

4.3.2 Topic Quality and Character

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

This model, supervised latent dirichlet allocation (sLDA), builds on LDA by incorporating an exponential family response variable. Although
there are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents
as a mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable.
In other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

Other models - predicting document links, other supervised latent variable models

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.

4

A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

4.5 Evaluation

5 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

6 Discussion

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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6.1 Rao-Blackwellization

To derive the Gibbs sampler in general, we integrate over the parameters θ and φ1:K resulting in the collapsed joint distribution shown in
Equations 5-8.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks and show both improved label prediction performance and show
evidence that the learned topic model improves as a result of using this signal too.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned []). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision;” often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditional draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by this
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section ?? we introduce hierarchically supervised LDA (HSLDA), in Section 4.4 we
review related work, and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and improved
topic generation.

2 Model

We define here a hierarchically supervised LDA model. We assume a pre-specified set of labels L. Each document is assigned a response of
either -1 or 1 for at least one, but potentially many, label(s) in L. A response of 1 or -1 to label l indicates if the document respectively is or
is not l. The label l for a document d will be used interchangeably to refer the observed response of document d to label l. The label set is
assumed to be an “is a” hieararchy. This means that if a label l1 is a parent of label l2 in the hierarchy and document d has a positive response
to the label l2 then document d also has a positive response to the label l1. Seen in a negative light, if document d has a negative response
to the l1 label then document d also has a negative response to the l2 label. To capture this hierarchical structure we model the labeling of
documents using a generative cascade of conditional probit regression models. Approximate inference is performed using Gibbs sampling.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, and the standard deviation σ used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight parameters for Dirichlet
prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional normal distribution asNk(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1

Figure 1: adapted sLDA model

1. For each topic k = 1, . . . ,K:

• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:

• Draw the regression coefficients ηl | σ ∼ NK (−1, σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)

4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd:

– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl, yparent(l),d ∼
{N (z̄T ηl, 1) , yparent(l) = 1
N (z̄T ηl, 1) I (al,d < 0) , yparent(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression is like logistic regression except instead of modeling
the logit of P (y = 1) using a linear form we model Φ−1(P (y = 1)) using a linear form, where Φ(·) is the CDF for a standard normal
distribution. In this case, the regression is conditional on the parents according to the constraints of the labeling hierarchy. The latent
variables al,d utilized here are also known as an auxiliary variables because the are introduced to make exact Gibbs sampling possible and
are not of primary interest.

3 Inference

In the Bayesian approach to statistical modeling the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it will often be the case that the set of labels L is not fully observed for every document. We will define
Ld to be the subset of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d
for l′ ∈ L\Ld from the full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [12].
Therefore, in our model the latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al,d}l∈L,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior. In particular, we will
derive a collapsed Gibbs sampler.

2

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [12]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket, explicitly this means

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant [12] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients etal for l ∈ L. Given that ηl and al,d are distributed normally,
the posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(−1σ−1 + Z̄Tal
)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{−1
2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This prior shares many features with the hierarchical Dirichlet
process and inference over this distribution proceeds in a very similar fashion. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [18].

Posterior inference is performed using the “direct assignment” method of Teh et al. [17].

β ∼ Dir
(
m(·),1,m(·),2, . . . ,m(·),K

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(2, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of someone who has been hospitalized. ICD-9 codes are used mainly for billing purposes to indicate the conditions
for which a patient was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

3

4.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [citation]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free
text. Aside from prediction, one of the goals is to compare the sensitivity of predictions from the HSLDA model in comparison to the codes
in a case where a test closer to ground truth is available. For this we will compare whether predictions for the ICD-9 code associated with
anemia are better predicted by HSLDA or by the ICD-9 codes. Anemia was chosen because hemoglobin values are readily available and
the definition of anemia according the World Health Organization is approximately 12.5, with a threshold of 12 for women and 13 for men
[citation].

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
and partially directly from the the Amazon.com website. The product ID’s and categorizations were obtained from the SNAP dataset and the
product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4.3 Evaluation

The two main methods of evaluation for the model are prediction and topic quality. We compare model performance against 3 similar models
to demonstrate that each component of the model is important for performance. Specifically, we evaluate models including independent
regressors + sLDA (hierarchical constraints on labels ignored), HSLDA fit by running LDA first then running tree-conditional regressions,
and HSLDA fit with fixed random regression parameters.

4.3.1 Prediction

The two measures for predictive performance used here include the true positive rate and the false positive rate. We evaluate model perfor-
mance on held out data. A more ideal evaluation of performance would include a manually labeled hierarchy since it is well known that
ICD-9 codes have a relatively low sensitivity.

Performance was evaluated against p
(
yl,d̂ | w1:N,d

)
.

4.3.2 Topic Quality and Character

TBD

4.4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
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other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [citations]. One set of models that
are particularly relevant to HSLDA are Chang and Blei’s [citation] hierarchical models for document networks. In that family of models,
they encountered a similar scenario where the lack of a link did not truly indicate absence. In our model, the lack of a code in the hierarchy
being assigned does not necessarily indicate absence. Therefore, as in the work of Chang and Blei, we employ regularization in the form of
a negative prior on the regression parameters to provide a prior that indicates a bias towards being truly negative in the absence of a code.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[16, 10, 15, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [14] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [11, 8, 9].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [13]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [3]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [? ]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4.4 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section ?? we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [4].

1

There have been many models that incorporate both latent models of text and some form of supervision [? ? ? ? ]. One set of models that are
particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that family
of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data, negative
labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang and
Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[15, 9, 14, 6], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [13] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [10, 7, 8].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [12]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K:

• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:

• Draw the regression coefficients ηl | σ ∼ NK (µIK , σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)

4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)

2

• For n = 1, . . . , Nd:
– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl, yparent(l),d ∼
{N (z̄T ηl, 1) , yparent(l) = 1
N (z̄T ηl, 1) I (al,d < 0) , yparent(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, ηL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [11]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [11]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [11] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [17]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [16].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [? ]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[3] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4

4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first method augmented the observed labels in the held out set as well as their ancestors in the hierarchy as

4.3.1 Prediction

The two measures for predictive performance used here include the true positive rate and the false positive rate. We evaluate model perfor-
mance on held out data. A more ideal evaluation of performance would include a manually labeled hierarchy since it is well known that
ICD-9 codes have a relatively low sensitivity.

Performance was evaluated against p
(
yl,d̂ | w1:N,d

)
.

4.3.2 Topic Quality and Character

TBD

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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[10] I Goldstein, A Arzumtsyan, and Ö Uzuner. Three approaches to automatic assignment of icd-9-cm codes to radiology reports. AMIA Annual Symposium
Proceedings, 2007:279, 2007.

[11] TL Griffiths and M Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235, 2004.

[12] LV Lita, S Yu, S Niculescu, and J Bi. Large scale diagnostic code classification for medical patient records. 2008.

[13] RB Rao, S Sandilya, RS Niculescu, C Germond, and H Rao. Clinical and financial outcomes analysis with existing hospital patient records. Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 416–425, 2003.

[14] B RibeiroNeto, AHF Laender, and LRS De Lima. An experimental study in automatically categorizing medical documents. Journal of the American
society for Information science and Technology, 52(5):391–401, 2001.

5

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(c)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1
-S

p
ec

if
ic

it
y

(d)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [3]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [? ]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [4].

1

There have been many models that incorporate both latent models of text and some form of supervision [? ? ? ? ]. One set of models that are
particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that family
of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data, negative
labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang and
Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[15, 9, 14, 6], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [13] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [10, 7, 8].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [12]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K:

• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:

• Draw the regression coefficients ηl | σ ∼ NK (µIK , σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)

4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)

2

• For n = 1, . . . , Nd:
– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl, yparent(l),d ∼
{N (z̄T ηl, 1) , yparent(l) = 1
N (z̄T ηl, 1) I (al,d < 0) , yparent(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, ηL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [11]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [11]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [11] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [17]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [16].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [? ]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[3] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

1

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K:

• Draw a distribution over words φk ∼ DirV (γ1), where 1 is a vector of ones of length V

2. For each label l ∈ L:

• Draw the regression coefficients ηl | σ ∼ NK (µIK , σIK), where IK is the K dimensional identity matrix

3. Draw a prior over topic proportions β | α′ ∼ DirK (α′1)

4. For each document d = 1, . . . , D:

• Draw topic proportions θd | β, α ∼ DirK (αβ)

2

• For n = 1, . . . , Nd:
– Draw topic assignment zn,d | θd ∼ Multinomial (θd)
– Draw word wn,d | zn,d, β1:K ∼ Multinomial

(
βzn,d

)
• For each label l ∈ L:

– Draw al,d | z1:Nd,d, ηl, yparent(l),d ∼
{N (z̄T ηl, 1) , yparent(l) = 1
N (z̄T ηl, 1) I (al,d < 0) , yparent(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0and yparent(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, ηL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

1

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
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• For n = 1, . . . , Nd
– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

1

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)

2

• For n = 1, . . . , Nd
– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].
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There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D, η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D, β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote z\zn,d.

3.1.1 p
(
zn,d | z−(n,d),a,w, η, α, β, γ

)
First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w, η, α, β, γ

) ∝ ∏
l∈Ld

p (al,d | z, ηl) p
(
zn,d | z−(n,d),a,w, α, β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w, η, α, β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w, η, α, β, γ

)
can be sampled through enumeration.

3.1.2 p (ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and al =
[al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y, η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y, η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηlT z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k), β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

1

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)

2

• For n = 1, . . . , Nd
– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4

4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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[13] I Goldstein, A Arzumtsyan, and Ö Uzuner. Three approaches to automatic assignment of icd-9-cm codes to radiology reports. AMIA Annual Symposium
Proceedings, 2007:279, 2007.

[14] TL Griffiths and M Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235, 2004.

[15] Simon Lacoste-julien, Fei Sha, and Michael I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. In Neural
Information Processing Systems, pages 897–904.

[16] LV Lita, S Yu, S Niculescu, and J Bi. Large scale diagnostic code classification for medical patient records. 2008.

5

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(c)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1
-S

p
ec

if
ic

it
y

(d)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

6

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0
S
en

si
ti

v
it

y

(b)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(c)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1
-S

p
ec

if
ic

it
y

(d)

Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].
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There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4

4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

1

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4

4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].
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There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tβl, 1), ypa(l) = 1
N (z̄Tβl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].
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There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight

1

Figure 1: adapted sLDA model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.
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3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

3

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4 we review related work, in Section 2 we introduce hierarchically supervised
LDA (HSLDA), and in Section 5 we apply HSLDA to health care and web retail data, showing predictive performance and improved topic
generation.

1.1 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].
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There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

While there have been some attempts to automatically classify groups of patients as a potential preliminary step to ICD-9 code assignment
[20, 12, 19, 7], fully automatic assignment of ICD-9 codes to medical text became a more prevalent research topic only in the last few years.
A subset of earlier work proposed various methods on small corpora, based on a few specific diseases [18] but the most recent and promising
work on the subject was inspired by the 2007 Medical NLP Challenge: “International Challenge: Classifying Clinical Free Text Using
Natural Language Processing” (website). Most of the classification strategies included word matching and rule-based algorithms. [13, 9, 11].
The data set given to the participants consisted only of documents that were 1-2 lines each and all of the documents were radiology reports -
clearly limiting the scope of potential ICD-9 codes which could be assigned. The only paper which has attempted to work with a document
scope as large as ours was the 2008 Lita et al publication [16]. Lita proposed support vector machine and bayesian ridge regression methods
to assign appropriate labels to the documents but did not utilize the ICD-9 hierarchy to leverage more comprehensive predictions.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

Figure 1: adapted sLDA model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:
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– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
n
k,−(n,d)
(·),d + αβk

) n
k,−(n,d)
wn,d,(·) +γ“

n
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, n
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .
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3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

4.1 Data and Pre-Processing

4.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

4.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

4

4.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

5 Results

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 1.1 we review related work, in Section 2 we introduce hierarchically
supervised LDA (HSLDA), and in Section 4 we apply HSLDA to health care and web retail data, showing predictive performance and
improved topic generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight

1

Figure 1: adapted sLDA model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

2

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].
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Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

4

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(c)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1-
S
p
ec

if
ic

it
y

(d)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4 we review related work, in Section 2 we introduce hierarchically supervised
LDA (HSLDA), and in Section 5 we apply HSLDA to health care and web retail data, showing predictive performance and improved topic
generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight

1

Figure 1: HSLDA graphical model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [14]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.
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3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [14]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [14] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].
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Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [17, 15, 23, 8]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [10]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.
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5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4 we review related work, in Section 2 we introduce hierarchically supervised
LDA (HSLDA), and in Section 5 we apply HSLDA to health care and web retail data, showing predictive performance and improved topic
generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
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Figure 1: adapted sLDA model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.
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3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].
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Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.
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5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4 we review related work, in Section 2 we introduce hierarchically supervised
LDA (HSLDA), and in Section 5 we apply HSLDA to health care and web retail data, showing predictive performance and improved topic
generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
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Figure 1: HSLDA graphical model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.
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3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].
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Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.
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5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply labeled, bag-of-words data. We will refer to the grouped bag-of-word data as a document.
Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the ordered set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|.
We assume a pre-specified set of labels L =

{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.
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Figure 1: HSLDA graphical model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,β1:K ∼ Multinomial(βzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,βl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
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normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂ and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂ = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.
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4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
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as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-words data. Out-of-sample label prediction is the primary goal of this work; however, improved dimensionality
reduction is also of interest. We define a model that uses probit regressors on a conditionally dependent label hierarchy tied
to latent Dirichlet allocation (LDA). We find that the additional signal that comes from multiple, hierarchically constrained
labels substantially improves out-of-sample label prediction in comparison to supervised LDA approaches that don’t utilize
information derived from the structure of the label space. We demonstrate HSLDA on large-scale data from medical
document labeling and retail product categorization tasks. We show improved label prediction performance and evidence
that the learned topic model also improves as a result of using this signal.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent Dirichlet
allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical “label.” More
generally this “supervision” can be seen as extra data about a document; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally draw given an inferred document-specific topic mixture. It has been demonstrated that the signal provided by
this supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesis that hierarchical labels should, at least in theory, provide better signal than the simpler unstructured
supervision previously considered. Results from applying our model to medical record and web retail data suggests that this is likely to be
the case. In particular, we observed big gains in our primary goal of out-of-sample label prediction when using hierarchical supervision.

The remainder of this paper is structured as follows. In Section 4 we review related work, in Section 2 we introduce hierarchically supervised
LDA (HSLDA), and in Section 5 we apply HSLDA to health care and web retail data, showing predictive performance and improved topic
generation.

2 Model

We define here a hierarchically supervised LDA model. Although we will focus on document modeling in our description and experiments,
this model applies equally well to other collections of discrete data with hierarchically constrained labels.

We assume a pre-specified set of labels L =
{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
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Figure 1: adapted sLDA model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.
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3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].
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Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.
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5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(c)

3 2 1 0 1 2 3
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1-
S
p
ec

if
ic

it
y

(d)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so

References
[1] Amazon, Inc. http://www.amazon.com/, 2011.

[2] DMOZ open directory project. http://www.dmoz.org/, 2002.

[3] ICD-9-CM: international classification of diseases, 9th revision; clinical modification, 6th edition. Practice Management Information Corporation,
Los Angeles, CA, 2006.

[4] Stanford network analysis platform. http://snap.stanford.edu/, 2004.

[5] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[7] Jonathan Chang and David M. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4:124–150, 2010. doi:
10.1214/09-AOAS309.

[8] Yan Yan David S. Nilasena Martha J. Radford Brian F. Gage Elena Birman-Deych, Amy D. Waterman. Accuracy of ICD-9-CM codes for identifying
cardiovascular and stroke risk factors. Medical Care, 43(5):480–5, 2005.

[9] TL Griffiths and M Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235, 2004.

[10] Simon Lacoste-julien, Fei Sha, and Michael I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. In Neural
Information Processing Systems, pages 897–904.

[11] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. Labeled LDA: a supervised topic model for credit attribution
in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Vol-
ume 1, EMNLP ’09, pages 248–256, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-59-6. URL
http://portal.acm.org/citation.cfm?id=1699510.1699543.

[12] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):
1566–1581, 2006.

[13] Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking LDA: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1973–1981. 2009.

[14] Chong Wang, David Blei, and Li Fei-Fei. Simultaneous image classification and annotation. In CVPR, 2009.

7



Hierarchically Supervised Latent Dirichlet Allocation

Adler Perotte Nicholas Bartlett Noemie Elhadad Frank Wood
Columbia University, New York, NY 10027, USA

{ajp9009@dbmi,bartlett@stat,noemie@dbmi,fwood@stat}.columbia.edu

Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply labeled, bag-of-words data. We will refer to the grouped bag-of-word data as a document.
Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the ordered set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|.
We assume a pre-specified set of labels L =

{
l1, l2, . . . , l|L|

}
. Each document is assigned a response of either -1 or 1 for at least one, but

potentially many labels in L. The label, l, for a document, d, will be used interchangeably to refer to the observed response of document d to
label l. The label set is assumed to be structured as an “is-a” hieararchy. To understand this, consider a hierarchy where label l1 is a parent
of label l2. If document d has a positive response to label l2 then it will also have a positive response to label l1. Conversely, if document d
has a negative response to label l1 then it will also has a negative response to l2. To capture this hierarchical structure we model the labeling
of documents using a generative cascade of conditional probit regression models.
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Figure 1: HSLDA graphical model

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
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normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.
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4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
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as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.
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Figure 1: HSLDA graphical model

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
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In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.
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3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.
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Figure 1: HSLDA graphical model

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
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In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.
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3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.

1

Figure 1: HSLDA graphical model

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
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In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.
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3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.
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Figure 1: HSLDA graphical model

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
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In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [8]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [8]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [8] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [12]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [11].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.
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3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [10, 9, 13, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [? ]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [4], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.
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Figure 1: HSLDA graphical model

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.
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The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

3

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [? ], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [? ].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [? ]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [? ? ? ]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [? ? ? ? ? ].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [4]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [1] as available from [4]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.
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Figure 1: HSLDA graphical model

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
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In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.
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3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

In the section we describe the application of HSLDA for prediction in two hierarchically structured domains. Firstly, we describe using
discharge summaries to predict diagnoses, encoded as ICD-9 codes. Discharge summaries are documents that are authored by clinicians to
summarize the course of a hospitalization. ICD-9 codes are used mainly for billing purposes to indicate the conditions for which a patient
was treated. Secondly, we describe using Amazon.com product descriptions to predict product categories.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Our data set was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. The data consisted of free-text discharge
summaries and their respective ICD-9 codes. A discharge summary is a clinical report prepared by a physician or other health professional
at the conclusion of a hospital stay or series of treatments. The note outlines the patient’s chief complaint, diagnostic findings, therapy
administered, patient’s response to the chosen therapy, the treatment plan and the recommendations upon discharge. The ICD-9 codes used
to structure the discharge summary data are part of a controlled terminology which is the international standard diagnostic classification
for epidemiological, health management, and clinical purposes. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the code
representing “Pneumonia due to adenovirus” is a child of the code representing “Viral pneumonia” where the former is a type of the latter.
In the hospital, ICD-9 codes are generated manually by trained medical coders, who review all the information in the discharge summary.

The text of the discharge summaries were pre-processed such that each document would be represented as counts over a 10,000 word
vocabulary. The Natural Language Toolkit was used to tokenize the text. A vocabulary was identified by first sorting terms based on a global
term frequency-inverse document frequency measure. The top 10,000 words which were not identifying in some way (a name, place, or
identifying number) were selected for inclusion in the vocabulary.

For each hospitalization there are usually several ICD-9 codes assigned for billing purposes. These codes are known to be quite specific but
not very sensitive [8]. Regardless of that fact, this is one of the only sources for information on patient diagnoses aside from the free text.

We worked within the guidelines of the Health Insurance Portability and Accountability Act (HIPAA), which protects patient privacy and
the security of potentially identifying medical material, known as personal health information (PHI). HIPAA covers any information within
a medical record that was created, used, or disclosed during the course of providing a health care service and that can be used to identify an
individual. This study was approved by the Institutional Review Board.

5.1.2 Product Category Prediction

Data for these experiments were obtained partially from the Stanford Network Analysis Platform (SNAP) Amazon product metadata dataset
[4] and partially directly from the the Amazon.com website [1]. The product ID’s and categorizations were obtained from the SNAP dataset
and the product descriptions were obtained directly from the website.

We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors in the hierarchy were included
with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the
DVD, “The Time Machine”. Each product was labeled with multiple categories.

The vocabulary for this experiment was created by including the most frequent 30K words omitting stopwords.
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.
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Figure 1: HSLDA graphical model

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight
parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure 1.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [12]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.
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The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [12]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [12] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [21]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [20].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.
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4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [4].

There have been many models that incorporate both latent models of text and some form of supervision [17, 13, 22, 6]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [4], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [5] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [6] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [5].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard
“is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a
label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each document
has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d will be
unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor remainder
its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked as

1

Figure 1: HSLDA graphical model

not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to every
document. This is illustrated in Figure ?? where the root label is always applied but only some of the descendant labelings are observed as
having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure ??. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (??) and the regression coefficients (??)(??) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [9]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [9]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [9] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 2,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.
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3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [13]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [12].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [6].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [5].

There have been many models that incorporate both latent models of text and some form of supervision [11, 10, 14, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [? ], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [? ].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [? ]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [? ? ? ]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [? ? ? ? ? ].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
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The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [4]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked

1

Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (??) and the regression coefficients (??) which are analytic. This simplifies posterior inference substantially.

2

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [12], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [? ].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to ADLER [21]. Sampling β is done using the “direct assignment” method of Teh et al. [20]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are ADLER

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind. ADLER check this. I suspect that some of the n’s need some summing.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating an exponential family response variable. Although there
are many models for making predictions based on free text, sLDA is unique in that it is a generative model, it represents documents as a
mixed-membership, and constrains the inference of the latent structure of the documents by its predictability of the response variable. In
other words, sLDA infers topics such that the model is capable of a high predictive likelihood for words in a document and the response
variable associated with a document. This approach has been shown to outperform both LASSO (L1 regularized least squares regression)
and LDA followed by least squares regression [4].

There have been many models that incorporate both latent models of text and some form of supervision [17, 13, 22, 6]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where the lack of a link did not truly indicate absence. In hierarchically labeled data,
negative labels are uncommon and the lack of a label in the hierarchy is not equivalent to a negative label. Therefore, as in the work of Chang
and Blei, we employ regularization to account for the lack of negative labels. This will be discussed further in 2.
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked

1

Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [12], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [? ].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to ADLER [21]. Sampling β is done using the “direct assignment” method of Teh et al. [20]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are ADLER

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind. ADLER check this. I suspect that some of the n’s need some summing.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating supervision in the form of an observed exponential family
response variable per document. As a result, sLDA infers topics such that the model predicts the response variable while improing word
likelihood. This approach has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed by least
squares regression [4].

Other models that incorporate both and some form of supervision include LabeledLDA[17], DiscLDA[13], models applied to computer
vision and document networks[22, 6].

2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked

1

Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [12], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [? ].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [21]. Sampling β is done using the “direct assignment” method
of Teh et al. [20]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating supervision in the form of an observed exponential family
response variable per document. As a result, sLDA infers topics such that the model predicts the response variable while improing word
likelihood. This approach has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed by least
squares regression [4].

Other models that incorporate both and some form of supervision include LabeledLDA[17], DiscLDA[13], models applied to computer
vision and document networks[22, 6].

2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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6 Results

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

2

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [12], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [? ].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [21]. Sampling β is done using the “direct assignment” method
of Teh et al. [20]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating supervision in the form of an observed exponential family
response variable per document. As a result, sLDA infers topics such that the model predicts the response variable while improing word
likelihood. This approach has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed by least
squares regression [4].

Other models that incorporate both and some form of supervision include LabeledLDA[17], DiscLDA[13], models applied to computer
vision and document networks[22, 6].

2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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6 Results

HSLDA sLDA with Independent Regressors
children, animation, animated, kids, songs, story, children, kids, animated,

family, new, fun,video, friends, music, live, classic, animation, songs, video, friends, fun, animals, family, story,
adventure, minute, world, magic,animals, song, musical, new, little, music, like, minute, along, musical, song,

voiced, feature, along, baby, ages, magical, adventure, help, classic, baby, child, ages, favorite, sing, learn,
action, favorite, special, tale, little, child, holiday, holiday, magical, tale, world, special, parents, live, way, day, boy,

help, voice, toys, original, learn, characters, make, old, magic, adventures, home, show, gang, animal, adults, toys,
computer, sing, like, adults, parents, version, old, first, many, action

including, young,
comedy, funny, comic, hilarious, series, gags, jokes, slapstick, satire, comedy, show, play, characters, sketches,

laugh, stars, films, comedies, first, comedian, funniest, show, involving, funny, mob, performance,
characters, cast, perfect, mob, performance, play, writer, television, people, screwball, cast, best, including, stars, sketch, girlfriend,
satirical, lines, hilariously, boss, routine, silent, funnier, comedic, hilariously, charming, ensemble, comic, character, star, writer, hit,
chemistry, comedians, talk, routines, brothers, girlfriend, shorts, stage, host, classic, romantic, mutants, boss, new, played, together,
mouse, whose, cinema, screwball, hit, humor, brilliant, gag, new, choice, like, karaoke, daughter, vehicle, news, splitting, actress,

get, story, hilarious, wacky, featuring, could, side, comedies, comedic
thriller, horror, murder, crime, killer, police, mystery, detective, horror, film, vampire, blood, one, dead, supernatural, killer, evil,

cop, one, dead, suspense, plot, case, blood, drug, dark, mysterious, thriller, gore, monster, young, night, terror, mysterious, director,
death, revenge, violence, town, gang, turns, prison, noir, violent, movie, films, cult, creepy, terrifying, original, dark, chilling,

deadly, stars, young, woman, nbsp, body, vampire, night, murders, genre, atmosphere, victims, classic, murder, haunted, town, mystery,
kill, criminal, action, becomes, wife, cops, gangster, sex, victims, story, body, ghost, tale, family, murders, castle, house, nightmare,

victim, brutal, terror, evil, murdered budget, eerie, death, doctor, victim, later, bloody, effects
workout, body, yoga, video, moves, dance, minute, program, fitness, workout, body, yoga, video, moves, dance, minute,
easy, poses, muscles, routine, exercises, learn, strength, movements, program, fitness

practice, help, step, w, workouts, minutes, techniques, flexibility, easy, poses, muscles, exercises, learn, routine, strength, movements,
get, exercise, one, instructor, first, series, time, instruction, minutes, get, help, practice, step, series, techniques, workouts,

use, follow, training, breathing, two, basic, back, ll, muscle, fun, time, flexibility, exercise, instructor, instruction, one, two, fun,
warm, steps, technique, balance, beginners, designed, using training, use, first, back, follow, steps, breathing, muscle, basic,

using, ll, beginners, three, warm, balance, technique, designed

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has hard “is-a”
parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference. Such a label
hierarchy forms a multiply rooted tree. Without loss of generality we will consider a trees with a single root r ∈ L. Each document has a
response yl,d ∈ {−1, 1} to every label which indicates whether the label applies to document d or not.

The is-a hierarchical constraint is a hard constraint that document d has a positive response to label l2 then it will also have a positive
response to label l1. Conversely, if document d has a negative response to label l1 then it will also has a negative response to l2. To capture
this hierarchical structure we model the labeling of documents using a generative cascade of conditional probit regression models.

Each document is assigned a response of either -1 or 1 for at least one, but potentially many labels in L. The label, l, for a document, d, will
be used interchangeably to refer to the observed response of document d to label l.

The fixed parameters of the model are the number of topics K, the number of unique words in the vocabulary V , the number of documents
D, as well as the mean, µ, and the standard deviation, σ, used in a normal prior distribution. The hyper-parameters α′, α, and γ are weight

1

Figure 1: HSLDA graphical model

parameters for Dirichlet prior distributions. We will denote the K-dimensional Dirichlet distribution as DirK(·) and the K dimensional
normal distribution as NK(·).

We will now describe the stochastic generative process which defines our model. The graphical model is show in Figure ??.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a regression coefficient ηl | µ, σ ∼ NK(µ1K , σIK), where IK is the K dimensional identity matrix

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• For each label l ∈ L:

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Tηl, 1), ypa(l) = 1
N (z̄Tηl, 1)I(al,d < 0), ypa(l) = −1

where z̄d = N−1
d

∑N
n=1 zn,d

– Set the response variable

yl,d | al,d =
{

1 if al,d > 0 and ypa(l),d = 1
−1 otherwise

This type of generative model is known as a probit regression model. Probit regression models are a type of discriminative probabilistic
model similar to logistic regression. However, instead of using the logistic sigmoid as the link function, the probit regression model uses the
CDF for a standard normal distribution - the inverse of which is known as the probit. In this case, the regression is conditional on the parents
according to the constraints of the labeling hierarchy. The latent variables al,d utilized here are also known as an auxiliary variables because
the are introduced to make exact Gibbs sampling possible and are not of primary interest.

Given that negative labels are uncommon and that the absence of a label is not equivalent to a negative label, we apply an informative prior
to the regression parameters, βL, in the form of a negative prior that encodes a bias towards being truly negative in the absence of a label.

3 Inference

In the Bayesian approach to statistical modeling, the primary task of inference is to find the posterior distribution over the unobserved
parameters of the model. However, it is often possible and desirable to integrate over certain variables in the model, also known as collapsing.
In our model, it will often be the case that the set of labels L is not fully observed for every document. We will define Ld to be the subset
of labels which have been observed for document d. It is straightforward to integrate out the variables al′,d and yl′,d for l′ ∈ L\Ld from the
full generative model. We can also integrate out the parameters φ1:K and θ1:D as in Griffiths and Steyvers [13]. Therefore, in our model the
latent variables are z = {z1:Nd,d}d=1,...,D,η = {ηl}l∈L,a = {al′,d}l′∈Ld,d=1,...,D,β, α, α

′ and γ.

The posterior distribution we seek cannot be solved in closed form. This is often the case in evaluating posterior distributions of non-trivial
probabilistic models. We will appeal to one of the common methods for approximating posterior distributions in the face of intractable
normalization factors: Markov chain Monte Carlo (MCMC) sampling. Since in this model it is possible to sample from the conditional
distributions for all variables we will use the Gibbs sampling algorithm to obtain an approximation to this posterior.

2

3.1 Gibbs Sampler

We derive a collapsed Gibbs sampler for this model by considering the individual conditional probability distributions for each of the
unobserved variables. We use the notation z−(n,d) to denote zd\zn,d.

3.1.1 p(zn,d | z−(n,d),a,w,η, α,β, γ)

First we consider the conditional distribution of the assignment variable for each word n = 1, . . . , Nd in documents d = 1, . . . , D. The
conditional distribution does not include θ1:D and φ1:K because they have been integrated out as in the collapsed Gibbs sampler [13]. The
conditional distribution of zn,d is proportional to the joint distribution of its markov blanket.

p
(
zn,d | z−(n,d),a,w,η, α,β, γ

) ∝ ∏
l∈Ld

p (al,d | z,ηl) p
(
zn,d | z−(n,d),a,w, α,β, γ

)
. (1)

The product is only over the subset of labels Ld which have been observed for document d. By isolating terms that depend on zn,d and
absorbing all other terms into a normalizing constant as in [13] we find

p
(
zn,d = k | z−(n,d),a,w,η, α,β, γ

) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
. (2)

Here, c
k,−(n,d′)
v,d represents the number of words of type v in document d assigned to topic k omitting the nth word of document

d′. The notation (·) in the subscript means the count resulting from summing over the omitted subscript variable. Given Equation 1,
p
(
zd,n | z−(d,n),a,w,η, α,β, γ

)
can be sampled through enumeration.

3.1.2 p(ηl | z,a, σ)

We now consider the conditional distribution of the regression coefficients ηl for l ∈ L. Given that ηl and al,d are distributed normally, the
posterior distribution of ηl is normally distributed with mean µ̂l and covariance Σ̂ such that

Σ̂−1 = Iσ−1 + Z̄T Z̄ (3)

µ̂l = Σ̂i

(
1
µ

σ
+ Z̄Tal

)
. (4)

This is a standard result from normal Bayesian linear regression [? ]. Here, Z̄ is a D × K matrix such that row d of Z̄ is z̄d, and
al = [al,1, al,2, . . . , al,D]T .

3.1.3 p (al,d | z,Y,η)

The auxiliary variables al,d must be sampled for documents d = 1, . . . , D and l ∈ Ld. The conditional posterior distribution of al,d is the
truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π
exp

{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (5)

This conditional distribution can be sampled using an inverse CDF method.

3.1.4 p (β | z, α′, α)

In our model, we place a hierarchical Dirichlet prior over topic assignments. This flexible distribution allows for an asymmetric prior over
document level distributions over topics [22]. This prior shares many features with the hierarchical Dirichlet process and inference over this
distribution proceeds in a very similar fashion.

Posterior inference is performed using the “direct assignment” method of Teh et al. [21].

β ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(6)

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)
Γ (αβk + nd,k)

s (nd,k,m) (αβk)m (7)

where s (n,m) represents stirling numbers of the first kind.

3.1.5 p (α), p (α′), p (γ)

The hyperparameters α, α′, and γ are given broad Gamma(1, 1000) prior distributions and sampled via the Metropolis-Hastings algorithm.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
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labeling, often taking the form of a single numerical or categorical label. Examples of labels include rating associated with an online eview,
grades for an essay, and number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

There have been several models that incorporate both latent models of text and some form of supervision [18, 14, 23, 7]. One set of models
that are particularly relevant to HSLDA are Chang and Blei’s hierarchical models for document networks (Relational Topic Models). In that
family of models, they encountered a similar scenario where an unselected label does not always indicate absence. In hierarchical labels, this
phenomenon is even more pervasive – there are no explicit negative labels, but it is also unclear how to treat the parents of selected labels.
Like in the work of Chang and Blei, we employ regularization to account for the lack of negative labeling. In our experiments, we look at the
impact of assigning positive and negative instances to the ancestors of selected labels.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [9],
and sometimes make mistakes [11].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [8, 12, 10]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [15, 19, 17, 20, 16].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked as
not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to every
document. This is illustrated in Figure ?? where the root label is always applied but only some of the descendant labelings are observed as
having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

1

Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure ??. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (??) and the regression coefficients (??) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ

2

parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [13], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [4].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [22]. Sampling β is done using the “direct assignment” method
of Teh et al. [21]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include rating associated with an online eview,
grades for an essay, and number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate both and some form of supervision include LabeledLDA[18], DiscLDA[14], models applied to computer
vision and document networks[23, 7].

2.

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

3

5.1 Data and Pre-Processing

5.1.1 Diagnosis Prediction

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [9],
and sometimes make mistakes [11].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [8, 12, 10]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [15, 19, 17, 20, 16].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Category Prediction

In this experiment, we look at product descriptions and their categorizations according to a product hierarchy. Product ID’s and catego-
rizations were obtained from the Stanford Network Analysis Platform (SNAP) dataset [3]. Product descriptions were crawled from the
amazon.com website directly. We were able to deduce the structure of the hierarchy for the Amazon.com products directly since all ancestors
in the hierarchy were included with each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a
single product category for the DVD, “The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. We will refer to the three comparison models
as the sLDA model, the separate HSLDA model, and the random HSLDA model, respectively. These models were chosen as to highlight
performance in absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

For each dataset, a held out set of 1,000 documents and accompanying labels were used for evaluation. The two main methods of evaluation
for the model are prediction and topic quality. To evaluate predictive performance for all comparison models equivalently, each model was
evaluated with two methods. The first evaluation method augments the observed labels in the held out set with their ancestors and considers
all other non-existant labels to be negative. The second method ignores the ancestors of the observed labels in the held out set and considers
all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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6 Results

HSLDA sLDA with Independent Regressors
children, animation, animated, kids, songs, story, children, kids, animated,

family, new, fun,video, friends, music, live, classic, animation, songs, video, friends, fun, animals, family, story,
adventure, minute, world, magic,animals, song, musical, new, little, music, like, minute, along, musical, song,

voiced, feature, along, baby, ages, magical, adventure, help, classic, baby, child, ages, favorite, sing, learn,
action, favorite, special, tale, little, child, holiday, holiday, magical, tale, world, special, parents, live, way, day, boy,

help, voice, toys, original, learn, characters, make, old, magic, adventures, home, show, gang, animal, adults, toys,
computer, sing, like, adults, parents, version, old, first, many, action

including, young,
comedy, funny, comic, hilarious, series, gags, jokes, slapstick, satire, comedy, show, play, characters, sketches,

laugh, stars, films, comedies, first, comedian, funniest, show, involving, funny, mob, performance,
characters, cast, perfect, mob, performance, play, writer, television, people, screwball, cast, best, including, stars, sketch, girlfriend,
satirical, lines, hilariously, boss, routine, silent, funnier, comedic, hilariously, charming, ensemble, comic, character, star, writer, hit,
chemistry, comedians, talk, routines, brothers, girlfriend, shorts, stage, host, classic, romantic, mutants, boss, new, played, together,
mouse, whose, cinema, screwball, hit, humor, brilliant, gag, new, choice, like, karaoke, daughter, vehicle, news, splitting, actress,

get, story, hilarious, wacky, featuring, could, side, comedies, comedic
thriller, horror, murder, crime, killer, police, mystery, detective, horror, film, vampire, blood, one, dead, supernatural, killer, evil,

cop, one, dead, suspense, plot, case, blood, drug, dark, mysterious, thriller, gore, monster, young, night, terror, mysterious, director,
death, revenge, violence, town, gang, turns, prison, noir, violent, movie, films, cult, creepy, terrifying, original, dark, chilling,

deadly, stars, young, woman, nbsp, body, vampire, night, murders, genre, atmosphere, victims, classic, murder, haunted, town, mystery,
kill, criminal, action, becomes, wife, cops, gangster, sex, victims, story, body, ghost, tale, family, murders, castle, house, nightmare,

victim, brutal, terror, evil, murdered budget, eerie, death, doctor, victim, later, bloody, effects
workout, body, yoga, video, moves, dance, minute, program, fitness, workout, body, yoga, video, moves, dance, minute,
easy, poses, muscles, routine, exercises, learn, strength, movements, program, fitness

practice, help, step, w, workouts, minutes, techniques, flexibility, easy, poses, muscles, exercises, learn, routine, strength, movements,
get, exercise, one, instructor, first, series, time, instruction, minutes, get, help, practice, step, series, techniques, workouts,

use, follow, training, breathing, two, basic, back, ll, muscle, fun, time, flexibility, exercise, instructor, instruction, one, two, fun,
warm, steps, technique, balance, beginners, designed, using training, use, first, back, follow, steps, breathing, muscle, basic,

using, ll, beginners, three, warm, balance, technique, designed

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply-labeled
bag-of-word data. Examples of such data include web pages and their placement in link directories, product descriptions
and placement(s) in product hierarchies, and free-text clinical records and diagnosis codes assigned to them. Out-of-sample
label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-words
data is also of interest. We find that using the signal from hierarchical labels substantially improves out-of-sample label
prediction in comparison to other models that don’t utilize the structure of the labels. We demonstrate HSLDA on large-
scale data from medical document labeling and retail product categorization tasks. We show improved label prediction
performance and evidence that the learned topics also improve.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs [3], and patient records and their associated billing codes. In this
work we show how to combine these two sources of information using a single model that allows one to automatically categorize new text
documents, suggest labels that might be inaccurate, compute improved similarities between documents for information retrieval purposes,
and more. The models and techniques that we develop in this paper are applicable in other domains as well, namely, any unstructured
representations of data that have been hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

In this work we extend supervised latent Dirichlet allocation (sLDA) [4] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [5] augmented with per document “supervision”; often taking the form of a single numerical or categorical
“label.” More generally this supervision is just extra per document data; for instance its quality or relevance (e.g. online review scores),
marks given to written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled
as having been conditionally drawn from some distribution that depends on the document-specific topic mixture. It has been demonstrated
that the signal provided by such supervision can result in better, task-specific document models and can also lead to good label prediction for
out-of-sample data [4].

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is structured as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), Section 3 details a
sampling approach to inference in HSLDA, Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health
care and web retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked

1

Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

2

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [12], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [? ].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [21]. Sampling β is done using the “direct assignment” method
of Teh et al. [20]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

Latent dirichlet allocation (LDA) is a generative probabilistic model of corpora that represents documents as a mixed membership bag-
of-words. Also known as topic models, these models infer the latent structure, or topics, of documents in a corpus. Each document is
represented as a collection of words, generated from a set of topic assignments (one for each word), where each topic assignment is drawn
from a distribution over topics [5].

Supervised latent Dirichlet allocation (sLDA) builds on LDA by incorporating supervision in the form of an observed exponential family
response variable per document. As a result, sLDA infers topics such that the model predicts the response variable while improing word
likelihood. This approach has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed by least
squares regression [4].

Other models that incorporate LDA and supervision include LabeledLDA[17], DiscLDA[13], and other models applied to computer vision
and document networks[22, 6]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents in a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[? ? ? ? ].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [8],
and sometimes make mistakes [10].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [7, 11, 9]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [14, 18, 16, 19, 15].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several
aspects of the model including performance in the absence of hierarchical constraints, the effect of the combined inference procedure, and
regression performance attributable solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation

The two main methods of evaluation for the model are prediction and topic quality. To evaluate predictive performance for all comparison
models equivalently, each model was evaluated with two methods. The first evaluation method augments the observed labels in the held out
set with their ancestors and considers all other non-existant labels to be negative. The second method ignores the ancestors of the observed
labels in the held out set and considers all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair
comparison of the models.

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

HSLDA sLDA with Independent Regressors
children, animation, animated, kids, songs, story, children, kids, animated,

family, new, fun,video, friends, music, live, classic, animation, songs, video, friends, fun, animals, family, story,
adventure, minute, world, magic,animals, song, musical, new, little, music, like, minute, along, musical, song,

voiced, feature, along, baby, ages, magical, adventure, help, classic, baby, child, ages, favorite, sing, learn,
action, favorite, special, tale, little, child, holiday, holiday, magical, tale, world, special, parents, live, way, day, boy,

help, voice, toys, original, learn, characters, make, old, magic, adventures, home, show, gang, animal, adults, toys,
computer, sing, like, adults, parents, version, old, first, many, action

including, young,
comedy, funny, comic, hilarious, series, gags, jokes, slapstick, satire, comedy, show, play, characters, sketches,

laugh, stars, films, comedies, first, comedian, funniest, show, involving, funny, mob, performance,
characters, cast, perfect, mob, performance, play, writer, television, people, screwball, cast, best, including, stars, sketch, girlfriend,
satirical, lines, hilariously, boss, routine, silent, funnier, comedic, hilariously, charming, ensemble, comic, character, star, writer, hit,
chemistry, comedians, talk, routines, brothers, girlfriend, shorts, stage, host, classic, romantic, mutants, boss, new, played, together,
mouse, whose, cinema, screwball, hit, humor, brilliant, gag, new, choice, like, karaoke, daughter, vehicle, news, splitting, actress,

get, story, hilarious, wacky, featuring, could, side, comedies, comedic
thriller, horror, murder, crime, killer, police, mystery, detective, horror, film, vampire, blood, one, dead, supernatural, killer, evil,

cop, one, dead, suspense, plot, case, blood, drug, dark, mysterious, thriller, gore, monster, young, night, terror, mysterious, director,
death, revenge, violence, town, gang, turns, prison, noir, violent, movie, films, cult, creepy, terrifying, original, dark, chilling,

deadly, stars, young, woman, nbsp, body, vampire, night, murders, genre, atmosphere, victims, classic, murder, haunted, town, mystery,
kill, criminal, action, becomes, wife, cops, gangster, sex, victims, story, body, ghost, tale, family, murders, castle, house, nightmare,

victim, brutal, terror, evil, murdered budget, eerie, death, doctor, victim, later, bloody, effects
workout, body, yoga, video, moves, dance, minute, program, fitness, workout, body, yoga, video, moves, dance, minute,
easy, poses, muscles, routine, exercises, learn, strength, movements, program, fitness

practice, help, step, w, workouts, minutes, techniques, flexibility, easy, poses, muscles, exercises, learn, routine, strength, movements,
get, exercise, one, instructor, first, series, time, instruction, minutes, get, help, practice, step, series, techniques, workouts,

use, follow, training, breathing, two, basic, back, ll, muscle, fun, time, flexibility, exercise, instructor, instruction, one, two, fun,
warm, steps, technique, balance, beginners, designed, using training, use, first, back, follow, steps, breathing, muscle, basic,

using, ll, beginners, three, warm, balance, technique, designed

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

1

Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ

2

parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [13], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [4].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [22]. Sampling β is done using the “direct assignment” method
of Teh et al. [21]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include rating associated with an online eview,
grades for an essay, and number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[18], DiscLDA[14], and other models applied to computer vision
and document networks[23, 7]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents in a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[? ? ? ? ].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

3

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [9],
and sometimes make mistakes [11].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [8, 12, 10]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [15, 19, 17, 20, 16].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We applied HSLDA, along with three other closely related models, to the clinical data and the retail product data. Specifically, we evaluate
models including sLDA with independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed
by tree-conditional regressions, and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several
aspects of the model including performance in the absence of hierarchical constraints, the effect of the combined inference procedure, and
regression performance attributable solely to the hierarchical constraints.

We evaluated model performance for all three models with a range of values for µ (µ ∈ {−3,−2.8,−2.6, . . . , 1}), the mean prior parameter
for regression parameters.

5.3 Evaluation

The two main methods of evaluation for the model are prediction and topic quality. To evaluate predictive performance for all comparison
models equivalently, each model was evaluated with two methods. The first evaluation method augments the observed labels in the held out
set with their ancestors and considers all other non-existant labels to be negative. The second method ignores the ancestors of the observed
labels in the held out set and considers all other non-existant labels to be negative. This uniform treatment of ancestors allows for a fair
comparison of the models.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org

4

The two measures for predictive performance used here include the true positive rate and the false positive rate evaluated based on
p
(
yl,d̂ | w1:N,d

)
for each label in each model.

6 Results

HSLDA sLDA with Independent Regressors
children, animation, animated, kids, songs, story, children, kids, animated,

family, new, fun,video, friends, music, live, classic, animation, songs, video, friends, fun, animals, family, story,
adventure, minute, world, magic,animals, song, musical, new, little, music, like, minute, along, musical, song,

voiced, feature, along, baby, ages, magical, adventure, help, classic, baby, child, ages, favorite, sing, learn,
action, favorite, special, tale, little, child, holiday, holiday, magical, tale, world, special, parents, live, way, day, boy,

help, voice, toys, original, learn, characters, make, old, magic, adventures, home, show, gang, animal, adults, toys,
computer, sing, like, adults, parents, version, old, first, many, action

including, young,
comedy, funny, comic, hilarious, series, gags, jokes, slapstick, satire, comedy, show, play, characters, sketches,

laugh, stars, films, comedies, first, comedian, funniest, show, involving, funny, mob, performance,
characters, cast, perfect, mob, performance, play, writer, television, people, screwball, cast, best, including, stars, sketch, girlfriend,
satirical, lines, hilariously, boss, routine, silent, funnier, comedic, hilariously, charming, ensemble, comic, character, star, writer, hit,
chemistry, comedians, talk, routines, brothers, girlfriend, shorts, stage, host, classic, romantic, mutants, boss, new, played, together,
mouse, whose, cinema, screwball, hit, humor, brilliant, gag, new, choice, like, karaoke, daughter, vehicle, news, splitting, actress,

get, story, hilarious, wacky, featuring, could, side, comedies, comedic
thriller, horror, murder, crime, killer, police, mystery, detective, horror, film, vampire, blood, one, dead, supernatural, killer, evil,

cop, one, dead, suspense, plot, case, blood, drug, dark, mysterious, thriller, gore, monster, young, night, terror, mysterious, director,
death, revenge, violence, town, gang, turns, prison, noir, violent, movie, films, cult, creepy, terrifying, original, dark, chilling,

deadly, stars, young, woman, nbsp, body, vampire, night, murders, genre, atmosphere, victims, classic, murder, haunted, town, mystery,
kill, criminal, action, becomes, wife, cops, gangster, sex, victims, story, body, ghost, tale, family, murders, castle, house, nightmare,

victim, brutal, terror, evil, murdered budget, eerie, death, doctor, victim, later, bloody, effects
workout, body, yoga, video, moves, dance, minute, program, fitness, workout, body, yoga, video, moves, dance, minute,
easy, poses, muscles, routine, exercises, learn, strength, movements, program, fitness

practice, help, step, w, workouts, minutes, techniques, flexibility, easy, poses, muscles, exercises, learn, routine, strength, movements,
get, exercise, one, instructor, first, series, time, instruction, minutes, get, help, practice, step, series, techniques, workouts,

use, follow, training, breathing, two, basic, back, ll, muscle, fun, time, flexibility, exercise, instructor, instruction, one, two, fun,
warm, steps, technique, balance, beginners, designed, using training, use, first, back, follow, steps, breathing, muscle, basic,

using, ll, beginners, three, warm, balance, technique, designed

7 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

1

Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
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parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [15], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [4].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method
of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include rating associated with an online eview,
grades for an essay, and number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[22], DiscLDA[17], and other models applied to computer vision
and document networks[27, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents in a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[20, 10, 16, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 14, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [18, 23, 21, 24, 19].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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We evaluated model performance for all three models with a range of values for µ, the mean prior parameter for regression parameters
(µ ∈ {−3,−2.8,−2.6, . . . , 1}). The number of topics for all models was set to 50, the parameters for the prior distributions α, αprime, and
γ were a shape parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) these potentially erroneous false positives should not skew results
significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).
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Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to decide whether or not label l is
to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
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parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [15], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following a is the set of
all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, c
k,−(n,d′)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d′. The (·) in the

subscript means the count resulting from summing over the omitted subscript variable. Also Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [? ]; the specific form of the update is a standard result from Bayesian normal linear regression [? ].
That the conditional posterior distribution of al,d is a truncated normal distribution

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

is also a standard probit regression result [4].

HSLDA departs from stock LDA in that we estimate a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model).
This has been shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method
of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include rating associated with an online eview,
grades for an essay, and number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[22], DiscLDA[17], and other models applied to computer vision
and document networks[27, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents in a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[20, 10, 16, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 14, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [18, 23, 21, 24, 19].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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We evaluated model performance for all three models with a range of values for µ, the mean prior parameter for regression parameters
(µ ∈ {−3,−2.8,−2.6, . . . , 1}). The number of topics for all models was set to 50, the parameters for the prior distributions α, αprime, and
γ were a shape parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) these potentially erroneous false positives should not skew results
significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).
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Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
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parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [15], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following, a is the set
of all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d
removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The (·) in the

subscript indicates that the related count is a sum over the omitted subscript variable. Also, Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [? ]. It is
a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA implements an asymmetric prior as a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model). This
has been shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh
et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[22], DiscLDA[17], and other models applied to computer vision
and document networks[27, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[20, 10, 16, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 14, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [18, 23, 21, 24, 19].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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We evaluated model performance for all three models with a range of values for µ, the mean prior parameter for regression parameters
(µ ∈ {−3,−2.8,−2.6, . . . , 1}). The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were
gamma distributed with a shape parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) these potentially erroneous false positives should not skew results
significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so

References
[1] The computational medicine center’s 2007 medical natural language processing challenge. http://www.computationalmedicine.org/challenge/previous,

2007.

[2] DMOZ open directory project. http://www.dmoz.org/, 2002.

[3] Stanford network analysis platform. http://snap.stanford.edu/, 2004.

[4] James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association,
88(422):669, 1993.

[5] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[7] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prabhakar Raghavan. Scalable feature selection, classification and signature generation for
organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7:163–178, August 1998. ISSN 1066-8888.

[8] Jonathan Chang and David M. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4:124–150, 2010. doi:
10.1214/09-AOAS309.

[9] K Crammer, M Dredze, K Ganchev, PP Talukdar, and S Carroll. Automatic code assignment to medical text. Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Language Processing, pages 129–136, 2007.

[10] Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’00, pages 256–263, New York, NY, USA, 2000. ACM.

[11] Yan Yan David S. Nilasena Martha J. Radford Brian F. Gage Elena Birman-Deych, Amy D. Waterman. Accuracy of ICD-9-CM codes for identifying
cardiovascular and stroke risk factors. Medical Care, 43(5):480–5, 2005.

[12] R Farkas and G Szarvas. Automatic construction of rule-based icd-9-cm coding systems. BMC bioinformatics, 9(Suppl 3):S10, 2008.

[13] Mehrdad Farzandipour, Abbas Sheikhtaheri, and F. Sadoughi. Effective factors on accuracy of principal diagnosis coding based on international
classification of diseases, the 10th revision. International Journal of Information Management, 30:78–84, 2010.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).
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Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
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parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [15], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following, a is the set
of all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d
removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The (·) in the

subscript indicates that the related count is a sum over the omitted subscript variable. Also, Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [? ]. It is
a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA implements an asymmetric prior as a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model). This
has been shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh
et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[22], DiscLDA[17], and other models applied to computer vision
and document networks[27, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[20, 10, 16, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 14, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [18, 23, 21, 24, 19].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) these potentially erroneous false positives should not skew results
significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include pages and their placement in Web directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to structure-agnostic models. Furthermore, we show evidence that the resulting
HSLDA topics are more descriptive of the underlying data than sLDA topics, which ignore the label hierarchy.

1 Introduction

The task of multi-label classification, selecting the k-best labels for a given instance, has been a topic of research for several years. One
simplistic way to carry out the classification is through a series of independent binary classifiers, but this ignores the many inherent depen-
dencies among the labels. Thus, much work has been devoted on incorporating the co-occurence patterns of the labels into the classification
task. In this paper, we focus on multi-label classification, where the labels are organized in a hierarchical structure. Scenarios of use include,
but are not limited to, placing webpages into manually curated Internet directories [2], categorizing images according to a taxonomy, tagging
product descriptions with catalogue information [3], and assigning diagnosis codes to clinical records [1].

There are several challenges entailed in incorporating the hierarchical nature of labels into the classification task. One pertains to the labeling
itself: in the datasets (especially real-world, noisy ones), for a given label, instances labeled with it contribute positive instance, but it is
unclear how to determine the negative instances. In particular, how to treat the parent labels of the selected ones?

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [5] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering labels as a flat list.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification. Following the trend observed in
supervised topic modeling, we note that the learned topic models are more representative of the underlying data in both of our datasets [5].

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).
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Figure 1: HSLDA graphical model

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
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parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following, a is the set
of all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d
removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The (·) in the

subscript indicates that the related count is a sum over the omitted subscript variable. Also, Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It is
a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA implements an asymmetric prior as a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model). This
has been shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh
et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[23], DiscLDA[18], and other models applied to computer vision
and document networks[28, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[21, 10, 17, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 15, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [19, 24, 22, 25, 20].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures solid is HSLDA, dashed are indepen-
dent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-conditional
regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction performance,
(b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d) are the
1-specificity curves from (b) aligned on threshold value.
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Figure 3: Out-of-sample Amazon product code predictions from product free-text descriptions. In all figures solid is HSLDA, dashed are
independent regressors + sLDA (hierarchical constraints on labels ignored), dotted is HSLDA fit by running LDA first then running tree-
conditional regressions, and dot-dashed is HSLDA fit with fixed random regression parameters. Top row: (a) includes ancestor prediction
performance, (b) results are for given (leaf) labels alone. Bottom row: (c) are the sensitivity curves from (b) aligned on threshold value, (d)
are the 1-specificity curves from (b) aligned on threshold value.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [? ] as available from [3]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [? ]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following, a is the set
of all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d
removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The (·) in the

subscript indicates that the related count is a sum over the omitted subscript variable. Also, Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It is
a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA implements an asymmetric prior as a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model). This
has been shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh
et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[23], DiscLDA[18], and other models applied to computer vision
and document networks[28, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[21, 10, 17, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
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the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 15, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [19, 24, 22, 25, 20].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

(a)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (b) shows predictive
perfmance as a function of the prior mean on regression parameters.

(a)

Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (b) shows predictive
perfmance as a function of the prior mean on regression parameters.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [? ] as available from [3]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [? ]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to Gibbs sample the HSLDA posterior distribution. Note that, like in
collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the parameters φ1:K and θ1:D. In the following, a is the set
of all auxiliary variables, w is the set of all words, η is the set of all regression coefficients, and zd\zn,d is the set zd with element zn,d
removed.

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

Here, ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The (·) in the

subscript indicates that the related count is a sum over the omitted subscript variable. Also, Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It is
a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA implements an asymmetric prior as a hierarchical Dirichlet prior over topic assignments (i.e. β is a parameter in our model). This
has been shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh
et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′

)
(4)

where md,k are auxiliary variables that are required to sample the posterior distribution of β and are governed by the following function.

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck·,d

)s (ck·,d,m) (αβk)m (5)

s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[23], DiscLDA[18], and other models applied to computer vision
and document networks[28, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[21, 10, 17, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
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the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 15, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [19, 24, 22, 25, 20].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

0.0 0.2 0.4 0.6 0.8 1.0
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(a)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?
• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,

is the first principled approach to doing so
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and
curated hierarchical directories of the same [2], product descriptions and catalogs (e.g. [? ] as available from [3]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [? ]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where

µ̂l = Σ̂
(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[4]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

While there has been much work in multi-label classification of text and text modeling in general, we focus here on topic modeling ap-
proaches. Latent Dirichlet allocation (LDA) is a generative probabilistic model which represents documents as a mixed-membership bag of
word. Each document is represented as a collection of words, generated from a set of topic assignments (one for each word), where each
topic assignment is drawn from a distribution over topics [6]. sLDA is latent Dirichlet allocation (LDA) [6] augmented with per-document
labeling, often taking the form of a single numerical or categorical label. Examples of labels include ratings associated with online reviews,
grades for essays, and the number of times a webpage is linked. This approach has been shown to outperform both LASSO (L1 regularized
least squares regression) and LDA followed by least squares regression [5].

Other models that incorporate LDA and supervision include LabeledLDA[23], DiscLDA[18], and other models applied to computer vision
and document networks[28, 8]. These models, however, do not implement contraints on the label space.

In other work, researchers have classified documents into a hierarchy with naive Bayes classifiers and support vector machines. Most of this
work has been demonstrated on relatively small datasets, small label spaces and has focused on single label classification without a model of
documents such as LDA[21, 10, 17, 7].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [11],
and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical
NLP community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training
and 1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in
our dataset). Methods ranged from manual rules to online learning [9, 15, 12]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [19, 24, 22, 25, 20].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [5]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.
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(a)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

2

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.

6 Discussion

We have described a mixed membership model with hierarchical supervision. We have demonstrated this model in the context of document
modeling with hierarchical multi-label supervision. Such a model is appropriate in domains where there are hierarchical constraints among
the labels such as is the case in an IS-A hierarchy.

...

• what about the nonparametric version of this?

• discuss the broader goal, from the beginning of search engine time, to combine categorization and free text. this, to our knowledge,
is the first principled approach to doing so
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Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org

4

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...

5
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(a)

Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied after inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figures 2 and 3 show the predictive performance of HSLDA relative to the three comparison models.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.

6

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

References
[1]

[2] The computational medicine center’s 2007 medical natural language processing challenge. http://www.computationalmedicine.org/challenge/previous,
2007.

[3] DMOZ open directory project. http://www.dmoz.org/, 2002.

[4] ICD-9-CM: international classification of diseases, 9th revision; clinical modification, 6th edition. Practice Management Information Corporation,
Los Angeles, CA, 2006.

[5] Stanford network analysis platform. http://snap.stanford.edu/, 2004.

[6] James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association,
88(422):669, 1993.

[7] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[9] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prabhakar Raghavan. Scalable feature selection, classification and signature generation for
organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7:163–178, August 1998. ISSN 1066-8888.

[10] Jonathan Chang and David M. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4:124–150, 2010. doi:
10.1214/09-AOAS309.

[11] K Crammer, M Dredze, K Ganchev, PP Talukdar, and S Carroll. Automatic code assignment to medical text. Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Language Processing, pages 129–136, 2007.

[12] Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’00, pages 256–263, New York, NY, USA, 2000. ACM.

[13] Yan Yan David S. Nilasena Martha J. Radford Brian F. Gage Elena Birman-Deych, Amy D. Waterman. Accuracy of ICD-9-CM codes for identifying
cardiovascular and stroke risk factors. Medical Care, 43(5):480–5, 2005.

[14] R Farkas and G Szarvas. Automatic construction of rule-based icd-9-cm coding systems. BMC bioinformatics, 9(Suppl 3):S10, 2008.

[15] Mehrdad Farzandipour, Abbas Sheikhtaheri, and F. Sadoughi. Effective factors on accuracy of principal diagnosis coding based on international
classification of diseases, the 10th revision. International Journal of Information Management, 30:78–84, 2010.

[16] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.

[17] I Goldstein, A Arzumtsyan, and Ö Uzuner. Three approaches to automatic assignment of icd-9-cm codes to radiology reports. AMIA Annual Symposium
Proceedings, 2007:279, 2007.

[18] TL Griffiths and M Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235, 2004.

[19] Daphne Koller and Mehran Sahami. Hierarchically classifying documents using very few words. Technical Report 1997-75, Stanford InfoLab,
February 1997. Previous number = SIDL-WP-1997-0059.

[20] Simon Lacoste-julien, Fei Sha, and Michael I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. In Neural
Information Processing Systems, pages 897–904.

[21] Leah Larkey and Bruce Croft. Automatic assignment of ICD9 codes to discharge summaries. Technical report, University of Massachussets, 1995.

[22] LV Lita, S Yu, S Niculescu, and J Bi. Large scale diagnostic code classification for medical patient records. 2008.

[23] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Building domain-specific search engines with machine learning techniques.
In Proc. AAAI-99 Spring Symposium on Intelligent Agents in Cyberspace, 1999., 1999.

[24] Serguei Pakhomov, James Buntrock, and Christopher Chute. Automating the assignment of diagnosis codes to patient encounters using example-based
and machine learning techniques. Journal of the American Medical Informatics Association (JAMIA), 13(5):516–525, 2006.

[25] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. Labeled LDA: a supervised topic model for credit attribution
in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Vol-
ume 1, EMNLP ’09, pages 248–256, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-59-6. URL
http://portal.acm.org/citation.cfm?id=1699510.1699543.

[26] B RibeiroNeto, AHF Laender, and LRS De Lima. An experimental study in automatically categorizing medical documents. Journal of the American
society for Information science and Technology, 52(5):391–401, 2001.

[27] P Ruch, J Gobeill, I Tbahriti, and A Geissbühler. From episodes of care to diagnosis codes: automatic text categorization for medico-economic
encoding. AMIA Annual Symposium Proceedings, 2008:636, 2008.

[28] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):
1566–1581, 2006.

[29] Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking LDA: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1973–1981. 2009.

[30] Chong Wang, David Blei, and Li Fei-Fei. Simultaneous image classification and annotation. In CVPR, 2009.

7



000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

Hierarchically Supervised Latent Dirichlet Allocation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In

1

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [? ? ]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied after inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figures 2 and 3 show the predictive performance of HSLDA relative to the three comparison models.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [16]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.
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3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics of performance - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two
aforementioned datasets to demonstrate that model performance generalizes over two very disparate domains.

To evaluate the performance of these models, we establish a gold standard for comparison. In our evaluation of each dataset, a held out
set of 1000 documents and labels were reserved for evaluation and predictive performance was evaluated against the observed labeling.
Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were considered to
be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being compared. In
particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal footing by
focusing on the observed labels as positives. The gold standard defined in this way will likely lead to a slight overestimation of the number of
false positives. It is known that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied after inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figures 2 and 3 show the predictive performance of HSLDA relative to the three comparison models.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records. In all figures, solid is HSLDA, dashed are in-
dependent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Figure 3: Out-of-sample Amazon product category predictions from product free-text descriptions. In all figures, solid is HSLDA, dashed
are independent regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running
tree-conditional regressions. ?? shows predictive performance as a function of the auxiliary variable threshold and (a) shows predictive
perfmance as a function of the prior mean on regression parameters.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multi-labeled
bag-of-word data. Examples of such data include Web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we
focus on unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages
and curated hierarchical directories of the same [3], product descriptions and catalogs (e.g. [1] as available from [5]), and patient hospital
treatment transcripts and codes applied to them for bookkeeping and insurance purposes (e.g. hospital discharge records with International
Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these
two sources of information using a single model that allows one to automatically categorize new text documents, suggest labels that might
be inaccurate, compute improved similarities between documents for information retrieval purposes, and more. The models and techniques
that we develop in this paper are applicable in other domains as well, namely, any unstructured representations of data that have been
hierarchically classified (e.g. image catalogs with bag-of-feature image representations).

Our main contribution is to show how to utilize supervision in the form of hierarchical and (often) multiple labelings in a similar manner.
Consider web retail data. Web retailers often have both a browse-able product hierarchy and free-text descriptions for all products they sell.
The situation of each product in a product hierarchy (often multiply situated) constitutes a multiple, hierarchical labeling of the free-text
product descriptions. We hypothesize that such hierarchical labels should, at least in theory, provide better supervision than the simpler
unstructured labels previously considered. Results from applying our model to both medical record and web retail data suggests that this is
likely the case. In particular, we observe gains in our primary goal of out-of-sample label prediction that result specifically from leveraging
hierarchical supervision.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
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Figure 1: HSLDA graphical model

it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [16]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

2

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 12, 19, 9].

5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.
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5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [13],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure ?? shows the predictive performance of HSLDA relative to the three comparison models. In figure

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [3], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels. Given a large set of potential labels (often thousands), each
instance has only a small number of labels associated to it. There are no negative labeling present in the data naturally, and the absence of a
label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [8] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering unstructured labels.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
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Figure 1: HSLDA graphical model

every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [16]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [8] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [9] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [8]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [8]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 11] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 13, 19, 10].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [7],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [12, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [8]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure ?? shows the predictive performance of HSLDA relative to the three comparison models. In figure ??.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (?? and ??). Out-of-sample Amazon product
category predictions from product free-text descriptions (?? and ??). In all figures, solid is HSLDA, dashed are independent regressors +
sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
?? and ?? show predictive performance as a function of the auxiliary variable threshold and ?? and ?? show predictive perfmance as a
function of the prior mean on regression coefficients.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [3], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [4]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on ISA hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [8] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [16]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.
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Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [18], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [6]; the specific form of the update is a standard result from Bayesian normal linear regression [16]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[6]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [29]. Sampling β is done using the “direct assignment” method of Teh et al. [28]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [8] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [9] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [8]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [8]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[25] and DiscLDA[20]. Various applications of these models to
computer vision and document networks have been explored [30, 11] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[23, 13, 19, 10].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [2], tend to be more specific than sensitive in their assignments [7],
and sometimes make mistakes [15].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [2]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [12, 17, 14]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [21, 26, 24, 27, 22].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [5].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [8]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models. In figure 2(a).

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (?? and (a)). Out-of-sample Amazon product
category predictions from product free-text descriptions (?? and (b)). In all figures, solid is HSLDA, dashed are independent regressors +
sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
?? and ?? show predictive performance as a function of the auxiliary variable threshold and (a) and (b) show predictive perfmance as a
function of the prior mean on regression coefficients.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels. Given a large set of potential labels (often thousands), each
instance has only a small number of labels associated to it. There are no negative labeling present in the data naturally, and the absence of a
label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. In particular, we extend supervised latent Dirichlet allocation
(sLDA) [7] to take advantage of hierarchical supervision. We hypothesize that hierarchical label information provides more information
about labeling than considering unstructured labels.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information is
valuable when incorporated into the learning and improves our primary goal of multi-label classification.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
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Figure 1: HSLDA graphical model

every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models. In figure 2(a).

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (?? and (a)). Out-of-sample Amazon product
category predictions from product free-text descriptions (?? and (b)). In all figures, solid is HSLDA, dashed are independent regressors +
sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
?? and ?? show predictive performance as a function of the auxiliary variable threshold and (a) and (b) show predictive perfmance as a
function of the prior mean on regression coefficients.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures ?? and 2(a) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation of
the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on ISA hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.
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Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models. In figure 2(a).

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (?? and (a)). Out-of-sample Amazon product
category predictions from product free-text descriptions (?? and (b)). In all figures, solid is HSLDA, dashed are independent regressors +
sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
?? and ?? show predictive performance as a function of the auxiliary variable threshold and (a) and (b) show predictive perfmance as a
function of the prior mean on regression coefficients.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures ?? and 2(a) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation of
the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on ISA hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

2

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure ?? shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficient. Figure ?? demo.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (??). Out-of-sample Amazon product category
predictions from product free-text descriptions (??). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures ?? and ?? suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation of
the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.
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Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org

4

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models. In figure 2(b).

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records (?? and (b)). Out-of-sample Amazon product
category predictions from product free-text descriptions (?? and ??). In all figures, solid is HSLDA, dashed are independent regressors +
sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
?? and ?? show predictive performance as a function of the auxiliary variable threshold and (b) and ?? show predictive perfmance as a
function of the prior mean on regression coefficients.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-
of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-
of-word data is also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus on
unstructured textual data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other domains as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on ISA hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-words data. We will refer to individual groups of bag-of-word data as
documents. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in
document d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
.

Each label except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set
has hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more complicated inference.
Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L. Each
document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases yi,d
will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.
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Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org

4

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficient. Figure ?? demo.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((a)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((a)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures ?? and 2(a) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation of
the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

except root labels l ∈ L has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e. yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e. ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, the bag-of-words document data is modeled using the LDA mixed-membership mixture model with global topic estimation.
Label responses are generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In
it and the following K is the number of LDA ”topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a
document-specific distribution over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·)
is the K-dimensional Normal distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an
indicator function that takes the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the
HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here each document is
generatively labeled using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.
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Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.

In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the readers attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by
p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution[5]

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e. β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficient. Figure 2(a) demo.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

5
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...

References
[1] The computational medicine center’s 2007 medical natural language processing challenge. http://www.computationalmedicine.org/challenge/previous,

2007.

[2] DMOZ open directory project. http://www.dmoz.org/, 2002.

[3] ICD-9-CM: international classification of diseases, 9th revision; clinical modification, 6th edition. Practice Management Information Corporation,
Los Angeles, CA, 2006.

[4] Stanford network analysis platform. http://snap.stanford.edu/, 2004.

6

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

[5] J H Albert and S Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669,
1993.

[6] E. Birman-Deych, A. D. Waterman, Y. Yan, D. S. Nilasena, M. J. Radford, and B. F. Gage. Accuracy of ICD-9-CM codes for identifying cardiovascular
and stroke risk factors. Medical Care, 43(5):480–5, 2005.

[7] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[9] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable feature selection, classification and signature generation for organizing large text
databases into hierarchical topic taxonomies. The VLDB Journal, 7:163–178, August 1998. ISSN 1066-8888.

[10] J. Chang and D. M. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4:124–150, 2010. doi: 10.1214/09-
AOAS309.

[11] K Crammer, M Dredze, K Ganchev, PP Talukdar, and S Carroll. Automatic code assignment to medical text. Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Language Processing, pages 129–136, 2007.

[12] Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’00, pages 256–263, New York, NY, USA, 2000. ACM.

[13] R Farkas and G Szarvas. Automatic construction of rule-based ICD-9-CM coding systems. BMC bioinformatics, 9(Suppl 3):S10, 2008.

[14] M. Farzandipour, A. Sheikhtaheri, and F. Sadoughi. Effective factors on accuracy of principal diagnosis coding based on international classification of
diseases, the 10th revision. International Journal of Information Management, 30:78–84, 2010.

[15] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficient. Figure 2(a) demo.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision”; often taking the form of a single numerical or categorical label.
More generally this supervision is just extra per-document data; for instance its quality or relevance (e.g. online review scores), marks given to
written work (e.g. essay grades), or the number of times a web page is linked. These labels are usually generatively modeled as a conditional
draw from some distribution that depends on each document-specific topic mixture. It has been demonstrated that the signal provided by such
supervision can result in better, task-specific document models and can also lead to good label prediction for out-of-sample data [7]. It also
has been demonstrated that sLDA has been shown to outperform both LASSO (L1 regularized least squares regression) and LDA followed
by least squares regression [7]. sLDA can be applied to data of the type we consider in this paper; however, doing so requires ignoring the
hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA[22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through query-based searching or through product category exploration. Top-level
product categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive
and descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as
fair as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models
can be compared on a more equal footing by considering only on the observed labels as being positive despite the fact that ancestors must
also be positive. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,

5
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
ti

v
it

y

(b)

Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We experimented with HSLDA for prediction in two domains: predicting medical diagnosis codes from hospital discharge summaries and
predicting product categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize the course of a hospitalized patient. The summaries typically contain a record
of the patient complains, findings and diagnoses, along with treatment and hospital course. For each admission trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 As such, the ICD-9 codes constitute
a labeling of a patient’s diagnoses based on a discharge summary. The ICD-9 codes are organized in a rooted-tree structure, with each edge
representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the child diagnosis. For example, the
code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former is a type of the latter. It is worth
noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than sensitive in their assignments [6],
and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Much of the work was triggered by the 2007 medical NLP
community challenge [1]. The data in the challenge, however, differs from ours in its scope. The datasets were smaller (1,000 training and
1,000 testing documents) and focused on radiology reports with a restricted number of ICD-9 codes (45 of them, compared to 7K+ in our
dataset). Methods ranged from manual rules to online learning [11, 16, 13]. Other work had leveraged larger datasets and experimented
with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian Ridge Regression, as well as simple keyword mappings, all with
promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of NewYork-Presbyterian Hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 Vocabulary was determined as the top 10,000 tokens with highest document
frequency (exclusive of names, places and other identifying numbers). Each discharge summary is thus represented as counts over the
10,000-word vocabulary. The study was approved by the Institutional Review Board and follows HIPAA (Health Insurance Portability and
Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a hierarchy and provides product descriptions for most products in
their catolog. Products can be discovered by users through query-based searching or through product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

We were able to deduce the structure of the hierarchy for the Amazon.com products because all ancestors in the hierarchy were included with
each category label. For example, “DVD / Genres / Science Fiction & Fantasy / Classic Sci-Fi” is a single product category for the DVD,
“The Time Machine.”

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by performing LDA followed by tree-conditional regressions,
and HSLDA fit with fixed random regression parameters. These models were chosen to highlight several aspects of the model including per-
formance in the absence of hierarchical constraints, the effect of the combined inference procedure, and regression performance attributable
solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesize will result in a difference in predictive performance.
Aside from this, all other features of sLDA are preserved between the two models.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

The last comparison model is HSLDA with fixed and randomly selected regression parameters. There is a baseline benefit that the structure
in the label space provides for the prediction of labels. This comparison model is intended to quantify the contribution of the structure alone.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. Specifically, ancestors of observed nodes were ignored, observed nodes were considered positive and unobserved nodes were
considered to be negative. This method of defining positive and negative labels was chosen to be as fair as possible to all models being
compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models can be compared on a more equal
footing by considering only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard
defined in this way will likely lead to a slight overestimation of the number of false positives. It is known that ICD-9 codes lack sensitivity
and their use as a gold standard could lead to correctly positive predictions being labeled as false positives. However, given that the label
space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficient. Figure 2(a) demo.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

1

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through query-based searching or through product category exploration. Top-level
product categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive
and descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as
fair as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models
can be compared on a more equal footing by considering only on the observed labels as being positive despite the fact that ancestors must
also be positive. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

...
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[6].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of
topic models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. Another way to see the
family is as a set of models that can predict labels for bag-of-words data. A large diversity of problems can be expressed as label prediction
problems for bag-of-words data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically constrained
or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms more
straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. In alternative interpretation
of the same results is that if one is more sensitive to the performance gains that result from exploiting the structure of the labels then one can,
in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through query-based searching or through product category exploration. Top-level
product categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance. Predictive performance was
measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate). We evaluate on the two aforementioned
datasets to demonstrate that our model generalizes to two different domains.

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive
and descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as
fair as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, the models
can be compared on a more equal footing by considering only on the observed labels as being positive despite the fact that ancestors must
also be positive. The gold standard defined in this way will likely lead to a slight overestimation of the number of false positives. It is known
that ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives.
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
where d̂ represents the test document. For effi-

ciency, the expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with
samples from the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the
documents in the test set.

The following are the predictive performance results for the clinical data given a prior mean for the regression parameters of -1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of -2.2. The
full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and a
false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

To further explore this tradeoff between the true positive rate and the false positive rate we evaluated predictive performance for a range of
values for two different parameters - the prior mean for the regression coefficients and the threshold for the auxiliary variables. The goal in
this analysis was to evaluate the performance of these models subject to more or less stringent requirements for predicting positive labels.
These two parameters have important related functions in the model. The prior mean in combination with the auxiliary variable threshold
together encode the strength of the prior belief that unobserved labels are likely to be negative. Effectively, the prior mean applies negative
pressure to the predictions and the auxiliary variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. In contrast, to evaluate predictive
performance as a function of the auxiliary variable threshold, a single model was fit for each model type and prediction was evaluated based
on predictive samples drawn subject to different auxiliary variable thresholds. These methods are significantly different since the prior mean
is varied prior to inference and the auxiliary variable threshold is varied following inference. However, as intended, they both highlight model
performance under more or less stringent requirements for predicting positive labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.

References
[1] The computational medicine center’s 2007 medical natural language processing challenge. http://www.computationalmedicine.org/challenge/previous,

2007.
[2] DMOZ open directory project. http://www.dmoz.org/, 2002.
[3] ICD-9-CM: international classification of diseases, 9th revision; clinical modification, 6th edition. Practice Management Information Corporation,

Los Angeles, CA, 2006.
[4] Stanford network analysis platform. http://snap.stanford.edu/, 2004.
[5] J H Albert and S Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669,

1993.
[6] E. Birman-Deych, A. D. Waterman, Y. Yan, D. S. Nilasena, M. J. Radford, and B. F. Gage. Accuracy of ICD-9-CM codes for identifying cardiovascular

and stroke risk factors. Medical Care, 43(5):480–5, 2005.
[7] D. Blei and J. McAuliffe. Supervised topic models. Advances in Neural Information Processing, 20:121–128, 2008.
[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.
[9] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable feature selection, classification and signature generation for organizing large text

databases into hierarchical topic taxonomies. The VLDB Journal, 7:163–178, August 1998. ISSN 1066-8888.

6

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

[10] J. Chang and D. M. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4:124–150, 2010. doi: 10.1214/09-
AOAS309.

[11] K Crammer, M Dredze, K Ganchev, PP Talukdar, and S Carroll. Automatic code assignment to medical text. Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Language Processing, pages 129–136, 2007.

[12] Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’00, pages 256–263, New York, NY, USA, 2000. ACM.

[13] R Farkas and G Szarvas. Automatic construction of rule-based ICD-9-CM coding systems. BMC bioinformatics, 9(Suppl 3):S10, 2008.

[14] M. Farzandipour, A. Sheikhtaheri, and F. Sadoughi. Effective factors on accuracy of principal diagnosis coding based on international classification of
diseases, the 10th revision. International Journal of Information Management, 30:78–84, 2010.

[15] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[6].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 26, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[6].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes (e.g. hospital discharge summaries with International Classification of Disease 9th Revision, Clinical
Modification (ICD-9-CM) codes assigned [3]). In this work we show how to combine these two sources of information using a single model
that allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities
between documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable
in other data as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with
bag-of-feature image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.
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Figure 1: HSLDA graphical model

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K
• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)
4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [28]. Sampling β is done using the “direct assignment” method of Teh et al. [27]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [29, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23, 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[6].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),??). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure ?? is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.
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The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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[16] I Goldstein, A Arzumtsyan, and Ö Uzuner. Three approaches to automatic assignment of icd-9-cm codes to radiology reports. AMIA Annual Symposium
Proceedings, 2007:279, 2007.

[17] T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228–5235, 2004.

[18] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. Technical Report 1997-75, Stanford InfoLab, February 1997.
Previous number = SIDL-WP-1997-0059.

[19] S. Lacoste-Julien, F. Sha, and M. I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. In Neural Information
Processing Systems, pages 897–904.

[20] L. Larkey and B. Croft. Automatic assignment of ICD9 codes to discharge summaries. Technical report, University of Massachussets, 1995.

[21] LV Lita, S Yu, S Niculescu, and J Bi. Large scale diagnostic code classification for medical patient records. In Proceedings of the 3rd International
Joint Conference on Natural Language Processing (IJCNLP’08), 2008.

[22] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Building domain-specific search engines with machine learning techniques. In Proc. AAAI-99
Spring Symposium on Intelligent Agents in Cyberspace, 1999.

[23] S. Pakhomov, J. Buntrock, and C. Chute. Automating the assignment of diagnosis codes to patient encounters using example-based and machine
learning techniques. Journal of the American Medical Informatics Association (JAMIA), 13(5):516–525, 2006.

[24] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 248–256, 2009.

[25] B RibeiroNeto, AHF Laender, and LRS De Lima. An experimental study in automatically categorizing medical documents. Journal of the American
society for Information science and Technology, 52(5):391–401, 2001.

[26] P Ruch, J Gobeill, I Tbahriti, and A Geissbühler. From episodes of care to diagnosis codes: automatic text categorization for medico-economic
encoding. AMIA Annual Symposium Proceedings, 2008:636, 2008.

[27] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):
1566–1581, 2006.

[28] Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking LDA: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1973–1981. 2009.

[29] C. Wang, D. Blei, and L. Fei-Fei. Simultaneous image classification and annotation. In CVPR, 2009.

7



000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

Hierarchically Supervised Latent Dirichlet Allocation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [28, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three other closely related models against these two datasets. The comparison models included sLDA with
independent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regres-
sions. These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints,
the effect of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[5].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),(c)). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure (c) is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.
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The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [15]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [17], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [5]; the specific form of the update is a standard result from Bayesian normal linear regression [15]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [5].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [7] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [8] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [7]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [7]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[24] and DiscLDA[19]. Various applications of these models to
computer vision and document networks have been explored [28, 10] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [22, 12, 18, 9].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [6], and sometimes make mistakes [14].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [11, 16,
13]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [20, 25, 23? , 21].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [4].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three closely related models against these two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [7]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[6].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: Out-of-sample ICD-9 code prediction from patient free-text discharge records ((b)). Out-of-sample Amazon product category
predictions from product free-text descriptions ((b)). In both figures, solid is HSLDA, dashed are independent regressors + sLDA (hierarchical
constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional regressions.
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Figure 3: ROC Curve for clinical data

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [27, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with three closely related models against these two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all of these models, particular attention was payed to the settings of the prior parameters for the regression coefficients. These parameters
implement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regres-
sion parameters with a negative mean implements a prior belief that missing labels are likely to be negative. We evaluated model performance
for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics - sensitiviy (true positive rate) and 1-specificity (false positive rate).

To evaluate the performance of these models, we established a gold standard for comparison. For each dataset, a held out set of 1000
documents and labels were reserved for evaluation and predictive performance was evaluated against a standard derived from the observed
labeling. To make the comparison as fair as possible, ancestors of observed nodes were ignored, observed nodes were considered positive and
descendents of observed nodes were considered to be negative. This method of defining positive and negative labels was chosen to be as fair
as possible to all models being compared. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance
was found to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering
only on the observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will
likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as they could be.
ICD-9 codes lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[5].
However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not
skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),??). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure ?? is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.
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The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [27]. Sampling β is done using the “direct assignment” method of Teh et al. [26]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [28, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with two closely related models against the two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all three models, particular attention was given to the settings of the prior parameters for the regression coefficients. These parameters im-
plement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regression
parameters with a negative mean implements a prior belief that missing labels are likely to be negative. Thus, we evaluated model perfor-
mance for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),(c)). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure (c) is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics – sensitiviy (true positive rate) and 1-specificity (false positive rate).

The gold standard for comparison was derived from the testing set in each dataset. To make the comparison as fair as possible among models,
ancestors of observed nodes in the label hierarchy were ignored, observed nodes were considered positive and descendents of observed nodes
were considered to be negative. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance was found
to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering only on the
observed labels as being positive despite the fact that ancestors must also be positive. The gold standard defined in this way will likely inflate
the number of false positives because the labels applied to any particular document are usually not as complete as they could be. ICD-9 codes
lack sensitivity and their use as a gold standard could lead to correctly positive predictions being labeled as false positives[5]. However,
given that the label space is often large (as in our examples) it is a moderate assumption that erroneous false positives should not skew results
significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
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positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [27, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with two closely related models against the two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all three models, particular attention was given to the settings of the prior parameters for the regression coefficients. These parameters im-
plement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regression
parameters with a negative mean implements a prior belief that missing labels are likely to be negative. Thus, we evaluated model perfor-
mance for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),(c)). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure (c) is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics – sensitiviy (true positive rate) and 1-specificity (false positive rate).

The gold standard for comparison was derived from the testing set in each dataset. To make the comparison as fair as possible among models,
ancestors of observed nodes in the label hierarchy were ignored, observed nodes were considered positive and descendents of observed nodes
were considered to be negative. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance was found
to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering only on the
observed labels as being positive, despite the fact that, following the hierarchical constraints, ancestors must also be positive. Such a gold
standard will likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as
they could be. ICD-9 codes, for instance, lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives[5]. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

The following are the performance results for the clinical data given a prior mean for the regression parameters of µ = −1.6. The full
HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and a false
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positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a false
positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

The following are the predictive performance results for the retail product data given a prior mean for the regression parameters of µ = −2.2.
The full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate of 0.78 and
a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.77 and a
false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off we examined sensitivity for a range of values for two different parameters - the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff.

For each model type, separate models were fit for each value of the prior mean of the regression coefficients. This is a proper Bayesian
sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary variable threshold, a single model was fit
for each model type and prediction was evaluated based on predictive samples drawn subject to different auxiliary variable thresholds. These
methods are significantly different since the prior mean is varied prior to inference and the auxiliary variable threshold is varied following
inference. However, as intended, they both highlight model performance under more or less stringent requirements for predicting positive
labels.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirchlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Given a large set of potential labels (often
thousands), each instance has only a small number of labels associated to it. There are no naturally occurring negative labeling in the data,
and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies
in a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the
model can be applied to other hierarchies. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic modeling and the
hierarchical classification are carried out independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [27, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with two closely related models against the two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all three models, particular attention was given to the settings of the prior parameters for the regression coefficients. These parameters im-
plement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regression
parameters with a negative mean implements a prior belief that missing labels are likely to be negative. Thus, we evaluated model perfor-
mance for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),(c)). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure (c) is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics – sensitiviy (true positive rate) and 1-specificity (false positive rate).

The gold standard for comparison was derived from the testing set in each dataset. To make the comparison as fair as possible among models,
ancestors of observed nodes in the label hierarchy were ignored, observed nodes were considered positive and descendents of observed nodes
were considered to be negative. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance was found
to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering only on the
observed labels as being positive, despite the fact that, following the hierarchical constraints, ancestors must also be positive. Such a gold
standard will likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as
they could be. ICD-9 codes, for instance, lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives[5]. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

Figure 2(a) shows the results for the clinical data. For instance, a prior mean for the regression of µ = −1.6 yields the following performance:
the full HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and
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a false positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a
false positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

Figure 2(b) shows the results for the retail product data. For instance, a prior mean for the regression of µ = −2.2 yields the following
performance: the full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate
of 0.78 and a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of
0.77 and a false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off, we examined sensitivity for a range of values for two different parameters – the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff. For each model type, separate models were fit for each value of the prior mean of the regression
coefficients. This is a proper Bayesian sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary
variable threshold, a single model was fit for each model type and prediction was evaluated based on predictive samples drawn subject to
different auxiliary variable thresholds. These methods are significantly different since the prior mean is varied prior to inference and the
auxiliary variable threshold is varied following inference.

Figure 2 shows the predictive performance of HSLDA relative to the three comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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Abstract

We introduce hierarchically supervised latent Dirichlet allocation (HSLDA), a model for hierarchically and multiply labeled
bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and
associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-
sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-
word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail
product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label
prediction substantially when compared to models that do not.

1 Introduction

There exist many sources of unstructured data that have been partially or completely categorized by human editors. In this paper, we focus
on unstructured text data that has been, at least in part, manually categorized. Examples include but are not limited to webpages and curated
hierarchical directories of the same [2], product descriptions and catalogs, and patient records and diagnosis codes assigned to them for
bookkeeping and insurance purposes. In this work we show how to combine these two sources of information using a single model that
allows one to categorize new text documents automatically, suggest labels that might be inaccurate, compute improved similarities between
documents for information retrieval purposes, and more. The models and techniques that we develop in this paper are applicable to other data
as well, namely, any unstructured representations of data that have been hierarchically classified (e.g., image catalogs with bag-of-feature
image representations).

There are several challenges entailed in incorporating a hierarchy of labels into the model. Among them, given a large set of potential labels
(often thousands), each instance has only a small number of labels associated to it. Furthermore, there are no naturally occurring negative
labeling in the data, and the absence of a label cannot always be interpreted as a negative labeling.

Our work operates within the framework of topic modeling. Our approach learns topic models of the underlying data and labeling strategies in
a joint model, while leveraging the hierarchical structure of the labels. For the sake of simplicity, we focus on is-a hierarchies, but the model
can be applied to other structured label spaces. We extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical
supervision. We propose an efficient way to incorporate hierarchical information into the model. We hypothesize that the context of labels
within the hierarchy provides valuable information about labeling.

We demonstrate our model on large, real-world datasets in the clinical and web retail domains. We observe that hierarchical information
is valuable when incorporated into the learning and improves our primary goal of multi-label classification. Our results show that a joint,
hierarchical model outperforms a classification with unstructured labels as well as a disjoint model, where the topic model and the hierarchical
classification are inferred independently of each other.

The remainder of this paper is as follows. Section 2 introduces hierarchically supervised LDA (HSLDA), while Section 3 details a sampling
approach to inference in HSLDA. Section 4 reviews related work, and Section 5 shows results from applying HSLDA to health care and web
retail data.

2 Model

HSLDA is a model for hierarchically, multiply-labeled, bag-of-word data. We will refer to individual groups of bag-of-word data as docu-
ments. Let wn,d ∈ Σ be the nth observation in the dth document. Let wd = {w1,d, . . . , w1,Nd

} be the set of Nd observations in document
d. Let there be D such documents and let the size of the vocabulary be V = |Σ|. Let the set of labels be L =

{
l1, l2, . . . , l|L|

}
. Each label

labels l ∈ L, except root, has a parent pa(l) ∈ L also in the set of labels. We will for exposition purposes assume that this label set has
hard “is-a” parent-child constraints (explained later), although this assumption can be relaxed at the cost of more computationally complex
inference. Such a label hierarchy forms a multiply rooted tree. Without loss of generality we will consider a tree with a single root r ∈ L.
Each document has a variable yl,d ∈ {−1, 1} for every label which indicates whether the label is applied to document d or not. In most cases
yi,d will be unobserved, in some cases we will be able to fix its value because of constraints on the label hierarchy, and in the relatively minor
remainder its value will be observed. In the applications we consider, only positive label applications are observed.

The constraints imposed by an is-a label hierarchy are that if the lth label is applied to document d, i.e., yl,d = 1, then all labels in the label
hierarchy up to the root are also applied to document d, i.e., ypa(l),d = 1, ypa(pa(l)),d = 1, . . . , yr,d = 1. Conversely, if a label l′ is marked
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Figure 1: HSLDA graphical model

as not applying to a document then no descendant of that label may be applied to the same. We assume that at least one label is applied to
every document. This is illustrated in Figure 1 where the root label is always applied but only some of the descendant labelings are observed
as having been applied (diagonal hashing indicates that potentially some of the plated variables are observed).

In HSLDA, documents are modeled using the LDA mixed-membership mixture model with global topic estimation. Label responses are
generated using a conditional hierarchy of probit regressors. The HSLDA graphical model is given in Figure 1. In the model, K is the
number of LDA “topics” (distributions over the elements of Σ), φk is a distribution over “words,” θd is a document-specific distribution
over topics, β is a global distribution over topics, DirK(·) is a K-dimensional Dirichlet distribution, NK(·) is the K-dimensional Normal
distribution, IK is the K dimensional identity matrix, 1d is the d-dimensional vector of all ones, and I(·) is an indicator function that takes
the value 1 if its argument is true and 0 otherwise. The following procedure describes how to generate from the HSLDA generative model.

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk ∼ DirV (γ1V )

2. For each label l ∈ L
• Draw a label application coefficient ηl | µ, σ ∼ NK(µ1K , σIK)

3. Draw the global topic proportions β | α′ ∼ DirK (α′1K)

4. For each document d = 1, . . . , D

• Draw topic proportions θd | β, α ∼ DirK (αβ)
• For n = 1, . . . , Nd

– Draw topic assignment zn,d | θd ∼ Multinomial(θd)
– Draw word wn,d | zn,d,φ1:K ∼ Multinomial(φzn,d

)
• Set yr,d = 1
• For each label l in a breadth first traversal of L starting at the children of root r

– Draw al,d | z̄d,ηl, ypa(l),d ∼
{N (z̄Td ηl, 1), ypa(l),d = 1
N (z̄Td ηl, 1)I(al,d < 0), ypa(l),d = −1

– Apply label l to document d according to al,d

yl,d | al,d =
{

1 if al,d > 0
−1 otherwise

Here z̄Td = [z̄1, . . . , z̄k, . . . , z̄K ] is the empirical topic distribution for document d, in which each entry is the percentage of the words in that
document that come from topic k, z̄k = N−1

d

∑Nd

n=1 I(zn,d = k).

The second half of step 4 is a substantial part of our contribution to the general class of supervised LDA models. Here, each document is
labeled generatively using a hierarchy of conditionally dependent probit regressors [14]. For every label l ∈ L, both the empirical topic
distribution for document d and whether or not its parent label was applied (i.e. I(ypa(l),d = 1)) are used to determine whether or not label l
is to be applied to document d as well. Note that label yl,d can only be applied to document d if its parent label pa(l) is also applied (these
expressions are specific to is-a constraints but can be modified to accommodate different constraints). The regression coefficients ηl are
independent a priori, however, the hierarchical coupling in this model induces a posteriori dependence. The net effect of this is that label
predictors deeper in the label hierarchy are able to focus on finding specific, conditional labeling features. We believe this to be a significant
source of the empirical label prediction improvement we observe experimentally. We test this hypothesis in Section 5.

Note that the choice of variables al,d and how they are distributed were driven at least in part by posterior inference efficiency considerations.
In particular, choosing probit-style auxiliary variable distributions for the al,d’s yields conditional posterior distributions for both the auxiliary
variables (3) and the regression coefficients (2) which are analytic. This simplifies posterior inference substantially.
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In the common case where no negative labels are observed (like the example applications we consider in Section 5), the model must be
explicitly biased towards generating data that has negative labels in order to keep it from learning to assign all labels to all documents. This
is a common problem in modeling unbalanced data. To see how this model can be biased in this way we draw the reader’s attention to the µ
parameter and, to a lesser extent, the σ parameter above. Because z̄d is always positive, setting µ to a negative value results in a bias towards
negative labelings, i.e. for large negative values of µ, all labels become a priori more likely to be negative (yl,d = −1). We explore the ability
of µ to bias out-of-sample label prediction performance in Section 5.

3 Inference

In this section we provide the conditional distributions required to draw samples from the HSLDA posterior distribution using Gibbs sampling
and Markov chain Monte Carlo. Note that, like in collapsed Gibbs samplers for LDA [16], we have analytically marginalized out the
parameters φ1:K and θ1:D in the following expressions. Let a be the set of all auxiliary variables, w the set of all words, η the set of all
regression coefficients, and zd\zn,d the set zd with element zn,d removed. The conditional posterior distribution of the latent topic indicators
is

p (zn,d = k | zd\zn,d,a,w,η, α,β, γ) ∝(
c
k,−(n,d)
(·),d + αβk

) c
k,−(n,d)
wn,d,(·) +γ“

c
k,−(n,d)
(·),(·) +V γ

” ∏
l∈Ld

exp
{
− (z̄T

d ηl−al,d)2

2

}
(1)

where ck,−(n,d)
v,d is the number of words of type v in document d assigned to topic k omitting the nth word of document d. The subscript (·)’s

indicate to sum over the range of the replaced variable, i.e. ck,−(n,d)
wn,d,(·) =

∑
d c

k,−(n,d)
wn,d,d

. Here Ld is the set of labels which are observed for
document d.

The conditional posterior distribution of the regression coefficients is given by

p(ηl | z,a, σ) = N (µ̂l, Σ̂) (2)

where
µ̂l = Σ̂

(
1
µ

σ
+ Z̄Tal

)
Σ̂−1 = Iσ−1 + Z̄T Z̄.

Here Z̄ is a D ×K matrix such that row d of Z̄ is z̄d, and al = [al,1, al,2, . . . , al,D]T . The simplicity of this conditional distribution follows
from the choice of probit regression [4]; the specific form of the update is a standard result from Bayesian normal linear regression [14]. It
also is a standard probit regression result that the conditional posterior distribution of al,d is a truncated normal distribution [4].

p (al,d, | z,Y,η) ∝ 1√
2π

exp
{
−1

2
(
al,d − ηTl z̄d

)}
I (al,dyl,d > 0) . (3)

HSLDA employs a hierarchical Dirichlet prior over topic assignments (i.e., β is estimated from data rather than fixed a priori). This has been
shown to improve the quality and stability of inferred topics [26]. Sampling β is done using the “direct assignment” method of Teh et al. [25]

β | z, α′, α ∼ Dir
(
m(·),1 + α′,m(·),2 + α′, . . . ,m(·),K + α′.

)
(4)

Here md,k are auxiliary variables that are required to sample the posterior distribution of β. Their conditional posterior distribution is
sampled according to

p
(
md,k = m | z,m−(d,k),β

)
=

Γ (αβk)

Γ
(
αβk + ck(·),d

)s(ck(·),d,m) (αβk)m (5)

where s (n,m) represents stirling numbers of the first kind.

The hyperparameters α, α′, and γ are sampled using Metropolis-Hastings.

4 Related Work

In this work we extend supervised latent Dirichlet allocation (sLDA) [6] to take advantage of hierarchical supervision. sLDA is latent
Dirichlet allocation (LDA) [7] augmented with per document “supervision,” often taking the form of a single numerical or categorical label.
It has been demonstrated that the signal provided by such supervision can result in better, task-specific document models and can also lead to
good label prediction for out-of-sample data [6]. It also has been demonstrated that sLDA has been shown to outperform both LASSO (L1
regularized least squares regression) and LDA followed by least squares regression [6]. sLDA can be applied to data of the type we consider
in this paper; however, doing so requires ignoring the hierarchical dependencies amongst the labels. In Section 5 we constrast HSLDA with
sLDA applied in this way.

Other models that incorporate LDA and supervision include LabeledLDA[23] and DiscLDA[18]. Various applications of these models to
computer vision and document networks have been explored [27, 9] . None of these models, however, leverage dependency structure in the
label space.

In other work, researchers have classified documents into a hierarchy (a closely related task) with naive Bayes classifiers and support
vector machines. Most of this work has been demonstrated on relatively small datasets, small label spaces, and has focused on single
label classification without a model of documents such as LDA [21, 11, 17, 8].
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5 Experiments

We applied HSLDA to data from two domains: predicting medical diagnosis codes from hospital discharge summaries and predicting product
categories from Amazon.com product descriptions.

5.1 Data and Pre-Processing

5.1.1 Discharge Summaries and ICD-9 Codes

Discharge summaries are authored by clinicians to summarize patient hospitalization course. The summaries typically contain a record of
patient complaints, findings and diagnoses, along with treatment and hospital course. For each hospitalization, trained medical coders review
the information in the discharge summary and assign a series of diagnoses codes. Coding follows the ICD-9-CM controlled terminology, an
international diagnostic classification for epidemiological, health management, and clinical purposes.1 The ICD-9 codes are organized in a
rooted-tree structure, with each edge representing an is-a relationship between parent and child, such that the parent diagnosis subsumes the
child diagnosis. For example, the code for “Pneumonia due to adenovirus” is a child of the code for “Viral pneumonia,” where the former
is a type of the latter. It is worth noting that the coding can be noisy. Human coders sometimes disagree [1], tend to be more specific than
sensitive in their assignments [5], and sometimes make mistakes [13].

The task of automatic ICD-9 coding has been investigated in the clinical domain. Methods range from manual rules to online learning [10, 15,
12]. Other work had leveraged larger datasets and experimented with K-nearest neighbor, Naive Bayes, support vector machines, Bayesian
Ridge Regression, as well as simple keyword mappings, all with promising results [19, 24, 22, 20].

Our dataset was gathered from the clinical data warehouse of a large metropolitan hospital. It consists of 6,000 discharge summaries and
their associated ICD-9 codes (7,298 distinct codes overall), representing all the discharges from the hospital in 2009. Summaries have 8.39
associated ICD-9 codes on average (std dev=5.01) and contain an average of 536.57 terms after preprocessing (std dev=300.29). We split our
dataset into 5,000 discharge summaries for training and 1,000 for testing.

The text of the discharge summaries was tokenized with NLTK.2 A fixed vocabulary was formed by taking the top 10,000 tokens with highest
document frequency (exclusive of names, places and other identifying numbers). The study was approved by the Institutional Review Board
and follows HIPAA (Health Insurance Portability and Accountability Act) privacy guidelines.

5.1.2 Product Descriptions and Categorizations

Amazon.com, an online retail store, organizes its catalog of products in a mulitply-rooted hierarchy and provides textual product descriptions
for most products. Products can be discovered by users through free-text search and product category exploration. Top-level product
categories are displayed on the front page of the website and lower level categories can be discovered by choosing one of the top-level
categories. Products can exist in multiple locations in the hierarchy.

In this experiment, we obtained Amazon.com product categorization data from the Stanford Network Analysis Platform (SNAP) dataset [3].
Product descriptions were obtained separately from the Amazon.com website directly. We limited our dataset to the collection of DVDs in
the product catalog.

Our dataset contains 15,130 product descriptions for training and 1,000 for testing. The product descriptions are shorter than the discharge
summaries (91.89 terms on average, std dev=53.08). Overall, there are 2,691 unique codes. Products are assigned on average 9.01 codes (std
dev=4.91). The vocabulary consists of the most frequent 30,000 words omitting stopwords.

5.2 Comparison Models

We evaluated HSLDA along with two closely related models against the two datasets. The comparison models included sLDA with inde-
pendent regressors (hierarchical constraints on labels ignored), HSLDA fit by first performing LDA then fitting tree-conditional regressions.
These models were chosen to highlight several aspects of HSLDA including performance in the absence of hierarchical constraints, the effect
of the combined inference, and regression performance attributable solely to the hierarchical constraints.

sLDA with independent regressors is the most salient comparison model for our work. The distinguishing factor between HSLDA and sLDA
is the addition structure imposed on the label space, a distinction that we hypothesized would result in a difference in predictive performance.

There are two components to HSLDA, LDA and a hierarchically constrained response. The second comparison model is HSLDA fit by
performing LDA first followed by performing inference over the hierarchically constrained label space. In this comparison model, the
separate inference processes do not allow the responses to influence the low dimensional structure inferred by LDA. Combined inference has
been shown to improve performance in sLDA [6]. This comparison model examines not the structuring of the label space, but the benefit of
combined inference over both the documents and the label space.

For all three models, particular attention was given to the settings of the prior parameters for the regression coefficients. These parameters im-
plement an important form of regularization in HSLDA. In the setting where there are no negative labels, a Gaussian prior over the regression
parameters with a negative mean implements a prior belief that missing labels are likely to be negative. Thus, we evaluated model perfor-
mance for all three models with a range of values for µ, the mean prior parameter for regression coefficients (µ ∈ {−3,−2.8,−2.6, . . . , 1}).
The number of topics for all models was set to 50, the prior distributions of p (α), p (α′), and p (γ) were gamma distributed with a shape
parameter of 1 and a scale parameters of 1000.

1http://www.cdc.gov/nchs/icd/icd9cm.htm
2http://www.nltk.org
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Figure 2: ROC curves for out-of-sample ICD-9 code prediction from patient free-text discharge records ((a),(c)). ROC curve for out-of-
sample Amazon product category predictions from product free-text descriptions (b). Figures (a) and (b) are a function of the prior means
of the regression parameters. Figure (c) is a function of auxiliary variable threshold. In all figures, solid is HSLDA, dashed are independent
regressors + sLDA (hierarchical constraints on labels ignored), and dotted is HSLDA fit by running LDA first then running tree-conditional
regressions.

5.3 Evaluation and Results

We evaluated our model, HSLDA, against the comparison models with a focus on predictive performance on held-out data. Prediction
performance was measured with standard metrics – sensitiviy (true positive rate) and 1-specificity (false positive rate).

The gold standard for comparison was derived from the testing set in each dataset. To make the comparison as fair as possible among models,
ancestors of observed nodes in the label hierarchy were ignored, observed nodes were considered positive and descendents of observed nodes
were considered to be negative. In particular, since the sLDA model does not enforce the hierarchical constraints, its performance was found
to be so poor on joint prediction that it was not included. The models can be compared on a more equal footing by considering only on the
observed labels as being positive, despite the fact that, following the hierarchical constraints, ancestors must also be positive. Such a gold
standard will likely inflate the number of false positives because the labels applied to any particular document are usually not as complete as
they could be. ICD-9 codes, for instance, lack sensitivity and their use as a gold standard could lead to correctly positive predictions being
labeled as false positives[5]. However, given that the label space is often large (as in our examples) it is a moderate assumption that erroneous
false positives should not skew results significantly.

Predictive performance in HSLDA is evaluated by p
(
yl,d̂ | w1:Nd̂,d̂

, w1:Nd,1:D, yl∈L,1:D

)
for each test document, d̂. For efficiency, the

expectation of this probability distribution was estimated in the following way. Expectations of z̄d and ηl were estimated with samples from
the posterior. Using these expectations, we performed Gibbs sampling over the hierarchy to acquire predictive samples for the documents in
the test set. The true positive rate was calculated as the average expected labeling for gold standard positive labels. The false positive rate
was calculated as the average expected labeling for gold standard negative labels.

Figure 2(a) shows the results for the clinical data. For instance, a prior mean for the regression of µ = −1.6 yields the following performance:
the full HSLDA model had a true positive rate of 0.57 and a false positive rate of 0.13, the sLDA model had a true positive rate of 0.42 and
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a false positive rate of 0.07, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of 0.39 and a
false positive rate of 0.08.

These results indicate that the full HSLDA model predicts more of the the correct labels at a cost of an increase in the number of false
positives relative to the comparison models.

Figure 2(b) shows the results for the retail product data. For instance, a prior mean for the regression of µ = −2.2 yields the following
performance: the full HSLDA model had a true positive rate of 0.85 and a false positive rate of 0.30, the sLDA model had a true positive rate
of 0.78 and a false positive rate of 0.14, and the HSLDA model where LDA and the regressions were fit separately had a true positive rate of
0.77 and a false positive rate of 0.16. These results follow a similar pattern to the clinical data.

As sensitivity and specificity can always be traded off, we examined sensitivity for a range of values for two different parameters – the prior
means for the regression coefficients and the threshold for the auxiliary variables. The goal in this analysis was to evaluate the performance
of these models subject to more or less stringent requirements for predicting positive labels. These two parameters have important related
functions in the model. The prior mean in combination with the auxiliary variable threshold together encode the strength of the prior belief
that unobserved labels are likely to be negative. Effectively, the prior mean applies negative pressure to the predictions and the auxiliary
variable threshold determines the cutoff. For each model type, separate models were fit for each value of the prior mean of the regression
coefficients. This is a proper Bayesian sensitivity analysis. In contrast, to evaluate predictive performance as a function of the auxiliary
variable threshold, a single model was fit for each model type and prediction was evaluated based on predictive samples drawn subject to
different auxiliary variable thresholds. These methods are significantly different since the prior mean is varied prior to inference, and the
auxiliary variable threshold is varied following inference.

Figure 2 shows the predictive performance of HSLDA relative to the two comparison models as a function of the prior mean on regression
coefficients as a receiver operating characteristic (ROC) curve. For low values of the auxiliary variable threshold, the models predict labels in
a more sensitive and less specific manner, creating the points in the upper right corner of the ROC curve. As the auxiliary variable threshold
is increased, the models predict in a less sensitive and more specific manner, creating the points in the lower left hand corner of the ROC
curve. For all values of the prior mean in both datasets, HSLDA outperforms sLDA with independent regressors. In the case of HSLDA with
separately trained regression, HSLDA outperforms in the clinical dataset but performs equally well across the board with the retail product
dataset.

6 Discussion

The SLDA model family, of which HSLDA is a member, can be understood in two different ways. One way is to see it as a family of topic
models that improve on the topic modeling performance of LDA via the inclusion of observed supervision. An alternative, complementary
way is to see it as a set of models that can predict labels for bag-of-word data. A large diversity of problems can be expressed as label
prediction problems for bag-of-word data. A surprisingly large amount of that kind of data possess structured labels, either hierarchically
constrained or otherwise. That HSLDA directly addresses this kind of data is a large part of the motivation for this work. That it outperforms
more straightforward approaches should be of interest to practitioners.

Variational Bayes has been the predominant estimation approach applied to sLDA models. Hierarchical probit regression makes for tractable
Markov chain Monte Carlo SLDA inference, a benefit that should extend to other sLDA models should probit regression be used for response
variable prediction there too.

The results in Figures 2(a) and 2(b) suggest that in most cases it is better to do full joint estimation of HSLDA. An alternative interpretation
of the same results is that, if one is more sensitive to the performance gains that result from exploiting the structure of the labels, then one
can, in an engineering sense, get nearly as much gain in label prediction performance by first fitting LDA and then fitting a hierarchical probit
regression. There are applied settings in which this could be advantageous.

Extensions to this work include unbounded topic cardinality variants and relaxations to different kinds of label structure. Unbounded topic
cardinality variants pose interesting inference challenges. Utilizing different kinds of label structure is possible within this framework, but
requires relaxing some of the simplifications we made in this paper for expositional purposes.
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