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We consider a formal model of stimulus encoding with a circuit consisting
of a bank of filters and an ensemble of integrate-and-fire neurons. Such
models arise in olfactory systems, vision, and hearing. We demonstrate
that bandlimited stimuli can be faithfully represented with spike trains
generated by the ensemble of neurons. We provide a stimulus reconstruc-
tion scheme based on the spike times of the ensemble of neurons and
derive conditions for perfect recovery. The key result calls for the spike
density of the neural population to be above the Nyquist rate. We also
show that recovery is perfect if the number of neurons in the population
is larger than a threshold value. Increasing the number of neurons to
achieve a faithful representation of the sensory world is consistent with
basic neurobiological thought. Finally we demonstrate that in general,
the problem of faithful recovery of stimuli from the spike train of single
neurons is ill posed. The stimulus can be recovered, however, from the
information contained in the spike train of a population of neurons.

1 Introduction

In this letter, we investigate a formal model of stimulus encoding with
a circuit consisting of a filter bank that feeds a population of integrate-
and-fire (IAF) neurons. Such models arise in olfactory systems, vision, and
hearing (Fain, 2003). We investigate whether the information contained in
the stimulus can be recovered from the spike trains at the output of the
ensemble of integrate-and-fire neurons. In order to do so, we provide a
stimulus recovery scheme based on the spike times of the neural ensemble
and derive conditions for the perfect recovery of the stimulus. The key
condition calls for the spike density of the neural ensemble to be above the
Nyquist rate. Our results are based on the theory of frames (Christensen,
2003) and on previous work on time encoding (Lazar & Tóth, 2004; Lazar,
2005, 2006a, 2007).
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Recovery theorems in signal processing are usually couched in the lan-
guage of spike density. In neuroscience, however, the natural abstraction
is the neuron. We shall also formulate recovery results with conditions on
the size of the neural population as opposed to spike density. These results
are very intuitive for experimental neuroscience. We demonstrate that the
information contained in the sensory input can be recovered from the out-
put of integrate-and-fire neuron spike trains provided that the number of
neurons is beyond a threshold value. The value of the threshold depends on
the parameters of the integrate-and-fire neurons. Therefore, while informa-
tion about the stimulus cannot be perfectly represented with a small number
of neurons, this limitation can be overcome provided that the number of
neurons is beyond a critical threshold value. Increasing the number of neu-
rons to achieve a faithful representation of the sensory world is consistent
with basic neurobiological thought.

We also demonstrate that the faithful recovery of stimuli is not, in gen-
eral, possible from spike trains generated by individual neurons; rather a
population of neurons is needed to faithfully recover the stimulus of single
neurons. This finding has important applications to systems neuroscience
since it suggests that the recovery of the stimulus that is applied to single
neurons cannot in general be recovered from the spike train of single neu-
rons. Rather, the spike train of a population of neurons is needed to get
faithful stimulus recovery.

Our theoretical results provide what we believe to be the first rigorous
model demonstrating that the sensory world can be faithfully represented
by using a critical-size ensemble of sensory neurons. The investigations
presented here further support the need to shift focus from information
representation using single neurons to a population of neurons. As such, our
results have some important ramifications to experimental neuroscience.

This letter is organized as follows. In section 2, the neural population
encoding model is introduced. The encoding model is formally described,
and the problem of faithful stimulus recovery is posed. A perfect stimulus
recovery algorithm is derived in section 3. In the same section, we also
work out our main result for neural population encoders using filter banks
based on wavelets. Two examples are given in section 4. The first details
the stimulus recovery for filters with arbitrary delays arising in dendritic
computation models. The second presents the recovery of stimuli for a
gammatone filter bank widely used in hearing research. For both examples,
we show that the quality of stimulus reconstruction gracefully degrades
when additive white noise is present at the input. Finally section 5 discusses
the important ramifications that formal neural population models can have
in systems neuroscience.

2 A Neural Population Encoding Model

In this section we introduce a formal model of stimulus representation con-
sisting of a bank of N filters and an ensemble of N integrate-and-fire neurons
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Figure 1: Single-input multi-output time encoding machine.

(see Figure 1). Each filter of the filter bank is connected to a single neuron
in the ensemble. The stimulus is modeled as a band-limited function—a
function whose spectral support is bounded.

2.1 Stimulus Encoding with Filter Banks and Integrate-and-Fire
Neurons. Let ! be the set of band-limited functions with spectral sup-
port in [−","]. A function u = u(t), t ∈ R, in ! models the stimulus and "

is its bandwidth. ! is a Hilbert space endowed with the L2-norm. A brief
overview of Hilbert spaces can be found in appendix A. Let h : R $→ RN be
a (vector) filtering kernel defined as

h(t) = [h1(t), h2(t), . . . , hN(t)]T , (2.1)

where h j : R → R for all j, j = 1, 2, . . . , N, and T denotes the transpose.
Throughout this letter, we shall assume that supp(ĥ j ) ⊇ [−","] (supp de-
notes the spectral support). Filtering the signal u with h leads to an N-
dimensional vector-valued signal v = v(t), t ∈ R, defined by

v(t) = (h ∗ u)(t) = [(h1 ∗ u)(t), (h2 ∗ u)(t), . . . , (hN ∗ u)(t)]T , (2.2)

where ∗ denotes the convolution operator.
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A bias b j is added to the component v j of this signal, and the sum is
presented at the input of the j th integrate-and-fire neuron with integration
constant κ j and threshold δ j , for all j, j = 1, 2, . . . , N (see Figure 1). (t j

k ), k ∈
Z, is the output sequence of trigger (or spike) times generated by neuron
j, j = 1, 2, . . . , N.

The neural population encoding model in Figure 1 therefore maps the
input band-limited stimulus u into the vector time sequence (t j

k ), k ∈ Z,
j = 1, 2, . . . , N. It is an instance of a time encoding machine (TEM) (Lazar
& Tóth, 2004; Lazar, 2006a).

2.2 The t-Transform. The t-transform (Lazar & Tóth, 2004) formally
characterizes the input-output relationship of the TEM, that is, the mapping
of the input stimulus u(t), t ∈ R, into the output spike sequence (t j

k )k∈Z of
the j th neuron, j = 1, 2, . . . , N. The t-transform for the j th neuron can be
written as

∫ t j
k+1

t j
k

((h j ∗ u) + b j )(s) ds = κ jδ j ,

or
∫ t j

k+1

t j
k

(h j ∗ u)(s) ds = q j
k , (2.3)

where q j
k = κ jδ j − b j (t j

k+1 − t j
k ), for all k, k ∈ Z, and all j, j = 1, 2, . . . , N.

2.3 Recovery of the Encoded Stimulus.

Definition 1. A neuronal population encoding circuit faithfully represents its
input stimulus u = u(t), t ∈ R, if there is an algorithm that perfectly recovers the
input u from the output spike train (t j

k ), k ∈ Z, j = 1,2, . . . , N.

We have seen that the t-transform of the population encoding circuit in
Figure 1 maps the input u into the time sequence (t j

k ), k ∈ Z, j = 1, 2, . . . , N.
The faithful recovery problem seeks the inverse of the t-transform, that is,
finding an algorithm that recovers the input u based on the output vector
time sequence (t j

k ), k ∈ Z, j = 1, 2, . . . , N.
Let the function g(t) = sin("t)/π t, t ∈ R, be the impulse response of a

low-pass filter (LPF) with cutoff frequency at ". Clearly, g ∈ !. Since u is a
band-limited function in !, the t-transform defined by equation 2.3 can be
rewritten in an inner-product form as

〈
h j ∗ u, g ∗ 1[t j

k ,t j
k+1]

〉
= q j

k
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or

〈
u, h̃ j ∗ g ∗ 1[t j

k ,t j
k+1]

〉
= q j

k , (2.4)

where h̃ j is the involution of h j, that is, h̃ j = h j (−t), for all t, t ∈ R, and for
all k, k ∈ Z, and j, j = 1, . . . , N. After firing, without any loss of generality,
all neurons are reset to the zero state. A description of the firing mechanism
with arbitrary reset can be found in Lazar (2005).

Equation 2.4 has a simple interpretation. The stimulus u is measured by
projecting it onto the sequence ( h̃ j ∗ g ∗ 1[t j

k ,t j
k+1]), k ∈ Z and j = 1, 2, . . . , N.

The values of these measurements form the sequence q j
k , j = 1, 2, . . . , N

which is available for recovery. Thus, the TEM acts as a sampler on the
stimulus u. Furthermore, since the spike times depend on the stimulus, the
TEM acts as a stimulus-dependent sampler. How to recover the stimulus
from these measurements is detailed in the next section.

3 Recovery of Stimuli Encoded with the Neural Population Model

As discussed in the previous section, we assume N integrate-and-fire neu-
rons each with bias b j, integration constant κ j , and threshold δ j for all
j, j = 1, 2, . . . , N. Before the stimulus u is fed to neuron j , the stimulus is
passed through a linear filter with impulse response h j = h j (t), t ∈ R. With
(t j

k ), k ∈ Z, the spike times of neuron j , the t-transform, equation 2.4, can be
written as

〈
u,φ

j
k
〉
= q j

k , (3.1)

where φ
j
k = h̃ j ∗ g ∗ 1[t j

k ,t j
k+1]. If the sequence φ = (φ j

k ), k ∈ Z, j = 1, 2, . . . , N,
is a frame for !, the signal u can be perfectly recovered. Thus, our goal in
this letter is to investigate the condition for the sequence φ to be a frame
(called analysis frame in the literature; Teolis, 1998; Eldar & Werther, 2005)
and provide a recovery algorithm.

Before we proceed with the recovery algorithm we also need the follow-
ing definition of the filters that model the processing taking place in the
dendritic trees:

Definition 2. The filters h j = h j (t), t ∈ R, are said to be bounded-input bounded-
output (BIBO) stable if

‖h j‖1
'=

∫

R
|h j (s)| ds < ∞.
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In the next section, we investigate the faithful representation of the stim-
ulus u given the spike sequence (t j

k ), k ∈ Z, j = 1, 2, . . . , N (see theorem 1)
and provide sufficient conditions for perfect recovery. An algorithm for
stimulus recovery is explicitly given (see corollary 1). We show that the
sensory world modeled through the stimulus u can be perfectly recov-
ered provided that the number of neurons is above a threshold value (see
theorem 2).

3.1 Faithful Stimulus Recovery. The t-transform in equation 3.1 quan-
tifies the projection of the stimulus u onto the sequence of functions
(φ j

k ), k ∈ Z, j = 1, 2, . . . , N. As such, it provides a set of constraints for
stimulus recovery. These constraints might be related if the correspond-
ing functions are related. For example, for two integrate-and-fire neurons
with the same parameters and the same preprocessing filters, φ1

k = φ2
k , for

all k, k ∈ Z. Thus, the two neurons impose identical constraints on recovery.
For two neurons whose preprocessing filters and biases are the same and
the threshold of one of the neurons is an integer multiple of the threshold
of the other neuron, say, δ2 = Lδ1,

∑L−1
l=0 φ1

m+l = φ2
n for infinitely many pairs

of integers (m, n).
In the simple examples above, the constraints that a neuron imposes on

stimulus recovery can be linearly inferred from the constraints imposed by
another neuron. This redundancy in the number of constraints is undesir-
able, and in proposition 1 we seek sufficient conditions to avoid it.

Definition 3. The filters (h j ), j = 1, . . . , N, are called linearly independent if
there do not exist real numbers a j , j = 1 . . . , N, not all equal to zero, and real
numbers α j , j = 1, . . . , N, such that

N∑

j=1

a j (h j ∗ g)(t − α j ) = 0

for all t, t ∈ R (except on a set of Lebesgue-measure zero).

Proposition 1. If the filters (h j ), j = 1, . . . , N, are linearly independent, then
the functions (φ j

k ), k ∈ Z, j = 1, 2, . . . , N, are also linearly independent.

Proof. The functions (φ j
k ), k ∈ Z, j = 1, 2, . . . , N, are linearly dependent if

there exist real numbers a j , j = 1, . . . , N, not all equal to zero, integers
k j , j = 1, . . . , N, and positive integers L j , j = 1, . . . , N, such that

N∑

j=1

a j




L j −1∑

l=0

φ
j
k j +l (t)



 = 0, (3.2)
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for all t, t ∈ R. By substituting the functional form of φ
j
k in the equation

above, we obtain

N∑

j=1

a j
(

h̃ j ∗ g ∗ 1[t j
k j

,t j
k j +L j

]

)
(t) = 0. (3.3)

For equation 3.3 to hold, t j
k j +L j

− t j
k j

= ' for all j, j = 1, . . . , N, with a j *= 0,
where ' is a constant. By taking the Fourier transform of equation 3.3, we
have

N∑

j=1

a j (̂ h̃ j )ĝ
(

e−iωt j
k j

1 − e−iω'

iω

)
= 0, (3.4)

where ĝ is the Fourier transform of g and i =
√

−1. After canceling the
summation independent terms and taking the inverse Fourier transform,
we obtain

N∑

j=1

a j ( h̃ j ∗ g)
(
t − t j

k j

)
= 0. (3.5)

The latter equality can hold only if the filters are not linearly independent.

Remark 1. In order to satisfy equation 3.3, the spikes generated by the
N neurons do not have to coincide. For two neurons, for example, the
spikes might be generated at times t1

k = t2
k + α, while the preprocessing

filters satisfy the relationship h1(t) = h2(t + α). Here φ1
k = φ2

k , that is, the
constraints are linearly dependent. The allowance of time shifts that also
appears in the definition of linear independent filters is therefore essential.

Remark 2. Two neurons might generate spikes at the same time infinitely
often. A simple example is provided by the case when the first neuron is
described, after generating L spikes, by the t-transform

∫ t1
k+L

t1
k

(h1 ∗ u)(s) ds = L · κ1δ1 − b1(t1
k+L − t1

k
)
,

and the second neuron is described between two consecutive spikes by

∫ t2
k+1

t2
k

(h2 ∗ u)(s) ds = κ2δ2 − b2(t2
k+1 − t2

k
)
.
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It is easy to see that if the initial spikes coincide in time, that is, t1
k = t2

k ,
the filters h1 and h2 and the other parameters of the two integrate-and-
fire neurons can be chosen in such a way as to have t1

k+L = t2
k+1. Thus, the

spikes generated by the two neurons are identical infinitely often. However,
the spike coincidence just described will be of no concern to us provided
that the filters are linearly independent. This consideration arises when
constructing the synthesis frames throughout this letter.

We are now in a position to state our main theorem. It pertains to the
neural circuit model depicted in Figure 1.

Theorem 1. Assume that the filters h j = h j (t), t ∈ R, are linearly independent,
BIBO stable, and have spectral support that is a superset of [−","] for all
j, j = 1, 2, . . . , N. The stimulus u can be represented as

u(t) =
N∑

j=1

∑

k∈Z

c j
k ψ

j
k (t), (3.6)

where ψ
j

k (t) = h̃ j ∗ g(t − s j
k ) and c j

k , k ∈ Z, j = 1, . . . , N are suitable coeffi-
cients, provided that

N∑

j=1

1
κ jδ j

(
b j − c

∫

R
|h j (s)|ds

)
>

"

π
, (3.7)

|u(t)| ≤ c.

Proof. Clearly the theorem holds if we can show that the sequence of
functions (ψ j

k (t)), k ∈ Z, j = 1, . . . , N, is, respectively, a frame for ! (called
the synthesis frame in the literature; Teolis, 1998; Eldar & Werther, 2005).

Given the structure of the t-transform in equation 3.1 and noting that the
N filters are independent, the definition of the lower spike density D (given
in appendix B) reduces to (see also the evaluation of D below)

D = lim inf
t→∞

inf
t0∈R

N(t0, t0 + t)
t

, (3.8)

where N(a , b) is the number of spikes in the interval (a , b). Since

|v j (t)| =
∣∣∣∣

∫

R
h j (t − s)u(s) ds

∣∣∣∣ ≤
∫

R
|h j (t − s)||u(s)|ds ≤ c

∫

R
|h j (s)|ds,



Faithful Representation of Stimuli 2723

the condition for the spike density D becomes

D = lim inf
t→∞

inf
t0∈R

N∑

j=1

1
t

⌈∫ t+t0
t0

(b j + v j (s)) ds

κ jδ j

⌉

= lim inf
t→∞

inf
t0∈R

N∑

j=1

1
t

(∫ t+t0
t0

(b j + v j (s)) ds

κ jδ j

)

≥
N∑

j=1

1
κ jδ j

(
b j − c

∫

R
|h j (s)|ds

)
, (3.9)

where .x/ denotes the greatest integer less than or equal to x.
We note that the computation of the lower density above possi-

bly includes identical spikes. However, the linear independence con-
dition on the filters h j , j = 1, 2, . . . , N, guarantees that the sequence
(φ j

k ), k ∈ Z, j = 1, 2, . . . , N, is a frame. The theorem holds since condition
3.7 guarantees that the lower spike density is above the Nyquist rate,
and thus by lemma 2, given in appendix C, the sequence of functions
(ψ j

k (t)), k ∈ Z, j = 1, . . . , N, is a frame for !.

Remark 3. Theorem 1 has a very simple interpretation. The stimulus u can
be faithfully represented provided that the number of spikes exceeds the
lower bound in equation 3.7. This lower bound is the Nyquist rate and arises
in the Shannon sampling theorem (Lazar & Tóth, 2004). Thus, inequality
3.7 is a Nyquist-type rate condition.

According to theorem 1 (see equation 3.6), under a Nyquist-type rate con-
dition, the stimulus u can be written as

u(t) =
N∑

j=1

∑

k∈Z
c j

k ( h̃ j ∗ g)
(
t − s j

k
)
. (3.10)

The recovery algorithm of u in block diagram form is shown in Figure 2. It
is an instantiation of a time decoding machine (Lazar & Tóth, 2004; Lazar,
2007).

This suggests the following recovery scheme in matrix notation:

Corollary 1. Let c = [c1, . . . , cN]T , with [c j ]k = c j
k . Then

c = G+q, (3.11)
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c = G+q

+

∑

k∈
δ(t− t1k)

∑

k∈
δ(t− t2k)

∑

k∈
δ(t− tNk )

∑

k∈
c1kδ(t− s1

k)

∑

k∈
c2kδ(t− s2

k)

∑

k∈
cNk δ(t− sNk )

u(t)

h̃
LPF

2

h̃1

h̃N

Figure 2: Single-input multi-output time decoding machine.

where T denotes the transpose, G+ denotes the pseudoinverse of G, and

q = [q1 , . . . , qN]T , [q j]k = κ jδ j − b j(t j
k+1 − t j

k

)
,

G =





G11 G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN




, [Gi j ]kl =

∫ ti
k+1

ti
k

(hi ∗ h̃ j ∗ g)
(
s − s j

l

)
ds.

(3.12)

Proof. The equation c = G+q can be obtained by substituting the represen-
tation of u in equation 3.6 into the t-transform equation 3.1,

〈u,φ
j

l 〉 =
N∑

i=1

∑

k∈Z
ci

k〈ψ i
k,φ

j
l 〉,

and therefore

q j
l =

N∑

i=1

∑

k∈Z
ci

k[Gi j ]kl
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for all i, i = 1, 2, . . . , N, and l ∈ Z. Since the sequences φ and ψ are frames
for !, the result follows (Eldar & Werther, 2005).

Remark 4. For the particular case of a TEM without filters, that is, h j (t) =
δ(t), where δ(t) is the Dirac-delta function for all j, j = 1, 2, . . . , N, we have

ψ
j

k (t) = (δ ∗ g)
(
t − s j

k
)

= g
(
t − s j

k
)
,

for all k, k ∈ Z, and all t, t ∈ R. Consequently, we obtain the representation
and recovery results of Lazar (2007).

Remark 5. Assume that the band-limited stimulus u is filtered with an
arbitrary time-invariant filter with impulse response h. A bias b is added
to the output of the filter, and the resulting signal is passed through an
integrate-and-fire neuron with threshold δ. Thus, the t-transform of the
signal can be written as

∫ tk+1

tk
(h ∗ u)(s) ds = κδ − b(tk+1 − tk), (3.13)

for all k, k ∈ Z. According to theorem 1, under appropriate conditions, the
stimulus can be written as

u(t) =
∑

k∈Z
ck( h̃ ∗ g)(t − sk), (3.14)

for all t, t ∈ R. In matrix notation, c = G+q, where [c]k = ck , [q]k = κδ −
b(tk+1 − tk), k ∈ Z, and [G]kl =

∫ tk+1
tk

(h ∗ h̃ ∗ g)(s − sk) ds. Alternatively, in
order to recover the stimulus u, we can first obtain h ∗ u using the clas-
sical recovery algorithm (Lazar & Tóth, 2004) and then pass h ∗ u through
the inverse filter h−1.

Theorem 1 provides a technical condition for faithful representation in
terms of the minimum density of spikes as in equation 3.7. Instead of this
technical condition, we give a much simpler condition in terms of the num-
ber of neurons. Such a condition is more natural in the context of encoding
stimuli with a population of neurons. The latter also provides a simple
evolutionary interpretation (see remark 6 below).

Theorem 2. Assume that the filters h j = h j (t), t ∈ R, are linearly independent,
BIBO stable, and have spectral support that is a superset of [−","] for all j, j =
1, 2, . . . , N. If the input to each neuron is positive, that is, b j + v j ≥ ε j > 0 , and∑N

j=1 ε j/κ jδ j diverges in N, then there exists a number N such that if N ≥ N ,
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the stimulus u, |u(t)| ≤ c, can be recovered as

u(t) =
N∑

j=1

∑

k∈Z

c j
k ψ

j
k (t), (3.15)

where the constants c j
k , k ∈ Z, j = 1, . . . , N, are given in matrix form by c =

G+q.

Proof. Since b j + v j ≥ ε j for all j, j = 1, 2, . . . , N, the lower spike density
amounts to

D = lim inf
t→∞

inf
t0∈R

N∑

j=1

1
t

(∫ t+t0
t0

(b j + v j (s)) ds)
κ jδ j

)

≥
N∑

j=1

ε j

κ jδ j , (3.16)

and the lower bound diverges in N. Therefore, there exists an N such that
for N > N ,

D >
"

π
,

and the theorem follows.

Remark 6. The result of theorem 2 has a simple and intuitive evolutionary
interpretation. Under the condition that every neuron responds to the stim-
ulus with a positive frequency, the stimulus can be faithfully represented
with a finite number of neurons.

3.2 Stimulus Representation and Recovery Using Overcomplete Filter
Banks. Receptive fields in a number of sensory systems, including the
retina (Masland, 2001) and the cochlea (Hudspeth & Konishi, 2000), have
been modeled as filter banks. These include wavelets and Gabor frames.

We briefly demonstrate how to apply the results obtained in the pre-
vious section when using the overcomplete wavelet transform (OCWT)
(Teolis, 1998). A similar formulation is also possible with other classes of
frames (e.g., Gabor frames). Let u be a band-limited stimulus, h the ana-
lyzing wavelet, and sn, n = 1, . . . , N, the scaling factors used in the filter
bank representation (for more information, see, e.g., Teolis, 1998). Then the
filters h j are defined by h j = Ds j h, j = 1, 2, . . . , N, where Ds is the dilation
operator (Dsu)(t) = |s|1/2u(st).
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c = G+q

+

∑

k∈
δ(t− t1k)

∑

k∈
δ(t− t2k)

∑

k∈
δ(t− tNk )

∑

k∈
c1kδ(t− s1

k)

∑

k∈
c2kδ(t− s2

k)

∑

k∈
cNk δ(t− sNk )

1
κ1

∫
dt+

δ1

δ2

δN

+

+

1
κ2

∫
dt

1
κN

∫
dt

b1

b2

bN

(t1k)

(t2k)

(tNk )

Ds1h

Ds2h

DsNh

v1

v2

vN

u(t)

u(t)

Ds2 h̃

Ds1 h̃

DsN h̃

LPF

Figure 3: Time encoding machine (left) using an overcomplete wavelet filter
bank for stimulus representation. Recovery is achieved with a time decoding
machine (right).

From theorem 1 and the simple relation (Dsh )̃ = Ds h̃, the stimulus can
be represented as

u(t) =
N∑

j=1

∑

k∈Z
c j

k (g ∗ Ds j h̃)
(
t − s j

k
)
, (3.17)

where c = G+q with [q] = [q1, q2, . . . , qN]T and [q j ]k = κ jδ j − b j (t
j

k+1 −
t j
k ). The matrix G is given by

[Gi j ]kl =
∫ ti

k+1

ti
k

(
Dsi h ∗ Ds j h̃ ∗ g

) (
s − s j

l
)

ds. (3.18)

Note that representation 3.17 uses the same filters (Ds j h̃), j = 1, 2, . . . , N,
for recovery as the ones that are employed in the classical signal represen-
tation with filter banks (Teolis, 1998). The density condition for equation
3.17 calls for the sum of the whole neuron population activity to exceed
the Nyquist rate. As before, by adding more neurons and filters to the filter
bank results, in general, in an improved representation. The TEM and time
decoding machine realizations are shown in Figure 3.

Remark 7. Our analysis above provides an algorithm for recovering the
stimulus even in the case where the actual input is undersampled by each
of the neurons. Thus, our findings in this section extend the results of Lazar
(2005).
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4 Examples

In this section, we present two numerical examples of the theory presented
above that have direct applications to stimulus representation in sensory
systems.

4.1 Neural Population Encoding Using Filters with Arbitrary Delays.
We present an example realization of the recovery algorithm for a filter
bank consisting of filters that introduce arbitrary but known delays on the
stimulus. Such filters model dendritic tree latencies in the sensory neurons
(motor, olfactory) (Fain, 2003). They are analytically tractable as their in-
volutive instantiations can be easily derived. Indeed, a filter that shifts the
stimulus in time by a quantity α has an impulse response h(t) = δ(t − α).
Consequently, h̃(t) = δ(t + α). Note that although the filter h̃ is, in this case,
noncausal, it can easily be implemented by delaying the recovery.

It is assumed that each filter h j shifts the stimulus in time by an amount
α j , where α j is an arbitrary positive number for all j, j = 1, 2, . . . , N. The
quantities of interest become, according to equations 3.6 and 3.12,

ψ
j

k (t) = g
(
t − s j

k + α j )

[Gi j ]kl =
∫ ti

k+1

ti
k

g
(
s − s j

l − αi + α j ) ds. (4.1)

The stimulus u(t) is given in the standard Shannon form,

u(t) =
35∑

k=1

u(kT)
sin ("(t − kT))

π (t − kT)
, (4.2)

with " = 2π · 80 Hz, T = π/". Out of the 35 samples, the first and last five
were set to zero. Thus shifts of the stimulus in the time window do not lead
to any loss of important information. The rest of the 25 active samples were
chosen randomly from the interval [−1, 1]. Sixteen neurons were used for
recovery. Filter delays were randomly drawn from an exponential distribu-
tion with mean T/3, biases b j , j = 1, . . . , 16, were randomly drawn from a
uniform distribution in [0.8, 1.8] and the thresholds δ j , j = 1, . . . , 16, were
drawn randomly from a uniform distribution in [1.4, 2.4]. Finally, all neu-
rons had the same integration constant κ = 0.01. The stimulus and three of
its translates, each delayed by the filters, as well as the spikes generated
by the 16 neurons in the time window of interest [6T, 30T], are shown in
Figure 4.

The recovered stimulus based on the spikes from 1, 2, 3, 4, 8, and all 16
neurons, respectively, is depicted from top to bottom in Figure 5. Note the
different amplitude scale at the top and at the bottom row of Figure 5. The
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Figure 4: Band-limited stimulus u(t) and three of its translates (left) and the
spike train generated by each of the 16 neurons (right).
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Figure 5: Stimulus recovery as a function of the number of neurons.

recovered signal converges to the original one with the number of neurons
used. The recovery becomes acceptable when the spikes of at least the first
four neurons are used. Since the density of the sinc functions is invariant
under a time shift, the density criterion of theorem 1 above can be applied.
Here we have 27 samples, and the individual neurons elicit between 7 and
17 spikes, respectively. The threshold is exceeded when the first four or
more neurons are used. The recovery results in Figure 5 are consistent with
this observation.
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Figure 6: Dependence of the mean square error on the relative interspike rate
and the number of neurons.

To quantify accuracy of the recovered signal, we provide the mean square
error (MSE) for the various recovery scenarios. The MSE is defined as

MSE = 10 log10

(
1

Tmax − Tmin

∫ Tmax

Tmin

[u(s) − û j (s)]2 ds
)

, (4.3)

where [Tmin, Tmax] is the interval of interest ([6T, 30T] in our case) and û j (s)
denotes the result of stimulus recovery with a total of j , j = 1, 2, . . . , 16,
neurons. In Figure 6 we show the dependence of the MSE on the relative
interspike rate. The relative interspike rate is defined as the number of in-
terspike intervals per second divided by the Nyquist rate. Figure 6 demon-
strates that when the relative rate is below 1, meaning the average spike rate
is less than the Nyquist rate, the MSE is big and the recovery inaccurate.
However, when the spike rate exceeds the Nyquist rate, the MSE decreases
dramatically, and the recovery improves substantially. Moreover, the MSE
decreases overall as more neurons are added to stimulus representation
and, recovery.

Remark 8. The MSE in Figure 6 is shown as a function of both the relative
spike rate and the number of neurons. In neuroscience, the natural abstrac-
tion, however, is the number of neurons. Consequently, in what follows, we
shall provide only the MSE as a function of the number of neurons.
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Remark 9. It is easy to see that the filters h j (t) = δ(t − α j ), j = 1, 2, . . . , 16,
above do not satisfy the independence condition of definition 3. Never-
theless, as the example illustrates, the input can be perfectly recovered.
Similarly, if no preprocessing filters are used, the stimulus can be perfectly
recovered from the representation provided by a population of integrate-
and-fire neurons (Lazar, 2007). Thus, having linear independent filters is a
sufficient but not a necessary condition for recovery.

It is important to note that the input to each neuron cannot in general be
faithfully recovered from the spike train generated by single neurons. To see
that, we applied the classical time decoding algorithm (Lazar & Tóth, 2004)
for signal recovery solely using the spike train of each individual neuron.
The results for four of the neurons are illustrated in Figure 7. The other
12 neurons exhibited similar results. As shown, the recovered dendritic
currents are significantly different from the stimulus.

The recovery is not perfect because each individual neuron generates
only sparse neural spike trains (fewer than 28 spikes). However, this spar-
sity did not affect perfect recovery of the original stimulus because the total
number of neurons fired a significant number of spikes. These results have
some important ramifications to experimental neuroscience because they
demonstrate that in general, stimuli of individual neurons cannot be faith-
fully recovered from the spike train they generate. Rather, the spike trains
from a larger population of neurons that encode the same stimulus need to
be used.

Finally, we briefly show the effect of noise on the performance of the
recovery algorithm. The setting is as before, except that we also applied ad-
ditive independent white gaussian noise at the input of each filter. Since all
filters in this example are performing delay operations, delayed white noise
reaches the integrators. The average MSE (in dB) is shown in Figure 8 for the
noiseless case and for five variance values σ 2 = 0.001, 0.003, 0.01, 0.03, 0.1.
For each value of the variance, 100 repetitions of the simulation were per-
formed. The 95% confidence interval, measured here as twice the standard
deviation of the MSE, was in each case between 3 and 5 dB (not shown).
Even though we added an infinite bandwidth white noise component to a
narrow band stimulus, we see a predictable degradation of the MSE as a
function of the noise variance.

4.2 Neural Population Encoding with a Gammatone Filter Bank. In
this section we present a simple example of stimulus representation and
recovery using gammatone filter banks. The stimulus of interest is bandpass
with frequency support essentially limited to [150, 450] Hz and a duration
of 250 ms. The filter bank consists of 16 gammatone filters that span the
range of frequencies [100, 500] Hz. The gammatone filters, developed by
Patterson et al. (1992), are widely used in cochlear modeling. The general



2732 A. A. Lazar and E. A. Pnevmatikakis

Fi
gu

re
7:

R
ec

ov
er

y
of

th
e

de
nd

ri
tic

cu
rr

en
ts

fo
r

fo
ur

of
th

e
ne

ur
on

s,
us

in
g

th
e

cl
as

si
ca

lt
im

e
de

co
di

ng
al

go
ri

th
m

.



Faithful Representation of Stimuli 2733

2 4 6 8 10 12 14 16

0

10

# of Neurons

M
S

E
 (

d
B

)
MSE as a function of the Number of Neurons

 

 
σ2=0

σ2=0.001

σ2=0.003

σ2=0.01

σ2=0.03

σ2=0.1

Figure 8: Effect of noise on the accuracy of recovery.

form of the (causal) gammatone filter is

h(t) = αtn−1 exp (−2πβ · ERB( fc)t) cos(2π fct), t ≥ 0, (4.4)

where the equivalent rectangular bandwidth (ERB) is a psychoacoustic
measure of the bandwidth of the auditory filter at each point along the
cochlea. The filters employed were generated using Slaney’s auditory tool-
box (Slaney, 1998). This toolbox generates the auditory filterbank model
proposed by Patterson et al. (1992). The bandwidth of each filter with a
center frequency at fc is given by ERB( fc) = 0.108 fc + 24.7. Parameter n
corresponds to the filter order and is picked to be equal to 4 (n = 4). For this
filter order, Patterson et al. proposed β = 1.019. Finally, the scalar α is picked
in such a way that each filter has unit gain at its center frequency. Gamma-
tone filter banks are approximately equivalent to wavelet filter banks since
all the impulse responses are obtained from dilated versions of the kernel
function 4.4 (mother wavelet) at its center frequency. Moreover, the center
frequencies are spaced logarithmically along the frequency axis, giving rise
to an overcomplete filter bank.

The frequency responses of the 16 filters and the entire filter bank support
are shown in Figure 9. The filter bank support is defined as

N∑

j=1

| − ĥ j (ω)|2, (4.5)
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Figure 9: Characterization of the gammatone filter bank: Frequency responses
of the filter bank elements (left) and filter bank support (right).

where ĥ j (ω) =
∫

R h j (s)e−iωs ds is the Fourier transform of the j th filter im-
pulse response.

The biases and the thresholds of the neurons were picked randomly
from the interval [1, 2]. Each neuron produced approximately 25 spikes, for
a total of approximately 400 spikes. In Figure 10, we show the recovery of
the stimulus when 2, 4, 8, or all 16 filters were used, respectively. Note the
amplitude scale at the top and at the bottom row of Figure 10.

To quantify the recovery results and also the effect of noise, the MSE is
depicted as a function of the number of neurons in Figure 11 for the noiseless
case and for white noise with five different variances. The noise variances
were again σ 2 = 0.001, 0.003, 0.01, 0.03, 0.1, and the noise was applied again
at the input of the filters. However since each filter in the gammatone filter
bank has only a limited frequency support, most of the noise gets filtered
out. Thus, the effect of the white noise on the accuracy of the recovery
is much smaller here when compared to its effect in the delay filter bank
example (see also Figure 8). Again, as an overall trend, the MSE decreases
as the size of neuron population increases and the noise power decreases.

5 Discussion

The problem of stimulus recovery based on the spike trains generated by
a population of neurons is central to the field of neural representation
and encoding. In order to achieve a faithful stimulus representation, our
method assigns a kernel function to each neuron. With these kernels, a frame
can be constructed by spike-dependent shifts. Frame theory provides the
machinery needed for faithful stimulus recovery.

In the reverse correlation method of Rieke, Warland, de Ruyter van
Steveninck, and Bialek (1997), the recovered stimulus is obtained by
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Figure 11: MSE of recovery.

convolving the output spike train with a suitable kernel. The choice of
the kernel is actively investigated (Tripp & Eliasmith, 2007). Kernel meth-
ods have also been investigated for sparse representations of auditory and
visual stimuli in Smith and Lewicki (2005) and Olshausen (2002), respec-
tively. The models used lack, however, explicit neural encoding schemes.
In addition, the faithful representation of stimuli has not been addressed.

Related work in information coding with a population of neurons
is based on stochastic neuron models. These neuron models (known as
linear-nonlinear-Poisson models) produce spikes with underlying Poisson
statistics. The activity of the neurons is measured in spikes per seconds
rather than actual spike times, and it is given as a (nonlinear) function of the
projection of the stimulus on a suitable vector modeling the receptive field.
For a population of neurons, different receptive field models can be used; the
latter can be chosen so as to span the space of interest. Computational mod-
els, based mostly on maximum likelihood techniques, for the suitable choice
of receptive fields or neurons, and of actual encoding and decoding mecha-
nisms based on such setups, have been extensively studied in the literature.
(See, e.g., Deneve, Latham, & Pouget, 1999, or Sanger, 2003, for a review,
and Huys, Zemel, Natarajan, & Dayan, 2007, for a more recent treatment.)
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Our neural population model is, in contrast, deterministic. This assump-
tion allowed us to formally focus on the question of faithful representation
of stimuli. The key result shows that faithful representation can be achieved
provided that the total number of spikes of the neural ensemble is above
the Nyquist rate. We have demonstrated that this condition can be replaced
with a more intuitive one that stipulates that the size of the population of
neurons is beyond a threshold value. We have also shown that, in general,
the stimulus of a neuron cannot be faithfully recovered from the neural
spike train that it generates. Rather, a population of neurons is needed to
achieve faithful recovery.

The basic population encoding circuit investigated in this letter signif-
icantly extends previous work on population time encoding (Lazar, 2005,
2007). From a modeling standpoint, it introduces a set of constraints on the
number of spikes that can be generated by an individual neuron. In addi-
tion, it incorporates arbitrary filters that can model the dendritic tree of the
neurons or their receptive fields. Note that this work formalizes the results
of Lazar (2007) by using frame arguments and introducing the notion of
linear-independent preprocessing filters that guarantees that each neuron
can provide additional information about the stimulus being encoded.

Our theoretical results provide what we believe to be the first rigorous
model demonstrating that the sensory world can be faithfully represented
by using a critical size ensemble of sensory neurons. The investigations
presented here further support the need to shift focus from information
representation using single neurons to populations of neurons. As such, our
results have some important ramifications to experimental neuroscience.

Although the model investigated in this letter employs only ideal IAF
neurons, it is highly versatile for modeling purposes. It provides theoretical
support for modeling arbitrary linear operations associated with dendritic
trees. For example, arbitrary stable filters can be used to characterize synap-
tic conductances. Moreover, the input-output equivalence of IAF neurons
with other more complex neuron models (Hodgkin-Huxley, and conduc-
tance based models in general) (Lazar, 2006b) elevates the proposed circuit
to a very general framework for faithful stimulus representation with neural
assemblies.

Appendix A: Basic Concepts of Hilbert Spaces

Definition 4. A nonnegative real-valued function ‖ · ‖ defined on a vector space
E is called a norm if for all x, y ∈ E, and α ∈ R:

‖x‖ = 0 ⇔ x = 0

‖x + y‖ ≤ ‖x‖ + ‖y‖

‖αx‖= |α|‖x‖. (A.1)
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Definition 5. A normed linear space is called complete if every Cauchy sequence
in the space converges, that is, for each Cauchy sequence (xn), n ∈ N, there is an
element x in the space such that xn → x.

Definition 6. An inner product on a vector space E over C or R is a complex-
valued function < ·, · >: E × E $→ C such that

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉

〈αx, y〉 =α〈x, y〉

〈x, y〉 = 〈y, x〉∗

〈x, x〉 ≥ 0 , 〈x, x〉 = 0 , if x = 0 . (A.2)

Definition 7. A complete vector space whose norm is induced by an inner product
is called a Hilbert space.

Example 1. Let L2 be the space of functions of finite energy, that is,

L2(R) =
{

f :
∫

R
| f (s)|2 ds < ∞

}
, (A.3)

with norm ‖ f ‖ =
(∫

R | f (s)|2 ds
)1/2. L2(R) endowed with the inner product

〈x, y〉 =
∫

R x(s)y(s) ds is a Hilbert Space.

Definition 8. For a given " > 0 ,

! =
{

f ∈ L2(R) : supp f̂ ⊆ [−","]
}

, (A.4)

endowed with the L2 inner product is called the space of band-limited functions.

Appendix B: Basic Theorems on Frames

A formal intoduction to the theory of frames can be found in Chris-
tensen (2003). For a signal processing approach, see Teolis (1998). Here
we present all the necessary definitions and propositions that were used
throughout the letter. In what follows, I denotes a countable index set (e.g.,
N, Z, [1, 2, . . . , M]).

Definition 9. A (countable) sequence (φk)k∈I in H is a frame for the Hilbert space
H if there exist frame bounds A, B > 0 such that for any f ∈ H,

A‖ f ‖2 ≤
∑

k∈I

|〈 f,φk〉|2 ≤ B‖ f ‖2. (B.1)
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Proposition 2. If a sequence (φk)k∈I in H is a frame for H, then span{(φk)k∈I} =
H.

Proof. See Christensen (2003, pp. 3–4) for a proof for finite dimensional
spaces. The proof for infinite dimensional spaces is essentially the same.

Proposition 3. Let (φk)k∈I be a frame forHwith bounds A, B, and let U : H $→ H
be a bounded surjective operator. Then (Uφk)k∈I is a frame sequence with frame
bounds A‖U+‖−2, B‖U‖2, where U+ denotes the pseudoinverse operator of U.

Proof. See Christensen (2003, p. 94).

Definition 10. The frame operator of the frame (φk)k∈I is the mapping S : H $→ H
defined by

Sf =
∑

k∈I

〈 f,φk〉φk . (B.2)

Proposition 4. Let (φk)k∈I be a frame for H with frame operator S. Then

1. S is bounded, invertible, self-adjoint, and positive.
2. For all f ∈ H we have

f =
∑

k∈I

〈 f, S−1φk〉φk, (B.3)

where S−1 is the inverse of the frame operator.

Proof. See Christensen (2003, pp. 90–91).

Finally we state some basic results about frames of exponentials and their
relationship to frame sequences in the space of band-limited functions.

Definition 11. A sequence (λk)k∈I is called relatively separated if there exists an
ε > 0 such that for any n, m ∈ I, we have |λm − λn| ≥ ε.

The following result is due to Jaffard (1991).

Lemma 1 (Jaffard’s lemma). Let / = (λk)k∈I be a sequence of real numbers
that is relatively separated. Let N(a , b) be the number of elements of / that are
contained in the interval (a , b). Then the sequence (exp(−i λk ω))k∈I generates a
frame for the space L2(−",") if

D = lim inf
t→∞

inf
t0∈R

N(t0, t0 + t)
t

>
"

π
. (B.4)
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Proof. See Jaffard (1991).

This result is connected to results about frames in the space of band-
limited functions by the following proposition:

Proposition 5. If the sequence (exp(−i λk ω))k∈I is a frame for the space
L2(−","), then the sequence (g(t − λk))k∈I is a frame for the space of band-
limited functions !.

Proof. Let F denote the Fourier transform. Then we clearly have Fg(t −
λk) = e−i λk ω. By definition, the sequence (g(t − λk))k∈I is a frame for ! if
there exist positive constants A, B > 0 such that

A‖u‖2 ≤
∑

k∈I
|〈u(t), g(t − λk)〉|2 ≤ B‖u‖2, (B.5)

for all u ∈ !. From Parseval’s identity, we have that ‖u‖ = ‖Fu‖ and
〈u(t), g(t − λk)〉 = 〈(Fu)(ω), e−i λk ω〉. Therefore equation B.5 can be rewrit-
ten as

A‖Fu‖2 ≤
∑

k∈I
|〈(Fu)(ω), e−i λk ω〉|2 ≤ B‖Fu‖2. (B.6)

But this holds since Fu ∈ L2(−","), and the sequence (exp(−i λk ω))k∈I is
a frame for the space L2(−",").

Appendix C: Three Frames

Lemma 2. Assume that the lower density of spikes satisfies the Nyquist rate, that
is, D > "

π
. The following holds:

i. (g(t − s j
k )), k ∈ Z, j = 1, . . . , N, with s j

k = (t j
k+1 + t j

k )/2, is a frame for !

ii. (ψ j
k (t)) = ( h̃ j ∗ g)(t − s j

k ), k ∈ Z, j = 1, . . . , N, is a frame for !

iii. (φ j
k (t)) = ( h̃ j ∗ g ∗ 1[t j

k ,t j
k+1])(t), k ∈ Z, j = 1, . . . , N, is a frame for !,

provided that the filters h j , j = 1 , . . . , N, are BIBO stable and their spectral
support is a superset of [−","].

Proof. (i) The derivation is based on Jaffard’s lemma (Jaffard, 1991) (lemma
1, appendix B) and is given in proposition 5 in the same appendix.
See also Jaffard’s lemma for a definition of D, the lower density of the
spikes.
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(ii) Let S be the frame operator of the frame (g(t − s j
k )),

k ∈ Z, j = 1, . . . , N (the definition of the frame operator is given in
appendix B). Then each function u ∈ ! has a unique expansion of the form

u =
N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)
, (C.1)

with a j
k = 〈u, S−1g(· − s j

k )〉. Note that any operator defined on the functions
of the frame is well defined for the whole space of band-limited functions !.
Let us now define the nonlinear operator U : ! $→ ! as

Uu ≡ U




N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)


 '=
N∑

j=1

∑

k∈Z
a j

k ψ
j

k (t). (C.2)

In order to prove that the sequence of functions
(ψ j

k (t)), k ∈ Z, j = 1, . . . , N, is a frame for !, we use a key proposition from
Christensen (2003, p. 94), also included as proposition 3 in appendix B.
According to proposition 3, the family (ψ j

k ), k ∈ Z, j = 1, . . . , N, is a frame
for !, if the operator U is bounded and has closed range. To show these
two properties, we observe that U can be written as the synthesis of N
operators U1, . . . ,UN, with Un : ! $→ !, n = 1, 2, . . . , N, defined as

Unu ≡Un




N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)


 '=
∑

k∈Z
an

k ( h̃n ∗ g)
(
t − sn

k
)

+
N∑

j=1 j *=n

∑

k∈Z
a j

k g
(
t − s j

k
)
. (C.3)

Then U = U1U2, . . . ,UN, and U is bounded and has closed range whenever
all the operators U i , i = 1, 2, . . . , N, are. But U i is bounded if and only if the
filter with impulse response h̃i (t), and therefore also the one with hi (t), is
BIBO stable.

Moreover, U i has closed range if for any sequence un ∈ !, n ∈ N, that
converges to u ∈ !, the sequence U i un also converges to an element in !.
Since the sequence (g(t − s j

k )), k ∈ Z, j = 1, . . . , N, is a frame for !, un ∈ !

can be represented as

un(t) =
N∑

j=1

∑

k∈Z
a j

k,ng
(
t − s j

k
)
,
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with a j
k,n = 〈un, S−1g(· − s j

k )〉 and

u(t) =
N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)
,

with a j
k = 〈u, S−1g(· − s j

k )〉. From the continuity of the inner product, it
follows that limn→∞ a j

k,n = an
k , and therefore we have that limn→∞ U i un =

U i u ∈ !. Therefore the operator U has closed range and (ψ j
k ), k ∈ Z, j =

1, . . . , N is a frame. To ensure that the operator U spans the whole
space !, it suffices that the frequency support of each filter is a superset
of [−","].

(iii) Since (g(· − s j
k )), k ∈ Z, j = 1, . . . , N, is a frame for the space of band-

limited functions with finite energy, any function u ∈ ! can be uniquely
represented as

u(t) =
N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)

(C.4)

for all t, t ∈ R, with a j
k = 〈u, S−1g(· − s j

k )〉, where S is the frame operator.
Consider the operator U : ! $→ ! defined as

Uu(t) '=U




N∑

j=1

∑

k∈Z
a j

k g
(
t − s j

k
)


 =
N∑

j=1

∑

k∈Z
a j

k
(
g ∗ 1[t j

k ,t j
k+1]

)
(t). (C.5)

The right-hand side of equation can be rewritten as

Uu(t) =
N∑

j=1

∑

k∈Z
a j

k

∫ t j
k+1

t j
k

g(t − s) ds

=
N∑

j=1

∑

k∈Z
a j

k

(∫ +∞

t
g
(
s − t j

k+1
)

ds −
∫ +∞

t
g
(
s − t j

k
)

ds
)

. (C.6)

The integral operator is bounded, and the sequence (g(· − t j
k )), k ∈ Z, j =

1, 2, . . . , N, is a frame because of the Nyqist density condition in Jaffard’s
lemma. Therefore, the operator U is bounded. Moreover by following a
similar reasoning as before, U has closed range. Proposition 3 implies that
((g ∗ 1[t j

k ,t j
k+1])(·)), k ∈ Z, j = 1, . . . , N, is a frame for !. Finally by working as

in (ii), we conclude that (φ j
k ), k ∈ Z, j = 1, . . . , N is also a frame for !.
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