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a b s t r a c t

We present a general framework for the reconstruction of natural video scenes encoded with a popula-
tion of spiking neural circuits with random thresholds. The natural scenes are modeled as space-time
functions that belong to a space of trigonometric polynomials. The visual encoding system consists of
a bank of filters, modeling the visual receptive fields, in cascade with a population of neural circuits, mod-
eling encoding in the early visual system. The neuron models considered include integrate-and-fire neu-
rons and ON–OFF neuron pairs with threshold-and-fire spiking mechanisms. All thresholds are assumed
to be random. We demonstrate that neural spiking is akin to taking noisy measurements on the stimulus
both for time-varying and space-time-varying stimuli. We formulate the reconstruction problem as the
minimization of a suitable cost functional in a finite-dimensional vector space and provide an explicit
algorithm for stimulus recovery. We also present a general solution using the theory of smoothing splines
in Reproducing Kernel Hilbert Spaces. We provide examples of both synthetic video as well as for natural
scenes and demonstrate that the quality of the reconstruction degrades gracefully as the threshold var-
iability of the neurons increases.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years the increasing availability of multi-electrode
recordings and functional imaging methods has led to the applica-
tion of neural decoding techniques to the recovery of complex
stimuli such as natural video scenes. An algorithm based on the
optimal linear decoder derived in Warland, Reinagel, and Meister
(1997) for a rate model was presented in Stanley, Li, and Dan
(1999) for the reconstruction of natural video scenes with recog-
nizable moving objects from recordings of a neural population of
the cat’s lateral geniculate nucleus (LGN). Visual image reconstruc-
tion from fMRI data was examined in Miyawaki et al. (2008),
whereas in Kay, Naselaris, Prenger, and Gallant (2008) fMRI data
was used to identify natural images. The above works suggest that
the visual information is preserved along the different layers of the
visual system and call for the development of novel algorithms for
neural decoding algorithms that are based on spike times.

In this paper we present a formal mathematical, model based
approach, for coding and reconstruction in the early visual system.
Our neural architecture consists of a population of N spatial filters
that model the classical receptive fields, in cascade with an equal
number of spiking neural circuits. The neural circuits considered
are either integrate-and-fire neurons or ON–OFF neuron pairs with
thresholding and feedback. In our architecture the neuronal vari-
ability is not attributed to a probabilistic code (Ma, Beck, Latham,

& Pouget, 2006); rather the neural circuits are assumed to have
random thresholds with known a priori distribution. Neurons with
random thresholds have been used to model the observed spike
variability of biological neurons of the fly visual system (Gestri,
Mastebroek, & Zaagman, 1980), as well as neurons in the early vi-
sual system of the cat (Reich, Victor, Knight, Ozaki, & Kaplan,
1997).

We show that neural spiking with these neural circuits repre-
sents noisy and independent (Knight, 1972) (generalized) mea-
surements of the input visual stimulus. Based on these
measurements, we construct regularized cost functionals and iden-
tify the reconstructed stimulus as its minimizer. For simplicity, we
assume that the input visual space belongs to a finite-dimensional
Hilbert space and use standard optimization techniques to find the
reconstructed stimulus. However, as it will be discussed, the re-
sults can be directly extended to infinite-dimensional spaces, using
the theory of smoothing splines (Wahba, 1990) in Reproducing
Kernel Hilbert Spaces (Berlinet & Thomas-Agnan, 2004).

The work presented here builds and extends upon previous
work on the representation of stimuli with deterministic spiking
neurons. Assuming that the input signal is bandlimited and the
bandwidth is known, a perfect recovery of the stimulus based upon
the spike times can be achieved provided that the spike density is
above the Nyquist rate of the stimulus. These results hold for a
wide variety of sensory stimuli, including audio (Lazar & Pnevma-
tikakis, 2008b) and video streams (Lazar & Pnevmatikakis, 2008a;
Lazar & Pnevmatikakis, submitted for publication) encoded with
a population of spiking neurons. The model of stimuli considered
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in this paper are defined on a discretized version of a band-limited
signal space, known as the space of trigonometric polynomials. Such
spaces are suitable for modeling since they have all the desirable
properties of band-limited signal spaces with the added benefit
of being finite-dimensional and thus numerically tractable (Lazar,
Simonyi, & Tóth, 2008). Moreover, as it will be demonstrated, the
finite-dimensionality of the space determines to a first order the
complexity of the reconstruction algorithm. Consequently, data re-
corded from additional neurons can be included into the recovery
algorithm at a very moderate computational cost.

Since the encoding neural circuits have random thresholds, a
perfect recovery of the input stimulus is not possible. In order to
derive an optimal recovery algorithm, we setup the stimulus
recovery as a regularized optimization problem. Signal representa-
tion using regularization techniques has been discussed in the
computational vision (Poggio, Torre, & Koch, 1985) and neural net-
works (Girosi, Jones, & Poggio, 1995) literature. In this paper we
present a formal model for stimulus reconstruction from spike tim-
ing using a method of regularization that, as we will show, can
approximate complex visual streams, such as natural scenes, in a
very efficient way. Using regularization to reconstruct signals en-
coded with neurons with random thresholds was first presented
in Lazar and Pnevmatikakis (2009) in the context of time-varying
stimuli belonging to Sobolev spaces encoded with a population of
leaky integrate-and-fire neurons.

We explore the recovery of natural scenes and synthetic video
streams as a function of the variability of the random thresholds.
Variability is quantified as the ratio between the variance and
the mean of the threshold. We also explore the modeling of natural
scenes with the sample functions that are defined in the space of
trigonometric functions. Finally, we present for the first time video
sequences of visual stimuli encoded with neural circuit architec-
tures based on neurons with random thresholds. We evaluate the
recovery using both traditional measures of signal-to-noise ratio
(SNR) as well structural similarity index (SSIM) (Wang, Bovik,
Sheikh, & Simoncelli, 2004). The latter more closely relates to per-
ceptual quality of visual stimuli. Rather than focusing on modeling
a specific region of the early visual system, we show that the meth-
odology presented here is general and can be applied to arbitrary
combinations of receptive fields and neural spiking mechanisms.
These include classic models of the early visual pathway (retina,
LGN and V1).

The paper is organized as follows. Section 2 deals with the prob-
lem of encoding and reconstruction of time-varying stimuli. In Sec-
tion 2.1 we give a short overview of the spaces of trigonometric
functions and discuss how these constitute a natural discretization
of spaces of bandlimited functions. In Section 2.2 we present how
time-varying stimuli can be encoded with ON–OFF neuron pairs
with random thresholds and present their reconstruction by find-
ing the minimizer of an appropriate quadratic cost functional. In
Section 2.3 integrate-and-fire neurons with random thresholds en-
code time-varying stimuli; their recovery is presented in the same
section. Examples are given in Section 2.4 that explore the quality
of the reconstruction as a function of threshold variability. In Sec-
tion 3 we introduce the full model for video encoding and recon-
struction with a population of spiking neurons with random
thresholds. We discuss how video streams can be modeled as
space-time trigonometric polynomials and discuss their represen-
tation and reconstruction based on this working assumption. Sec-
tion 4 presents examples of both synthetic and natural video
scenes, encoded with neural circuits build with classic models of
receptive fields and spiking neurons arising in the retina, LGN
and V1. The examples demonstrate the effectiveness of our algo-
rithm by measuring various different quality metrics (Peak SNR,
and SSIM) for two different choices of random threshold (Gaussian,
Gamma). Actual videos can be found in the Supplementary mate-

rial. Section 5 discusses various extensions of our work to the
recovery of infinite-dimensional stimuli. Finally, Section 6 provides
the context for our research and its relation to Bayesian estimates,
as well as approaches to globally optimal reconstructions. Section 7
concludes our work and discusses potential future directions.

2. Representation and recovery of time-varying stimuli

Encoding of space-time visual stimuli with neural circuits leads
to a fairly complex neural architecture. Since our goal is to present
in this paper a rigorous framework for both representation and
recovery of visual information, we will first introduce the simpler
case of encoding time-varying signals. In this way the reader can
develop the needed intuition to deal with the more general encod-
ing of space-time stimuli. As will be clear in Section 3, the key neu-
ral building blocks of the encoding architecture for visual stimuli
require the careful treatment described below.

Following a short introduction to the space of trigonometric func-
tions, we present a general framework for the representation and
recovery of time-varying functions with spiking neuron models.
The neuron models considered are of integrate-and-fire and thresh-
old-and-fire type and arise as spiking neuron models in early vision.

2.1. Modeling stimuli as trigonometric functions

In this section we briefly introduce the spaces of trigonometric
polynomials and discuss how they can be used for modeling sen-
sory stimuli of interest. We show that trigonometric polynomials
are natural discretizations of bandlimited functions, suitable for
applications.

In the univariate case, the space of trigonometric polynomials
consists of functions that are simultaneously bandlimited with
bandwidth X (in rad/sec) and periodic with period T. The period
and bandwidth are related with each other by the relation

T ¼ 2pM
X

; ð1Þ

where M is a positive integer that denotes the order of the space. Let
H denote this space. Then H consists of all the functions
u ¼ uðtÞ; t 2 R, of the form

uðtÞ ¼
XM

m¼$M

am expðjmxMtÞ; ð2Þ

where xM ¼ X=M. Note that the space of trigonometric polynomials
of order M is a natural discretization of the space of bandlimited
functions. The discretization is best viewed in the frequency do-
main. The exponentials in (2) have a line Fourier spectrum at the
points mxM with m ¼ $M; . . . ; M. By letting M ! 1, this spec-
trum becomes [$X,X].

Remark 1. The stimuli defined in (2) are in general complex
valued functions. To obtain real valued functions, we require
u ¼ !u ) a0 2 R and a$m ¼ am;m ¼ 1; . . . ; M, where !u denotes the
complex conjugate of u.

The sesquilinear form h%; %i : H&H # C defined by

hu;vi ¼
Z T=2

$T=2
uðsÞvðsÞds; ð3Þ

is an inner product for H and thus the space ðH; h%; %iÞ is a well de-
fined Hilbert space. It is easy to see that under the inner product (3),
the set of functions ðemÞ;m ¼ $M; . . . ; M defined as

emðtÞ ¼
1ffiffiffi
T
p expðjmxMtÞ; ð4Þ

constitutes an orthonormal basis for H.
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2.2. ON–OFF neuron models

In this section we analyze a single-input two-output time
encoding machine (Lazar & Tóth, 2004) with feedback (Fig. 1a).
The circuit consists of two interconnected neurons (ON–OFF pair)
each with its own feedback. Each neuron is endowed with a level
crossing detection mechanisms with a threshold that takes a posi-
tive value for the ON component (upper branch) and a negative va-
lue for the OFF component (lower branch), respectively. The
thresholds are assumed to be i.i.d. Gaussian random variables with
normal distributions Nðd1; ðr1Þ2Þ and Nð$d2; ðr2Þ2Þ, respectively.

Whenever a spike is generated, for the example in the ON com-
ponent at time t1

k , the corresponding membrane potential v1 is re-
set by the feedback mechanism. The feedback consists of a causal
filter with impulse response h11ðtÞ, i.e., v1ðt1

kÞ ¼ d1
k $ h11ð0Þ. More-

over, a new threshold value d1
kþ1 is drawn from the normal distri-

bution. Finally, the spike is also communicated to the OFF
component through a cross-feedback (coupling) term that is mod-
eled with a causal filter with impulse response h12ðtÞ, i.e.,
v2ðt1

kþÞ ¼ v2ðt1
kÞ $ h12ð0Þ. Note that in general, it is required that

the new threshold is above the reseted membrane potential, i.e.,
we need Pðd1

kþ1 > d1
k $ h11ð0ÞÞ ( 1. For normal distributions this

is satisfied if h11ð0Þ ) r1, so that resetting is stronger than the
threshold noise component. Similarly we require h22ð0Þ ) r2.

The neural above circuit, first presented in a deterministic setup
in Lazar and Pnevmatikakis (submitted for publication), general-
izes its single neuron counterpart proposed in Keat, Reinagel, Reid,
and Meister (2001) as a flexible model for fitting the responses of
RGCs and neurons in the LGN. Its spiking mechanism can be
viewed as a simplified version of the spike response model (Gerst-
ner & Kistler, 2002). The pairs of coupled neurons in Fig. 1a arise as
models of ON and OFF bipolar cells in the retina and their connec-
tions through the non-spiking horizontal cells (Masland, 2001).

Similar models have also been proposed for various modeling
tasks, e.g., (Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Pil-
low et al., 2008).

2.2.1. Stimulus encoding and the t-transform
Let ðtj

kÞ; k ¼ 1; 2; . . . ; nj, be the set of spike times of the neuron j,
j = 1,2. Then the value of the input stimulus can be inferred at the
spike times from the equations, formally known as the t-transform
(Lazar & Tóth, 2004). Intuitively, the t-transform shows how the
neural spike train is associated with a set of linear measurements
of the stimulus.

uðt1
kÞ ¼ þd1 þ

X

l<k

h11ðt1
k $ t1

l Þ

$
X

l

h21ðt1
k $ t2

l Þ1ft2
l
<t1

k
ge1

k ¼ q1
k þ e1

k

uðt2
kÞ ¼ $d2 $

X

l<k

h22ðt2
k $ t2

l Þ

þ
X

l

h12ðt2
k $ t1

l Þ1ft1
l
<t2

k
g þ e2

k ¼ q2
k þ e2

k ;

ð5Þ

for all k; k ¼ 1; 2; . . . ; nj, where e1
k *Nð0; ðr1Þ2Þ and e2

k *Nð0;
ðr2Þ2Þ. The Eq. (5) show that neural spiking in this circuit is equivalent
with the point evaluation of the input stimulus u at the spike times,
and it can be rewritten as a bounded linear functional Li

k : H # R:

Li
ku ¼ uðti

kÞ ¼ qi
k þ ei

k; ð6Þ

for all k; k ¼ 1; 2; . . . ; ni, and i, i = 1,2. From Riesz representation
theorem, there is a unique element vi

k in H such that the above lin-
ear functional can be written in inner product form as

hu;vi
ki ¼ Li

ku ¼ qi
k þ ei

k

u;
1
ri v

i
k

" #
¼

1
ri qi

k þ ~ei
k

ð7Þ

for all k; k ¼ 1; 2; . . . ; ni, and i, i = 1, 2, where ~ei
k *Nð0;1Þ. In order

to become operationally significant, we express the sampling func-
tions vi

k in H using the standard basis ðemÞ as

vi
kðtÞ ¼

XM

m¼$M

bi
m;kemðtÞ; ð8Þ

with

bi
m;k ¼ hvi

k; emi ¼ hem;vi
ki ¼ Li

kem ¼ emðti
kÞ ¼ e$mðti

kÞ: ð9Þ

The sampling functions vj
k and the projections qj

k are deter-
mined by the parameters of the neurons and the spike times. Thus,
the t-transform maps the amplitude information of the stimulus
into the time information carried by the spike trains.

2.2.2. Stimulus reconstruction
To derive the reconstructed stimulus, we seek a stimulus that

minimizes the following regularized cost functional J : H # R de-
fined by

JðuÞ ¼ 1
ðr1Þ2

Xn1

k¼1

q1
k $ hu;v1

ki
$ %2 þ 1

ðr2Þ2
Xn2

k¼1

ðq2
k $ hu;v2

kiÞ
2

þ ðn1 þ n2Þkkuk2: ð10Þ

The cost functional consists of three terms. The first two repre-
sent the faithfulness of the reconstructed error with respect to the
original noisy measurements, normalized so that they all have the
same variance 1. The third term is a regularization term, used to
prevent overfiting, due to the noisy data. Finally, k is a positive
smoothing parameter that regulates the tradeoff between faithful-
ness to the measurements and smoothness. We have the following
result:

a

b

Fig. 1. Canonical neural encoding circuits.
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Proposition 1. The minimizer û ¼ argmin
u2H

ðJðuÞÞ is of the form

û ¼
XM

m¼$M

cmem; ð11Þ

where cm;m ¼ $M; $M þ 1; . . . ; M, are appropriate coefficients given
by

c ¼ ðGHGþ ðn1 þ n2ÞkIÞ$1GH
1
r1 q1

1
r2 q2

" #
; ð12Þ

with I the identity matrix with dimension n1 þ n2; ½qj,k ¼ qj
k and

c ¼ ½c,m. In addition G ¼ G1

G2

& '
, where Gi is a matrix of dimension

ni & ð2M þ 1Þ with entries ½Gi,km ¼ 1
ri bm;k, and GH denotes the hermi-

tian of matrix G.

Proof. Since the minimizer lies in the same space H it can be writ-
ten as in (11). The system of equations (12) is obtained by plugging
(11) into (10) and solving the set of equations @J

@cm
¼ 0 in terms of

cm;m ¼ $M; . . . ; M (see also Appendix A). h

Remark 2. The matrix GHG has dimensions ð2M þ 1Þ & ð2M þ 1Þ,
independent of the number of spikes. This shows that setting
up the problem in a finite-dimensional space, leads to a recov-
ery with complexity determined by M and not by the number
of spikes as in Lazar and Pnevmatikakis (2009) or Lazar and
Pnevmatikakis (2010). Moreover, a simple calculation shows
that the matrix GHG is Toeplitz and Hermitian with entries
given by

½GHG,m;n ¼
1
ðr1Þ2

Xn1

k¼1

em$nðt1
kÞ þ

1
ðr2Þ2

Xn2

k¼1

em$nðt2
kÞ:

2.3. Integrate-and-fire neuron models

The second neuron model that we examine is a leaky inte-
grate-and-fire (LIF) with random threshold (see Fig. 1b). The stim-
ulus u biased by a constant background current b is fed into a LIF
neuron with resistance R and capacitance C. Furthermore, the
neuron has a random threshold with mean d and variance r2.
The value of the threshold changes only at spike times, i.e., it is
constant between two consecutive spikes. Assume that after each
spike the neuron is reset to the initial value zero. Integrate-and-
fire (IAF) neuron models have been used to model the responses
of neurons in the early visual system (Pillow, Paninski, Uzzell,
Simoncelli, & Chichilnisky, 2005). Note that an ON–OFF formula-
tion for IAF models is also possible (Lazar & Pnevmatikakis,
2010; Lazar & Pnevmatikakis, submitted for publication), but is
omitted here for simplicity.

2.3.1. Stimulus encoding and the t-transform
Let ðtkÞ; k ¼ 1;2; . . . ;nþ 1, denote the output spike train of the

LIF neuron. Between two consecutive spike times the operation
of the neuron is described by the t-transform equations
Z tkþ1

tk

exp $ tkþ1 $ s
RC

( )
ðbþ uðsÞÞ ds ¼ Cdk; ð13Þ

where dk is the value of the random threshold during the
interspike interval ½ðtk; tkþ1Þ,. The t-transform can also be
rewritten as

Lku ¼ qk þ ek; ð14Þ

where Lk : H # R is a linear functional given by

Lku ¼
Z tkþ1

tk

exp $ tkþ1 $ s
RC

( )
uðsÞds

qk ¼ Cd$ bRC 1$ exp $ tkþ1 $ tk

RC

( )( )

ek ¼ Cðdk $ dÞ;

ð15Þ

where the ek’s are i.i.d. random variables with mean zero and vari-
ance ðCrÞ2 for all k = 1,2, . . .,n. The sequence ðLkÞ; k ¼ 1; 2; . . . ; n, has
a simple interpretation: it represents the set of n generalized mea-
surements performed on the stimulus u.

By using the Riesz representation theorem, the measurements
of (14) can be given in the inner product form

hu;vki ¼ qk þ ek; ð16Þ

where the sampling functions vk; k ¼ 1; 2; . . . ; n, can be expressed
in the standard form as

vk ¼
XM

m¼$M

bm;kem; ð17Þ

where similarly to (9), we have

bm;k ¼ Lke$m ¼
1ffiffiffi
T
p

Z tkþ1

tk

e$
tkþ1$t

RC e$mðtÞ dt

¼ RCe$mðtkþ1Þ þ ðyk $ RCÞe$mðtkÞffiffiffi
T
p
ð1$ jmxMRCÞ

; ð18Þ

where

yk ¼ RC 1$ exp $ tkþ1 $ tk

RC

( )( )
; k ¼ 1; 2; . . . ; n:

2.3.2. Stimulus reconstruction
Similarly to the previous case, we seek a stimulus û 2H that

satisfies

û ¼ argmin
u2H

Xn

j¼1

ðqk $ hu;vkiÞ
2 þ nkkuk2

 !
: ð19Þ

The minimizer is given in the Proposition below, whose proof is
similar to the one of Proposition 1.

Proposition 2. The minimizer û is of the form

û ¼
XM

m¼$M

cmem; ð20Þ

where cm;m ¼ $M; $M þ 1; . . . ; M, are appropriate coefficients given
by the solution of the system of equations

c ¼ GHGþ nkI
* +$1

GHq; ð21Þ

where I is the identity matrix with dimension n, ½q,k ¼ qk and c ¼ ½c,m
and G is a matrix of dimension n& ð2M þ 1Þ and entries ½G,km ¼ bm;k,
where bm;k are given by (18).

2.4. Examples

In this section we present a detailed example to test the perfor-
mance of the recovery algorithms presented above. The input
space is a space of trigonometric polynomials with signals that
are bandlimited with maximum frequency of 50 Hz and periodic
with period 0.5 s. In order to avoid the periodic boundary effects
that do not appear in practice, the tested signals were restricted
to a time interval of length of 0.25 s.

First the signal was encoded with a pair of ON–OFF neurons with
random thresholds for 10 different noise levels. At each noise level

A.A. Lazar et al. / Vision Research 50 (2010) 2200–2212 2203



the reconstruction algorithm of Proposition 1 was applied for 50
different values of the smoothing parameter k. Note that the noise
levels of the two branches were equal and on average each branch
produced roughly 40 spikes. The exact parameters of the neuron pair
were d1 ¼ $d2 ¼ 0:1, h11ðtÞ ¼ h22ðtÞ ¼ 0:15 expð$t=0:01Þ1ft>0g, and
h12 ¼ h21ðtÞ ¼ 0:01 expð$t=0:015Þ1ft>0g.

Fig. 2a shows the performance of the algorithm in terms of the
signal-to-noise ratio (SNR) averaged over 10 repetitions. Note that
the standard error of the mean (SEM) was always below 1 dB (not
shown). It can be seen that as the variance of the thresholds de-
creases, the quality of reconstruction improves and practically
reaches excellent recovery (50 dB SNR) for low noise levels. More-
over it can be observed that the smoothing parameter that gives
the optimal reconstruction slowly increases with the variance of
the thresholds. This is also expected as increased threshold vari-
ability essentially increases the noise level in the t-transform and
thus calls for more smoothing (larger k) during reconstruction.

Fig. 2b shows a similar figure for the case when the stimulus is
encoded with an LIF neuron. The parameters of the neuron were
b = 2.5, d = 0.8, R = 30, and C = 0.01 and the neuron produced an
average of roughly 75 spikes per trial. The qualitative behavior of
the SNR is the same as in the previous case of the ON–OFF neural
circuit and exhibits a graceful degradation of the SNR as the thresh-
old variability increases.

A close observation of the two figures shows that for the same
level of noise power, the stimulus encoded with the ON–OFF neural
circuit can be reconstructed with a substantially higher SNR than
the one encoded with the LIF neuron. An explanation for this
comes from the observation of the t-transform Eqs. (5) and (13).
In the case of the ON–OFF neural circuit, the spikes of the circuit
correspond to irregular samples of the signal at values that are re-
lated to the thresholds. Therefore each random measurement has a
mean that is in general away from zero and thus the effect of the
threshold variability is limited. The situation is different for the
LIF neuron. Due to the existence of the bias b, the neuron fires even
if the contribution of the stimulus is minimal. Moreover the inte-
grator averages out the contribution of zero mean signals. There-
fore, the mean-to-standard deviation for the corresponding
random samples is much lower and consequently the effect of
threshold variability much larger.

3. Encoding and decoding of visual stimuli

In this section we extend the formalism presented above to
space-time varying visual stimuli. The signals belong again to a
space of trigonometric polynomials with appropriate parameters.
The neural encoding architecture consists of a population of spik-
ing neural circuits with spatial receptive fields, such as center-sur-

round and Gabor, that are selective to certain features of the input
stimulus. These have been widely used to model receptive fields in
the retina, LGN and V1. The spiking mechanisms of the circuits are
either integrate-and-fire or ON–OFF with thresholding and feed-
back, as analyzed in the previous section, and are assumed to have
random thresholds. We note that the methodology employed here
is very general and allows for an arbitrary combination of the
receptive fields and spiking neuron models.

By establishing the t-transform of the encoding architecture, we
show how the population of spike trains is equivalent with a noisy
inner product representation of the input visual signal. We then de-
rive an optimal reconstruction algorithm based on the theory of
smoothing splines. We test the algorithm for both the relatively sim-
ple case of synthetic video streams as well as for the case of natural
scenes.

3.1. The space of trigonometric visual stimuli

We denote by V the space of trigonometric video sequences
with spatial bandwidths Xx and Xy, temporal bandwidth Xt , and
order (resolution) Mx; My; Mt , respectively. The video sequences
I 2V are periodic and can be completely defined on the grid
D ¼ Sx & Sy & T, where

Sx ¼ ½$Sx=2; Sx=2,; Sx ¼ 2pMx=Xx;

Sy ¼ ½$Sy=2; Sy=2,; Sy ¼ 2pMy=Xy;

T ¼ ½$T=2; T=2,; T ¼ 2pMt=Xt:

ð22Þ

With xMt ¼ Xt=Mt ; xMx and xMy similarly defined, the space V

consists of all the functions of the form

Iðx; y; tÞ ¼
XMx

mx¼$Mx

XMy

my¼$My

XMt

mt¼$Mt

amx ;my ;mt expðjmxxMx x

þ jmyxMy yþ jmtxMt tÞ: ð23Þ

The space endowed with the inner product h%; %i : V&V # C

hI1; I2i ¼
Z

D

I1ðx; y; tÞI2ðx; y; tÞdxdydt; ð24Þ

is a Hilbert space with dimension ð2Mt þ 1Þð2Mx þ 1Þð2My þ 1Þ and
the set of functions

emx ;my ;mt ðx; y; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

SxSyT
p expðjmxxMx xþ jmyxMy y

þ jmtxMt tÞ; ð25Þ

constitutes an orthonormal basis for V. It is clear that the functions
above can be written into the form

emx ;my ;mt ðx; y; tÞ ¼ emx ðxÞemy ðyÞemt ðtÞ:
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Fig. 2. Mean reconstruction signal-to-noise ratio for a stimulus encoded with: (a) a pair of ON–OFF neurons and (b) an IAF neuron.
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3.2. Encoding of visual stimuli and the t-transform

The general encoding architecture is shown in Fig. 3. The input vi-
deo I is filtered by a set of spatial receptive fields Dj; j ¼ 1; 2; . . . ; N.
The resulting dendritic currents v j; j ¼ 1; 2; . . . ; N, serve as the in-
put to N spiking neural circuits realized with IAF neurons or ON–
OFF threshold-and-fire neuron pairs.

Filtering the video stream with the receptive field of the neural
circuit j gives the receptive field output v jðtÞ which amounts to

v jðtÞ ¼
Z

S

Djðx; yÞIðx; y; tÞdxdy; ð26Þ

where S ¼ Sx & Sy.
Neural spiking is interpreted here as a series of linear function-

als acting on the input stimulus. In what follows the left super-
scripts T; S and D indicate action (of functionals) on the temporal,
spatial and spatiotemporal domain, respectively. Following the dis-
cussion of Section 2, the t-transform of ith branch of the jth neural
circuit is described by

TLi
kv j ¼ qji

k þ eji
k ; ð27Þ

where TLi
k : H # R is a linear functional. This functional is an

instantiation of the evaluation functional at time tji
k defined in

(6) for the case of the ON–OFF neuron pair or the linear func-
tional defined in (15) for the case of the LIF neuron, and
eji

k *Nð0; ðrjiÞ2Þ. Note that (26) can be rewritten in a functional
form as

SLjI ¼
Z

S

Djðx; yÞIðx; y; tÞdxdy ¼ v jðtÞ: ð28Þ

Combining (27) and (28) we obtain

DLji
kI ¼ qji

k þ eji
k ; ð29Þ

where DLji
k : V # R is a linear functional given by DLji

k ¼ TLi
k
SLj.

Therefore with each spike (or spike pair) we can associate a linear
functional acting on the input visual stimulus. We seek again to ex-

press these functionals in an inner product form. The following lem-
ma provides the needed representation.

Lemma 1. The t-transform can be written in inner product form
as

hI;/ji
ki ¼ qji

k þ eji
k ; ð30Þ

where /ji
k is of the form of the right-hand-side of (23) with

aji
mx ;my ;mt ;k

¼ ðSLje$mx ;$my ÞðTLi
ke$mt Þ: ð31Þ

Proof. The representation result holds because of the Riesz repre-
sentation theorem. To find the coefficients, we have that

aji
mx ;my ;mt ;k

¼ h/ji
k ; emx ;my ;mt i ¼ hemx ;my ;mt ;/

ji
ki ¼

DLji
kðe$mx ;$my ;$mt Þ

¼ ðSLje$mx ;$my ÞðTLi
ke$mt Þ:

The first term of (31) is independent of the spiking mechanism
and equals to

SLje$mx ;$my ¼
1ffiffiffiffiffiffiffiffiffi
SxSy

p
Z

S

Djðx; yÞ expð$jmxxMx x$ jmyxMy yÞdxdy :

¼ dj
mx ;my

; ð32Þ

whereas the second term is equals to bi
mt ;k, given by (9) for the ON–

OFF neuron case and (18) for the case of the LIF neuron. Therefore

aji
mx ;my ;mt ;k

¼ dj
mx ;my

bi
mt ;k: ð33Þ

h

3.3. Visual stimulus decoding

As before, an estimate of the visual stimulus I based on the set
of t-transform equations, as imposed by spike trains, satisfies

Fig. 3. Architecture for encoding visual stimuli.
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bI ¼ argmin
I2V

XN

j¼1

XM

i¼1

1
ðrjiÞ2

Xnij

k¼1

qji
k $ hI;/

ji
ki

* +2
 ! 

þ
XN

j¼1

XM

i¼1

nij

 !
kkIk2

!
: ð34Þ

We have the following theorem

Theorem 1. The minimizer bI is given by

Iðx; y; tÞ ¼
XMx

mx¼$Mx

XMy

my¼$My

XMt

mt¼$Mt

cmx ;my ;mt emx ;my ;xt ðx; y; tÞ; ð35Þ

where cmx ;my ;mt are suitable coefficients given by the solution of the sys-
tem of equations

c ¼ ðGHGþ nkIÞ$1GHq; ð36Þ

where n ¼
PN

j¼1
PM

i¼1nji;q ¼ ½q1;q2; . . . ;qN,T ;qj ¼ 1
rj1 qj1; 1

rj2 qj2; . . . ;
h

1
rjM qjM,T and ½qji,k ¼ qji

k , c is a column vector containing
ð2Mx þ 1Þð2My þ 1Þð2Mt þ 1Þ entries traversing all possible subscript
combination of ordered indices mx;my;mt for cmx ;my ;mt . The entries of
the matrix G are given by

G ¼ 1
r11 G11;

1
r12 G12; . . . ;

1
r1M G1M; . . . ;

1
rN1 GN1;

1
rN2 GN2; . . . ;

1
rNM GNM

& 'H

;

where

Gji ¼ Aji
1;A

ji
2; . . . ;Aji

nji

h iH
; ð37Þ

Aji
k is a row vector containing ð2Mx þ 1Þð2My þ 1Þð2Mt þ 1Þ entries

traversing all possible subscript combination of aji
mx ;my ;mt ;k

defined in

(33) in the same order as in c, for all i = 1,2, . . .,N; j = 1,2, . . .,M and
k ¼ 1; 2; . . . ; nji.

The decoding circuit (time decoding machine) is depicted in
Fig. 4.

4. Examples

In this section we present two examples that demonstrate the
performance of our algorithm and highlight its key features. The

first example describes the encoding of an synthetic video stream
with a population of ON–OFF neural circuits, with center-surround
receptive fields arising in the retina and LGN. The second example
deals with the encoding of a natural scene flow with a population
of IAF neurons, with receptive fields forming a Gabor wavelet filt-
erbank arising in V1. We provide detailed recovery statistics as
well as videos that compare the original natural scenes with the
reconstructed ones. We explicitly show the visual error signal
and the spectrum of the error signal as a function of time for var-
ious random threshold distributions (Gaussian and Gamma) and
distribution parameters. The videos are part of the Supplementary
material.

4.1. Synthetic video example

A synthetic (real) video stream was constructed based on equa-
tion (23), with Mx ¼ My ¼ Mt ¼ 8 and domain D ¼ ½$2;2,&
½$2;2, & ½$0:1;0:1,. The maximum temporal bandwidth was 20 Hz
and the spatial bandwidth 1 Hz in each direction. The video stimulus
was encoded with a population of symmetric ON–OFF circuits (pre-
sented in Section 2.2), identical to each other with parameters
d1 ¼ d2 ¼ 0:05, h12ðtÞ ¼ h21ðtÞ ¼ 0:01 expð$t=0:015Þ1ft>0g and
h11ðtÞ ¼ h22ðtÞ ¼ 0:5 expð$t=0:01Þ1ft>0g (time in seconds). Each
threshold was chosen to be distributed according to a Gaussian dis-
tribution, with a threshold variability of 1%, i.e.,r = d/100. The recep-
tive fields formed a filterbank generated from Difference-of-
Gaussian (DoG) mother wavelet that has been used to model retinal
ganglion cells (RGCs) (Rodieck, 1965; Van Rullen & Thorpe, 2001).
The filterbank consisted of five different scalings and suitable num-
ber of translations to ensure that in each scaling, the filters extend to
the whole spatial domain. We performed eight simulations with dif-
ferent number of neuron pairs. In each simulation, we gradually de-
creased the distance between the neighboring pairs in each scaling
to cover the spatial domain more tightly.

In Fig. 5 we show the performance of the reconstruction algo-
rithm (for fixed k ¼ 10$6) as a function of the number of neuron
pairs, resulting from different spacing of them. The x-axis corre-
sponds to the number of neuron pairs that actually fired at least
one spike. The total number of spikes is also depicted along the
same axis. As it can be seen, the quality of the reconstruction
(SNR, PSNR) (Lazar & Pnevmatikakis, submitted for publication)
improves as more neurons are used to encode the stimulus. These

Fig. 4. Architecture for decoding visual stimuli.
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results demonstrate that increasing the number of neurons
achieves a better encoding of the input stimuli; they are consistent
with basic evolutionary thought (Lazar & Pnevmatikakis, 2008b).
The percentage of the neuron pairs that fired was in all cases
around 70%. No specific increasing or decreasing pattern of this
percentage was found as the total number neurons was increased.

4.2. Natural scene example

The second example pertains to a natural video scene, where
the flight initiation of a Drosophila was recorded with a high-qual-
ity digital camera (Card & Dickinson, 2008). The neural architec-
ture that was used to encode this signal, consisted of a
population of IAF neurons with Gabor receptive fields. Although
the flight of the fruit fly imposed strong requirements on the
encoding architecture the decoding circuit was able to recover
the visual stimulus even under noisy conditions (see Supplemen-
tary material).

4.2.1. Modeling natural scenes as trigonometric polynomials
The video had a frame rate of 6 kHz (maximum temporal band-

width of 3 kHz) and a duration of 120 frames (20 ms) and a spatial
resolution of 96 & 96 pixels. For simplicity the video was dilated in
the time domain to have length of 1 s (maximum temporal band-
width 60 Hz). The spatial domain was chosen (arbitrarily) to be
[$3,3] & [$3,3], yielding a maximum spatial bandwidth of 8 Hz
in each direction. To avoid the effects of periodicity, the spatial do-
main was embedded within a space of trigonometric polynomials
with domain [$5,5] & [$5,5], yielding a fundamental frequency
of 0.1 Hz in each direction. For similar reasons the temporal do-
main was embedded into one of 40 ms duration (fundamental fre-
quency 0.5 Hz).

Fourier analysis on the input stimulus indicated that in the fre-
quency domain most of the energy of the input signal was included

in the cylinder fðft ; fx; fyÞ : jftj 6 4 Hz; 0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x þ f 2

y

q
6 4 Hzg. There-

fore the resolution of the space of trigonometric space-time func-

tions was chosen to be Mt ¼ 4=0:5 ¼ 8 and 0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y

q
6 M,

with Mx ¼ My ¼ M ¼ 4=0:1 ¼ 40. The importance of the choice of
M is highlighted in Fig. 6: the left column in Fig. 6 shows frames
10, 50, and 80 of the original visual stimulus. The next three col-
umns show the same frames when the order of the space of trigo-
nometric polynomials used to model the visual input was M = 40,
M = 30, and M = 20. The threshold values of the neural circuits of
the encoding architecture were deterministic. The Structural Sim-

ilarity Index (SSIM) (Wang et al., 2004) values are shown in the ta-
ble below:

Order

M = 40 M = 30 M = 20

Frame
10 0.9453 0.7860 0.6781
50 0.9403 0.8935 0.7836
80 0.9711 0.9377 0.8918

These values of the SSIM, that we shall investigate in more de-
tail below, are in agreement with the visual perception that the
quality of the model is increasing with M. Clearly, the value of
the order of the space of trigonometric polynomials depends on
the frequency content, and thereby, on the statistics of the visual
field. Increasing M leads to improved stimulus recovery. It also
leads to an increase in the complexity of the decoding algorithm.
Note that in this setting, increasing the order of the space results
in an increase of the spatial bandwidths Xx and Xy as the funda-
mental frequencies are determined by the input video and are kept
fixed. This is different from the case when the bandwidth is fixed
and the order increases. In the latter case, the fundamental fre-
quency becomes smaller and the space converges to the limit to
the one of bandlimited functions.

These brief considerations further highlight the flexibility of the
spaces of trigonometric polynomials to accurately model natural
scenes, while taking into consideration their statistics.

4.2.2. Recovery of natural scenes
The video stimulus was encoded with a population of 3408 IAF

neurons. The receptive fields of the population formed a spatial Ga-
bor filterbank generated with the same mother wavelet (Jones &
Palmer, 1987). The filterbank consisted of combinations between
8 rotations, 5 dilations and 3 to 11 translations in each direction
depending on whether the scaling resulted in a wavelet function
with coarse (few translations) or fine resolution (many transla-
tions). All the IAF neurons were assumed to be ideal (R ?1) and
all had C = 1. The bias varied from neuron to neuron with a mean
value of 0.39.

Initially we tested neurons with random thresholds drawn from
a Gaussian distribution with mean d = 0.03 and variance r2 for all
neurons. At every repetition the number of spikes produced was
around 46,500. No large deviations were observed as a function
of threshold variability.
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Fig. 5. Performance of the reconstruction algorithm as a function of the number of active circuits/spikes that encode the stimulus.
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Fig. 7a shows the performance of the recovery algorithm for
various noise levels and various values of the smoothing parameter
k. The threshold variability is defined as the coefficient of variation
of the thresholds, i.e., r/d. Note that for large threshold variability,
the Gaussian distribution was truncated in order to impose posi-
tive threshold values. However, the mean and the variance of these
Gaussian distributions were adjusted such that the truncated Nor-
mal distributions have the same mean d = 0.03 and the same
threshold variability. In the left column the SNR of the recovered
natural scenes is plotted, whereas in the right column the SSIM
is shown. As it can be seen, the reconstruction improves as the
threshold variability decreases and it can reach quite high values,
e.g., SSIM > 0.9. For extreme values of the threshold variability
(e.g., r/d = 1), we see that the quality of the reconstruction is poor,
e.g., SSIM - 0.1.

The same experiment was also performed with neurons with
random thresholds drawn from a Gamma distribution. The results
are depicted in Fig. 7b. For small threshold variability values, e.g.,
r/d < 0.1, the Gamma distribution ‘‘resembles” a Gaussian distribu-
tion. It starts to visibly differ from the (truncated) Gaussian distri-
bution at higher threshold variability levels. For example for r/
d = 1, the Gamma distribution is exactly an exponential and is sig-
nificantly different from the (truncated) Gaussian. The maximum
difference of the recovery results when using the two distributions
was 0.91dB for SNR and 0.0239 for SSIM and was mostly observed
when the threshold variability was high. Overall, our simulation
results shown in Fig. 7 indicate that the quality of the recovered
stimulus displays small differences when encoding with neural cir-
cuits with random thresholds drawn from these two distributions.

Finally, Fig. 8 shows the original visual stimulus, the recovered
stimulus, the error and the spectrum of the error for frame 10, 50,
and 80, respectively. The coefficient of variation was set to 1%
around the mean (Gaussian thresholds). As can be seen in Fig. 8,
the quality of stimulus recovery is very high. Moreover, the noise

of the recovered natural scenes is white when restricted to the fre-
quency support of the input space. Real-time videos exploring the
behavior of the encoding architecture with neural circuits with
random thresholds drawn from both Gaussian and Gamma distri-
butions, the nature of the recovery error, as well stimulus recovery
for deterministic threshold values are shown in the Supplement.

5. Reconstruction of infinite-dimensional stimuli

The results presented so far, can be easily extended to the case
of infinite-dimensional stimuli. The tools required are provided by
the theory of smoothing splines (Wahba, 1990) in Reproducing
Kernel Hilbert Spaces (RKHS) (Berlinet & Thomas-Agnan, 2004).
In essence, a Hilbert space ðH; h%; %iÞ defined on a domain T is called
a RKHS if it has the property that the evaluation functional at every
point t 2 T is bounded. If H is a RKHS then there exists a unique
function K : T& T # C, called the reproducing kernel (RK) such that
Kð%; tÞ 2H and for any u 2H and any t 2T the so called repro-
ducing property

hu;Kð%; tÞi ¼ uðtÞ;

holds. It is easy to see that the space of trigonometric polynomials,
as well as any finite-dimensional vector space, is a RKHS. It’s repro-
ducing kernel, called the Dirichlet kernel, is given by

KMðs; tÞ ¼
XM

m¼$M

emðsÞemðtÞ ¼
1
T

XM

m¼$M

ejmxMðs$tÞ

¼ 2M þ 1
T

sinc ð2Mþ1ÞX
2M ðs$ tÞ

* +

sinc X
2M ðs$ tÞ
$ % ; ð38Þ

where sinc(x) = sin(x)/x. By letting M ?1 it is easy to see that

Fig. 6. Modeling a flow of natural scenes.
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lim
M!1

KMðs; tÞ ¼
X
p sincðXðs$ tÞÞ ¼ sinðXðs$ tÞÞ

pðs$ tÞ
;

i.e., exactly is the RK for the space of bandlimited functions. There-
fore trigonometric polynomials are a natural, finite, discretization of
bandlimited functions.

In the case of finite-dimensional spaces, we can express any lin-
ear measurement (functional) Lku in an inner product form hu;vki.
The sampling function is evaluated in terms of the space basis with
appropriate coefficients (see Eqs. (8),(9)). In the general RKHS the
sampling functions are computed using the reproducing property
(Lazar & Pnevmatikakis, 2009):

vkðtÞ ¼ hvk;Kð%; tÞi ¼ hKð%; tÞ; vki ¼ LkKð%; tÞ:

Suppose now that a receiver reads the following noisy
measurements

qk ¼ hu; vkiþ ek; ð39Þ

where ek are i.i.d. Gaussian random variables. The following theo-
rem is a special case of a very general result in the theory of
smoothing splines, proven in (Wahba, 1990).

Theorem 2. The minimizer û of

Xn

k¼1

ðqk $ hu; vkiÞ
2 þ nkkuk2; ð40Þ

is given by

û ¼
Xn

k¼1

dkvk: ð41Þ

Furthermore, the optimal coefficients ½d,k ¼ dk satisfy the matrix
equation

d ¼ ðFþ nkIÞ$1q; ð42Þ

where ½F,kl ¼ hvk;vli; dk ¼ ½d,k and ½q,k ¼ qk, for all k, l = 1,2, . . ., n.
The above theorem states that the minimizer of the cost func-

tional is a linear combination of the sampling functions. Since
the sampling functions can be obtained from spike times the
decoding problem becomes tractable.

For a finite-dimensional space (41) and (21) are equivalent. To
see that, note that vk ¼

P
mbk;mem and (21) becomes

û ¼
Xn

k¼1

dk

X

m

bk;mem ¼
X

m

Xn

k¼1

bk;mdk

 !
em:

Moreover, since F ¼ GGH , it suffices to prove that GHd ¼ c. Since

ðGGH þ nkIÞd ¼ q;

ðGHGþ nkIÞc ¼ GHq;

and therefore,

ðGHGþ nkIÞc ¼ GHðGGH þ nkIÞd ¼ ðGHGþ nkIÞGHd;

and the result follows.
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Fig. 7. Performance of the recovery algorithm for Gaussian and Gamma distributed thresholds.
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6. Discussion – related work

Our decoding approach is based on two steps: first, each inter-
spike interval is associated with a generalized measurement of the
input stimulus, in the form of an inner product operation. Second,
based on these measurements, the reconstructed stimulus mini-
mizes a certain cost functional. As it was seen from the examples,
this methodology provides excellent stimulus recovery for highly
complex stimuli, such as natural scenes. However, there are two
questions that naturally arise.

First, the t-transform equations do not include information
about the membrane potential. If tk; tkþ1 are two consecutive
spikes, then VðtÞ < dkþ1 for all t 2 ½tk; tkþ1,, where dkþ1 is the thresh-
old of the neuron in the same interspike interval. Such inequality
constraints were considered in Paninski, Pillow, and Simoncelli
(2004) in the context of maximum likelihood estimation of the
parameters of a LIF neuron. In our problem setting they can be
introduced as additional hard constraints for stimulus recovery
solved using quadratic programming methods (Boyd & Vandenber-
ghe, 2004). However, the incorporation of inequality constraints in
simulations did not show a marked improvement in the recon-
structed stimulus. In general, the equality constraints of the t-
transform equations appear to be much more informative than
the inequality constraints. Note that in the noiseless case, the t-
transform completely determines the input stimulus under certain
spike density conditions (Lazar & Pnevmatikakis, 2008b). Intui-
tively, the inequality constraints ensure that the reconstructed
stimulus does not fire additional spikes in the interval ½tk; tkþ1,.
Assuming that an additional spike occurs, the reconstructed stim-
ulus oscillates fast on the newly formed interspike intervals there-
by resulting in a high energy signal. However, even without the
inequality constraints, such high energy stimuli are prevented by
the regularizer. In the random threshold case, the inequality con-
straints hold in a probabilistic sense and call for tools from stochas-

tic programming (Birge & Louveaux, 1997). For high threshold
variance values, such constraints may be helpful for stimulus
reconstruction and need to be thoroughly examined.

Second, what is the best choice of the cost functional? Our
approach here follows the classical regularization approach (Tik-
honov & Arsenin, 1977). Such regularized cost functionals appear
in stochastic filtering as they lead to minimum variance unbi-
ased estimators (MVUE) (Berlinet & Thomas-Agnan, 2004). For
inputs modeled as trigonometric functions with Gaussian i.i.d.
coefficients the methodology employed here gives an optimal
solution. The regularizer controls the energy of the stimulus by
giving a uniform penalty across all the stimulus frequencies (ba-
sis functions).

Our model encoding architecture combines the following, desir-
able, characteristics: use of temporal codes, receptive fields with
operational significance and neural circuits with feedback for
encoding in the presence of noise. It builds upon results obtained
previously in the field. We shall focus in the following only on a
narrow subset of the vast literature.

Recordings of cell responses to visual stimuli exhibit sub-milli-
second precision for many different cell types of the early visual
system, including retinal ganglion cells (RGCs) and lateral genicu-
late nucleus (LGN) neurons (Keat et al., 2001; Uzzell & Chichilnisky,
2004; Reinagel & Reid, 2000). Such recordings suggest that preci-
sion contributes fundamentally to the neural code (Butts et al.,
2007). A number of computational spiking neuron models have
been published (Keat et al., 2001; Pillow et al., 2005; Pillow
et al., 2008) that show a certain degree of fit to neural recordings.
In this paper, we used spiking neuron models inspired from the
aforementioned ones. By showing that these models constitute
tractable neural circuit building blocks, we constructed a large
scale model architecture for the encoding of natural video scenes.
The spatiotemporal neural encoding architecture turned out to
be analytically tractable as well.

Fig. 8. Recovery of the natural scenes flow.
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Individual neurons in the early visual system exhibit remark-
able selectivity to various characteristics of the input stimuli (scale,
position, orientation, direction of movement, etc.). This selectivity
is inherited from the spatiotemporal receptive fields (Ringach,
2004) of the neurons that filter the input. A widely accepted model
for the population of receptive fields is the one of space-time
wavelet filterbank (Jones & Palmer, 1987; Field & Chichilnisky,
2007) which highlights the encoding properties and capabilities
of the visual system, and can reproduce many properties of the
ensemble response, orientation and direction selectivity (Hubel &
Wiesel, 1962), etc. Such structures have also been shown to lead
to optimal coding, in terms of sparsity, of natural scenes (Olshau-
sen, 2002). A few computational models that exploit the structure
of the receptive field population exist in the literature, for example
the deterministic models in (Lee, 1996; Rozell, Johnson, Baraniuk,
& Olshausen, 2008). These models however operate under the rate
assumption and represent video streams on a frame-by-frame ba-
sis. A stochastic model appeared in (Pillow, Ahmadian, & Paninski,
submitted for publication), where the maximum-a-posteriori
(MAP) decoder for images encoded with a population neurons with
center-surround receptive fields was derived.

In our model, the receptive fields are integrated with the spik-
ing mechanism of the neurons and appear explicitly in the t-trans-
form of the encoder. Hence the action of the receptive fields on the
stimulus is fed directly into the neural spiking and consequently
used by the optimal stimulus reconstruction algorithm. Our model
assumes prior knowledge of the receptive fields and, naturally, the
quality of the decoding depends on quality of knowledge of these
receptive fields. In the case where these are unknown, similar
methods can be used to identify these, as it was shown in Pillow
and Simoncelli (2003) for determining the parameters of a LIF neu-
ron. As our examples demonstrated, the receptive fields can have
many different shapes (mother-wavelet). What is critical, however,
is the number (or density) of filters. As the results in Section 4.1
suggested, there is a density threshold upon which minimal
improvement can be made. In essence this is achieved when the
receptive fields cover completely the spatial domain, and depends
on the spike density of the neurons that respond to the time-vary-
ing stimuli (Lazar & Pnevmatikakis, submitted for publication).

Our model exhibits stimulus dependent dynamics and attri-
butes neuronal variability to the effect of random thresholds. As
a result the measurements provided by neural spiking are indepen-
dent both across different neurons and within each individual neu-
ron. Consequently every single interspike interval contributes an
independent noisy measurement that is included in the regular-
ized cost functional. Thus our model architecture can efficiently
reconstruct complex stimuli such as natural scenes, using a rela-
tively small number of spikes and with moderate complexity.

7. Conclusions

We presented a formal model for the encoding and reconstruc-
tion of visual stimuli with a spiking neural architecture akin to the
neural ensembles of the early visual system. We described how
information is encoded in the time domain and worked out in de-
tail a reconstruction algorithm, based on regularization techniques,
for the case of integrate-and-fire neurons as well as for the case of
ON–OFF neural circuits with thresholding and feedback. We dem-
onstrated the effectiveness of our algorithm by reconstructing vi-
deo streams as complex as natural scenes, based solely on the
spike times and the neuron parameters.

The paper also introduced trigonometric polynomials as a for-
mal modeling tool for stimuli such as natural scenes. We showed
that trigonometric polynomials are a natural discretization of

bandlimited functions, with added modeling flexibility and thus
suitable for applications.

In terms of future directions, we note that the optimization cri-
teria space as well as the stimulus modeling options remain largely
unexplored. For example, the right part of (34) is just the energy of
the stimulus. Based on the properties of the stimulus or the desired
computational task to be performed, other criteria can be used
(Poggio et al., 1985) and other spline models can arise (Duchon,
1977). Moreover, the spaces of trigonometric polynomials have
great flexibility and can adapt to the statistical properties of the ex-
pected inputs (Van der Schaaf & Van Hateren, 1996). These, along
with other issues, will be the subject of future research.
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Appendix A. Proof of stimulus reconstruction

We have already given the minimizers to the cost functions in
(10), (19) and (34), here we present a general proof for minimiz-
eres of such cost functions in finite dimensional Hilbert spaces.

Proposition 3. Assume H is a finite-dimensional Hilbert space with
orthonormal basis em;m ¼ 1; 2; . . . ; M. We define the cost function to
be

Xn

k¼1

ðqk $ hu;vkiÞ
2 þ nkkuk2; ðA:1Þ

where vk 2H are a set of n sampling functions that gives measure-
ments qk, and k is the Tikhonov regularization parameter and k % k de-
notes the norm in H. Also, we assume vk ¼

PM
m¼1bm;kem. The minimizer

to this cost function in H is given by

û ¼
XM

m¼1

cmem; ðA:2Þ

where cm;m ¼ 1; 2; . . . ; M are appropriate coefficients given by the
solution of equation

GHGþ nkI
* +

c ¼ GHq; ðA:3Þ

with ½G,km ¼ bm;k; ½q,k ¼ qk and c ¼ ½c,m, for all k=1,2,. . .,n, m =
1,2,. . .,M.

Proof. Since the minimizer is also in H, let it be of the form (A.2),
using matrix form (A.1) becomes

JðcÞ ¼ kq$ Gck2 þ nkcHc; ðA:4Þ

since both terms are strictly convex, we find the c that minimizes
the cost function when gradient of J equals to zero, thus we have

$cðJÞ ¼ 0

$cðqHq$ 2qHGcþ cHGHGcþ nkcHcÞ ¼ 0

$ 2GHqþ ðGHGþ nkIÞc ¼ 0

ðGHGþ nkIÞc ¼ GHq

ðA:5Þ

Note that GHGþ nkI is often nonsingular even when k = 0, c can
be solved uniquely as
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c ¼ ðGHGþ nkIÞ$1GHq: ðA:6Þ

h

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.visres.2010.03.015.
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