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A Extension to nonlinear observations

We would like to incorporate observations yt obeying an arbitrary conditional density p(yt|xt)

into our filter equations. This is difficult in general, since if p(yt|xt) is chosen maliciously

the posterior p(xt|Y1:t) may be highly non-Gaussian, and our basic Kalman recursion will

break down. However, if log p(yt|xt) is a smooth, concave function of xt, it is known that a

Gaussian approximation to p(xt|Y1:t) will often be fairly accurate (Fahrmeir and Tutz, 1994;

Brown et al., 1998; Paninski et al., 2010), and our recursion may be adapted in a fairly

straightforward manner.

For simplicity, we will focus on the case that the observations yit are independent samples

from p(yit|[Bt]ixt), where [Bt]i denotes the i-th row of the observation matrix Bt. (The

extension to the case that yt depends in a more general manner on the projection Btxt may

be handled similarly.) We approximate the posterior mean µt with the one-step maximum

a posteriori (MAP) estimate,

µt ≈ arg max
xt

[log p(xt|Y1:t−1) + log p(yt|xt)]

= arg max
xt

[
−1

2
(xt −mt)

T P̃−1
t (xt −mt) +

∑
i

log p(yit|[Bt]ixt)

]
.

(S-1)
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(Recall that the one-step predictive covariance matrix P̃t and mean mt were defined in (4)

and (5) in the main text. This MAP update is exact in the linear-Gaussian case (and

corresponds to the Kalman filter), but is an approximation more generally. To compute

this MAP estimate, we use Newton’s method. We need the gradient and Hessian of the

log-posterior with respect to xt,

∇t = −P̃−1
t (xt −mt) +BT

t f1(xt)

[H]tt = −P̃−1
t +BT

t diag{f2(xt)}Bt,

respectively. Here f1(xt) and f2(xt) are the vectors formed by taking the first and second

derivatives, respectively, of log p(yit|u) at u = Bixt, with respect to u. Now we may form

the Newton step:

xnew =xold −
(
−P̃−1

t +BT
t diag{f2(xold)}Bt

)−1 (
−P̃−1

t (xold −mt) +BT
t f1(xold)

)
=xold − (P̃t − P̃tBT

t (−diag{f2(xold)
−1}+BtP̃tB

T
t )−1BtP̃t)

[
P̃−1
t (xold −mt)−BT

t f1(xold)
]

=mt + P̃tB
T
t (−diag{f2(xold)

−1}+BtP̃tB
T
t )−1Bt

[
xold −mt − P̃tBT

t f1(xold)
]

+ P̃tB
T
t f1(xold)

We iterate, using a backstepping linesearch to guarantee that the log-posterior increases on

each iteration, until convergence (i.e., when xnew ≈ xold, set µt = xnew). Then, finally, we

update the covariance Ct by replacing W−1
t with −diag{f2(xt)} in the original derivation.

Since multiplication by P̃t is assumed fast (and we need to compute P̃tB
T
t just once per

timestep), all of these computations remain tractable.

A similar methodology can also be derived for the case where we are interested in the full

forward-backward smoothing. It is not hard to modify Theorem 4.1 for the case of non-linear

observations. As a result, an iterative search direction algorithm can also be applied in this

setup to find the MAP estimate. The algorithm corresponds now to an inexact Newton’s

method (Dembo et al., 1982; Sun and Yuan, 2006) (as opposed to steepest descent in the

quadratic case). Since by controlling the threshold we can make the Hessian approximation

error arbitrarily small, the algorithm is guaranteed to converge (Eisenstat and Walker, 1994;

Sun and Yuan, 2006). Some details can be found in Pnevmatikakis and Paninski (2012).

2



Finally, we note that it is also straightforward to adapt these fast methods for sampling

from the posterior p(X|Y ) once the MAP path for X is obtained. This can be done either

in the context of the filter-forward sample-backward approach discussed in Jungbacker and

Koopman (2007) or via the perturbed-MAP sampling approach discussed in Papandreou

and Yuille (2010); however, we have not yet pursued this direction extensively.

B Effective rank

Here we take a closer look at the notion of the effective rank, which characterizes the scaling

properties of our algorithm. We examine the effective rank of the matrices Z
−1/2
t UtC0,t,

where Zt is defined in (18) of the main text, and also derive heuristic methods that lead

to tighter bounds for the effective rank. Finally, we present an example that supports our

arguments. Although the analysis here focuses on the fast KF algorithm, similar results hold

for the LRBT algorithm as well.

We will use the following approximation that can be derived by Taylor-expanding the

inverse of a matrix. For a scalar ε with |ε| � ‖A‖, ‖B‖, and A, A+ εB invertible matrices,

it holds that

(A+ εB)−1 = A−1 − εA−1BA−1 +O(ε2), (S-2)

B.1 Proof of Proposition 3.2

Proof. The proof uses induction and the Woodbury lemma. The statement is trivial for

t = 1. Suppose that (17) holds for t = k. Then by using the abbreviation Ωk = UkC0,kA
T ,

and applying the Woodbury lemma we have for t = k + 1
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C−1
k+1 =(ACkA

T + V )−1 +BT
k+1W

−1Bk+1

=(A(C−1
0,k + UT

k FkUk)
−1AT + V )−1 +BT

k+1W
−1Bk+1

(w)
= (A(C0,k − C0,kU

T
k (F−1

k + UkC0,kU
T
k )−1UkC0,k)A

T + V )−1 +BT
k+1W

−1Bk+1

=(C0,k+1 − ΩT
k (F−1

k + UkC0,kU
T
k )−1Ωk)

−1 +BT
k+1W

−1Bk+1

(w)
=C−1

0,k+1 +BT
k+1W

−1Bk+1 + C−1
0,k+1ΩT

k (F−1
k + UkC0,kU

T
k − ΩkC

−1
0,k+1ΩT

k )−1ΩkC
−1
0,k+1

=C−1
0,k+1 + UT

k+1Fk+1Uk+1,

where
(w)
= indicate applications of the Woodbury lemma. The proposition follows by taking

the inverse and applying the Woodbury lemma once more.

B.2 Effective rank of Z
−1/2
t UtC0,t

To develop an analytically tractable example, we assume that the measurement matrices Bt

are b×d i.i.d. random matrices, where each entry is symmetric with zero mean and variance

1/d. For simplicity, we assume that the observation noise covariance matrix is the same at

all times (Wt = W ). The matrix Zt ((18) in the main text) can then be written as

Zt = It⊗W +UtC0,tU
T
t + blkdiag{0b, Ut−1C0,t−1U

T
t−1}+ . . .+ blkdiag{0b, . . . ,0b, U1C0,1U

T
1 },

where It is a t× t identity matrix, 0b is a b× b all zero matrix, and ⊗ denotes the Kronecker

product. Assuming that C0,t = C0 for all t and using (21), we can write Zt as

Zt = It⊗W+blkdiag

{
BtC0B

T
t , Bt−1(C0 + ATC0A)BT

t−1, . . . , B1

(
t−1∑
i=0

(AT )iC0A
i

)
BT

1

}
︸ ︷︷ ︸

J

+K,

(S-3)
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where K is the matrix that includes the non-diagonal blocks of the products UlC0U
T
l . For

m = n we have [K]mn = 0, while for m 6= n, the mn-th block of K is given by

[K]mn =

min(m,n)∑
l=1

Bt+1−m(AT )m−lC0A
n−lBT

t+1−n. (S-4)

Proceeding as before, we can bound the effective rank by the minimum number of blocks

required to capture a θ fraction of E‖Z−1/2
t UtC0,t‖2

F . To compute this expected energy, we

first argue that with high probability J is much larger than K (in a suitable sense) for large

d. To see why, assume at first for simplicity that b = 1, and that the matrices A and C0

are proportional to the identity. Then a quick calculation shows that each block of J will

be composed of weighted chi-squared variables with d degrees of freedom; thus the means

of these variables will be bounded away from zero, while the variance decreases linearly as

a function of 1/d. On the other hand, each block of K will be a zero mean random variable

(since Bt and Bs are zero-mean and independent for s 6= t), with variance decreasing linearly

with 1/d. In addition, the variance of the elements of K decreases exponentially away from

the diagonal m = n, due to the effect of the repeated multiplication by A in (S-4); thus K

is effectively banded, with bandwidth determined by the largest singular value of A. The

effectively banded nature of K implies that J � K in terms of suitable matrix norms, for

sufficiently large d. The same argument applies in the general case, where each block of J

will be distributed according to a Wishart distribution (note that every term (AT )mC0A
m

is a PD matrix) and thus its expected value is bounded away from zero while its covariance

matrix tends to zero as d increases, whereas each block of K will be a zero mean random

variable with variance decreasing in d. We revisit this approximation in the example in

section B.4.

By denoting Ξ = It⊗W + J , the expected energy E‖Z−1/2
t UtC0,t‖2

F can then be approx-

imated as

E‖Z−1/2
t UtC0,t‖2

F ≈ E‖Ξ−1/2UtC0‖2
F . (S-5)

The expected energy E‖Z−1/2
t UtC0,t‖2

F cannot be computed in closed form. However, we

conjecture that the number of blocks we need to keep from Z
−1/2
t UtC0,t to capture a θ fraction
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of its energy is bounded from above by the number of blocks we need to keep from UtC0,t.

To get some intuition about this observe the structure of J in (S-3). J (and therefore Ξ) is

a block diagonal matrix where the expected energy of each block increases. Consequently

Ξ−1, and therefore Z
−1/2
t can be approximated by a block diagonal matrix where the energy

of each block decreases. As a result, when multiplying UtC0 with Z
−1/2
t , the energy of the

blocks of Z
−1/2
t UtC0,t would decrease faster than the energy of the blocks of UtC0,t and hence

fewer blocks would be required to capture a certain fraction. To justify our conjecture, note

that Ξ is a block diagonal matrix, and therefore by using (S-5) we approximate

E‖[Z−1/2
t UtC0,t]m+1‖2

F ≈ E

∥∥∥∥∥∥
(
W +B

(
m∑
i=0

(AT )iC0A
i

)
BT

)−1/2

B(AT )mC0

∥∥∥∥∥∥
2

F

. (S-6)

Our conjecture will hold if the expected energy of the blocks of Z
−1/2
t UtC0,t drops faster than

in the blocks of UtC0,t, since then the energy of Z
−1/2
t UtC0,t will be concentrated in fewer

blocks and therefore fewer singular values will be required to capture a certain fraction of

this energy. In mathematical terms, this can be expressed as

E‖[UtC0,t]m+1‖2
F

E‖[UtC0,t]m‖2
F

≥ E‖[Z−1/2
t UtC0,t]m+1‖2

F

E‖[Z−1/2
t UtC0,t]m‖2

F

(S-7)

or using (23) and (S-6)

E‖B(AT )mC0‖2
F

E‖B(AT )m−1C0‖2
F

≥
E
∥∥∥ (W +B

(∑m
i=0(AT )iC0A

i
)
BT
)−1/2

B(AT )mC0

∥∥∥2

F

E
∥∥∥ (W +B

(∑m−1
i=0 (AT )iC0Ai

)
BT
)−1/2

B(AT )m−1C0

∥∥∥2

F

. (S-8)

We can now continue our analysis for two different cases. First we show that (S-8) holds if

we are in the low signal-to-noise ratio (SNR) regime. We then show that (S-8) holds and

provide a bound for the effective rank of Z
−1/2
t UtC0,t in the case where we take only one

measurement per timestep (b = 1), and also A, V are proportional to the identity matrix.
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B.2.1 The low-SNR case

We can consider that we are in the low SNR regime if ‖W‖ � ‖V ‖, ‖A‖, ‖BTC0B‖, i.e., the

measurement noise covariance matrix is much larger than that of the state variable and the

projection of the state variable onto the measurement matrices. We assume that the noise of

the observations is i.i.d. with variance σ2, i.e., W = σ2I. By denoting by V m the matrices∑m
i=0(AT )iC0A

i we have that

E‖(W +BV mBT )−1/2B(AT )mC0‖2
F = TrE

(
C0A

mBT (W +BV mBT )−1B(AT )mC0

)
(S-2)
≈ TrE

(
C0A

mBTW−1B(AT )mC0

)
− TrE

(
C0A

mBTW−1BV mBTW−1B(AT )mC0

)︸ ︷︷ ︸
fm

= E‖W−1/2B(AT )mC0‖2
F − fm,

(S-9)

After some algebra we have that

fm =
b

d2σ4
Tr
(
C0A

m((b+ 1)V m + Tr(V m)I)(AT )mC0

)
.

=
b

d2σ4

(
(b+ 1)

d∑
i=1

(
c2
iα

2m
i

(
m∑
l=0

ciα
2l
i

))
︸ ︷︷ ︸

f1m

+

(
d∑
i=1

m∑
l=0

ciα
2l
i

)
d∑
i=1

c2
iα

2m
i︸ ︷︷ ︸

f2m

)
. (S-10)

Plugging (S-9) into (S-8), we see that (S-8) is equivalent to

E‖B(AT )mC0‖2
F

E‖B(AT )m−1C0‖2
F

≤ fm
fm−1

. (S-11)

To show (S-11) it is sufficient to show that

E‖B(AT )mC0‖2
F

E‖B(AT )m−1C0‖2
F

≤ f 1
m

f 1
m−1

and
E‖B(AT )mC0‖2

F

E‖B(AT )m−1C0‖2
F

≤ f 2
m

f 2
m−1

. (S-12)
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Both of these inequalities are easy to show:

f 1
m

f 1
m−1

=

∑d
i=1 c

2
iα

2m
i

(∑m
l=0 ciα

2l
i

)∑d
i=1 c

2
iα

2(m−1)
i

(∑m−1
l=0 ciα2l

i

) ≥ ∑d
i=1 c

2
iα

2m
i∑d

i=1 c
2
iα

2(m−1)
i

=
E‖B(AT )mC0‖2

F

E‖B(AT )m−1C0‖2
F

f 2
m

f 2
m−1

=

(∑d
i=1

∑m
l=0 ciα

2l
i

)∑d
i=1 c

2
iα

2m
i(∑d

i=1

∑m−1
l=0 ciα2l

i

)∑d
i=1 c

2
iα

2(m−1)
i

≥
∑d

i=1 c
2
iα

2m
i∑d

i=1 c
2
iα

2(m−1)
i

=
E‖B(AT )mC0‖2

F

E‖B(AT )m−1C0‖2
F

.

(S-13)

Therefore (S-12) holds which implies (S-11) and our conjecture (S-8). Note in the case

of very low SNR (σ2 → ∞), (S-8) becomes an equality since in the right side we have

W +B
(∑m

i=0(AT )iC0A
i
)
BT ≈ σ2I.

B.2.2 The case of b = 1 and A, V ∝ Id

As a second case, we can analyze the case where we have only one observation per timestep

and the matrices A, V are proportional to the identity. In this case, we can write A = αI,

V = vI and W = σ2, and we also have C0 = cI with c = v(1 − α2)−1. Using the fact that

A, V and C0 are proportional to the identity, the expected energy of the (m+ 1)-th block of

Z
−1/2
t UtC0,t can then be written as

E
∥∥∥[Z

−1/2
t UtC0]m+1

∥∥∥2

F

(S-6)
≈ E

∥∥∥(W +B

(
m∑
i=0

(AT )iC0A
i

)
BT

)−1/2

B(AT )mC0

∥∥∥2

F

= TrE

(
cαmBT (σ2 + c

m∑
i=0

α2iBBT )−1Bcαm

)

=
cα2m∑m
i=0 α

2i
E

(
BBT

σ2

c
∑m

i=0 α
2i +BBT

) (S-14)

Since b = 1, BBT is a χ2-random variable with d degrees of freedom. Using Mathematica

(Wolfram Research, Inc., 2010), the above expectation can be computed in closed form and

we have

E
∥∥∥[Z

−1/2
t UtC0]m+1

∥∥∥2

F
≈ cα2m

2
∑m

i=0 α
2i
d exp

(
σ2

2c
∑m

i=0 α
2i

)
Ei1+d/2

(
σ2

2c
∑m

i=0 α
2i

)
, (S-15)
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where Ein(·) denotes the generalized exponential integral function of n-th order. For x ≥

0, n ≥ 1, Ein(x) can be tightly bound as (Abramowitz and Stegun, 1964)

1

x+ n
< exEin(x) <

1

x+ n− 1
. (S-16)

Using this bound, E
∥∥∥[Z

−1/2
t UtC0]m+1

∥∥∥2

F
can be bounded as

dc2α2m

σ2 + (d+ 2)c
∑m

i=0 α
2i
< E

∥∥∥[Z
−1/2
t UtC0]m+1

∥∥∥2

F
<

dc2α2m

σ2 + dc
∑m

i=0 α
2i

(S-17)

To compute a bound for zθ(Z
−1/2
t UtC0) we need to find the minimum integer k such that

k∑
l=1

E
∥∥∥[Z

−1/2
t UtC0]l

∥∥∥2

F
≥ θ

∞∑
l=1

E
∥∥∥[Z

−1/2
t UtC0]l

∥∥∥2

F

(S-17)⇒
k−1∑
l=0

α2l

v′ − α2(l+1)
≥ θ

∞∑
l=0

α2l

v′ − α2(l+1)

(S-18)

with

v′ = 1 + σ2 1− α2

dc
. (S-19)

The sums in (S-18) cannot be computed in closed form. However, we can approximate them

with integrals:

min

{
k :

k−1∑
l=0

α2l

v′ − α2(l+1)
≥ θ

∞∑
l=0

α2l

v′ − α2(l+1)

}
≈ min

{
k :

∫ k

0

α2l

v′ − α2(l+1)
dl ≥ θ

∫ ∞
0

α2l

v′ − α2(l+1)
dl

}
(S-20)

Using the formula

∫ k

l=0

α2l

v′ − α2(l+1)
dl =

log(v′ − α2)− log(v′ − α2(k+1))

α2 log(α2)
, (S-21)

we can calculate the required number of blocks as

kZ ≈


log
(
v′ − (v′ − α2) (1− α2/v′)

−θ
)

2 log(|α|)
− 1

 . (S-22)
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A simple algebraic calculation shows that (S-22) is increasing with σ2 and we also have that

lim
σ2→∞

kZ =

⌈
log(1− θ)
2 log(|α|)

⌉
, (S-23)

i.e. in the limiting case where σ2 →∞ where zθ(Z
−1/2
t UtC0,t)→ zθ(UtC0,t), our approximate

bound agrees with the computed bound for kU in the main text.

B.3 Heuristic bounds for the effective rank of G
1/2
t

As explained before, the computation of the effective rank of G
1/2
t is hard, since Gt is obtained

from a series of successive low-rank approximations. For very small t, when just a few

measurements are available, we expect that the effective rank grows as zθ(G
1/2
t ) ≈ bt, since

no measurement is “old enough to be forgotten.” However, as t grows, the effective rank

saturates and concentrates around a specific value. When that happens, at each step a

number of b new measurements are taken and also a similar number of b linear combinations

of old measurements is dropped since they contribute very little. In that case, if the effective

rank saturates at a value bk, then Gt is approximately of size b(k+1), and bk singular values

suffice to capture a θ-fraction of its energy. Since the matrices Gt are hard to work with

we can apply this argument to the matrices UtC0,t and Z
−1/2
t UtC0,t to derive two heuristic

bounds for zθ(G
1/2
t ). For the first bound, we will look for the minimum k such that the first

k blocks of UtC0,t capture a θ fraction of the expected energy of the first k + 1 blocks of

UtC0,t. Hence, instead of solving (22) of the main text we seek the solution to

kG1 = min
l∈N
{l : E‖[Ut]1:lC0,t‖2

F ≥ θE‖[Ut]1:l+1C0,t‖2
F}. (S-24)

The solution of (S-24) approximates this saturation point by finding the minimum integer

kG1 such that the expected energy of the first kG1 blocks of UtC0,t capture a θ fraction of

the expected energy of the first kG1 + 1 blocks of UtC0,t. Solving (S-24) in a similar way and

assuming b = 1 gives

kG1 =

⌈
log(1− θ)− log(1− α2θ)

2 log(α)

⌉
. (S-25)
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For the second heuristic bound, we can similarly seek the solution to

kG2 = min
l∈N
{l : E‖[Z−1/2

t Ut]1:lC0,t‖2
F ≥ θE‖[Z−1/2

t Ut]1:l+1C0,t‖2
F}. (S-26)

To find kG2 we solve a modified version of (S-18)

kG2 = min
l∈N

{
l :

l−1∑
m=0

α2m

v′ − α2(m+1)
≥ θ

l∑
m=0

α2m

v′ − α2(m+1)

}
. (S-27)

Using similar approximations we have that

kG2 = min
l∈N

{
l : θ ≤ log(v′ − a2)− log(v′ − a2(l+1))

log(v′ − a2)− log(v′ − a2(l+2))

}
. (S-28)

Eq. (S-28) cannot be solved in closed form. However we note that kG2 is increasing with σ2,

kG2 ≤ kG1 and in the limit case where σ2 → ∞, (S-28) converges to (S-25). Moreover, it is

interesting to see that in the case when α→ 1, the two bounds become equal and we have

lim
α→1

kG1 = lim
α→1

kG2 =

⌈
θ

1− θ

⌉
. (S-29)

Although this result shows that the effective rank stays bounded, our algorithm is not appli-

cable in the case where ‖A‖ = 1. Our approximation results come from the assumption that

the information from measurements at time t decays exponentially as we move away from t.

This assumption is valid only in the case when ‖A‖ < 1. We revisit this issue in appendix

C (see remark C.3).

Another interesting way to derive the heuristic bounds is by performing a series of trunca-

tions on the matrices UtC0,t or Z
−1/2
t UtC0,t in the case of very large t (t→∞). For example

kG1 can be obtained if we consider the recursion knG1 defined as

kn+1
G1 = min

l∈N
{l : E‖[Ut]1:lC0,t‖2

F ≥ θE‖[Ut]1:kn
G1
C0,t‖2

F} (S-30)

with k1
G1 = min

l∈N
{l : E‖[Ut]1:lC0,t‖2

F ≥ θE‖UtC0,t‖2
F}. (S-31)
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In this case, we have

knG1 ≤
⌈

log(1− θ) + log(1− (a2θ)n)− log(1− α2θ)

log a2

⌉
n→∞−→ kG1 . (S-32)

Numerical simulations also establish a similar result for kG2 .

B.4 An example

To illustrate our analysis we present a simple smoothing example in which we picked T =

500, d = 440, b = 1, A = 0.95Id,W = σ2 = 0.5, V = 0.1Id. In Fig. S-1 we mark the effective

rank of the matrix Gθ
t for t = 495 for 5 different values of the threshold value θ. The

θ-superscript here denotes the threshold that was used in the LRBT recursion to derive

the matrix Gt. In particular we mark the values zθ((G
θ
t )

1/2), for five different values of θ,

which correspond to the actual rank used in the LRBT algorithm. These values can be

approximated by the heuristic bounds kG1 and kG2 , derived in (S-25) and (S-28) respectively

(dashed-dotted lines). We also plot the effective rank of the matrices UtD̃
−1
t , Z

−1/2
t UtD̃

−1
t

(dashed lines) as well as their theoretical bounds kU and kZ of (24) in the main text and

(S-22) respectively (solid lines).

Fig. S-1 shows that the theoretical bounds kU and kZ provide relatively tight upper

bounds for the actual effective rank of UtD̃
−1
t and Z

−1/2
t UtD̃

−1
t respectively. In addition, the

heuristic bounds of for zθ((G
θ
t )

1/2), especially (S-28), provide a good approximation of the

actual effective rank used in the algorithm. All the bounds describe worst case scenarios and

become looser when A is not proportional to the identity, in which case some eigenvalues

decay faster than others. We finally plot in logarithmic scale the magnitude of the entries of

the matrix Zt in Fig. S-1 (right). We see that most of the energy of Zt (96.4%) is concentrated

in the main diagonal. As a result, the approximation of (S-5) which is important for our

analysis, is justified.
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Figure S-1: Left: Analysis of the effective rank. Solid blue/green: Theoretical bounds

on zθ(UtC0,t) (kU (24) in the main text), and zθ(Z
−1/2
t UtC0,t) (kZ eq. (S-22)). Dashed

blue/green: Actual zθ(UtC0,t) and zθ(Z
−1/2
t UtC0,t), respectively. Dash-dotted blue/green.

Heuristic bounds on zθ(G
1/2
t ) based on eqs. (S-25) (kG1) and (S-28) (kG2) respectively. The

marked points correspond to the actual effective rank of G
1/2
t , when the LRBT algorithm

was run for five different threshold values. Note that the heuristic bound of (S-28) provides
a very good approximation for the effective rank, and characterizes the computational gains
of the algorithm. Right: Magnitude of the entries of Zt in logarithmic scale. The energy of
Zt is concentrated in the main diagonal.

B.5 Effective rank for the LRBT algorithm

Finally, we examine the effective rank of the matrices involved in the LRBT algorithm. Using

a similar induction method as in the fast KF case, the matrix Mt can be written as

Mt = D̃t + UT
t FtUt ⇒M−1

t = D̃−1
t − D̃−1

t UT
t (F−1

t + UtD̃
−1
t UT

t )−1UtD̃
−1
t , (S-33)

where the matrices Ut and Ft are defined recursively (note again the recycled notation for

Ut and Ft) as follows:

Ut =

 Bt

Ut−1D̃
−1
t−1Et−1

 , F−1
t =

 Wt 0

0 F−1
t−1 + Ut−1D̃

−1
t−1U

T
t−1

 , (S-34)

with U1 = B1 and F1 = W−1
1 . It is easy to see that for large t, D̃t converges to V −1. As a

result the recursion of (S-34) can be approximated as

Ut ≈ [BT
t AUT

t−1]T , F−1
t ≈ blkdiag{W,F−1

t−1 + Ut−1V U
T
t−1}. (S-35)
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Note that (S-35) is identical to (21) in the main text. Moreover, the general form of M−1
t

(S-33) is the same as the general form Ct ((17) in the main text), with the only difference

that C0,t has been replaced with D̃−1
t , which does not affect the scaling properties of the

effective rank. Therefore the effective rank for the LRBT case can estimated using the same

analysis as in the fast KF filter case.

C Convergence properties of the LRBT algorithm

C.1 Proof of theorem 4.1

We can write the forward-backward recursion of the Block-Thomas algorithm in matrix-

vector form. The backward recursion can be expressed as

sT = qT ,

st = qt + Γtst+1, t = T − 1, . . . , 1

⇒


s1

...

sT−1

sT

 =


0 Γ1 . . . 0

0
. . . . . .

...

0 . . . 0 ΓT−1

0 0 . . . 0


︸ ︷︷ ︸

Γ


s1

...

sT−1

sT

+


q1

...

qT−1

qT

 .

(S-36)

Similarly, the forward recursion

q1 = −M−1
1 ∇1,

qt = −M−1
t (∇t − ET

t−1qt−1), t = 2, . . . , T
(S-37)

can be written in matrix-vector form as
q1

q2

...

qT

 =


0 . . . 0 0

M−1
2 ET

1 0 . . . 0
...

. . . . . .
...

0 . . . M−1
T ET

T−1 0


︸ ︷︷ ︸

E


q1

q2

...

qT

−

M−1

1 0 . . . 0

0 M−1
2 . . . 0

...
...

. . .
...

0 0 . . . M−1
T


︸ ︷︷ ︸

M−1


∇1

∇2

...

∇T


(S-38)
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Combining (S-36) and (S-38) we have

s = −(I − Γ)−1(I − E)−1M−1∇, (S-39)

where Γ, E,M are defined in (S-36) and (S-38). Since s = −H−1∇ it follows that the Hessian

is equal to

H = M(I − E)(I − Γ). (S-40)

In the case of the LRBT algorithm, if we define M̃−1
t = D̃−1

t − LtΣtL
T
t and Γ̃t = M̃−1

t ET
t ,

we have

q̃t = −M̃−1
t (∇t − ET

t−1q̃t−1)

s̃t = q̃t + Γ̃ts̃t+1.
(S-41)

Therefore, an equivalent representation holds in the sense that

s̃ = −H̃−1∇, with H̃ = M̃(I − Ẽ)(I − Γ̃), (S-42)

where the block matrices M̃, Ẽ, Γ̃ are defined in the same way as their exact counterparts

M,E,Γ. A direct calculation shows that

M̃(I − Γ̃) = (M̃(I − Ẽ))T (S-43)

and the approximate Hessian can be written as

H̃ = (M̃(I − Ẽ))M̃−1(M̃(I − Ẽ))T (S-44)

which is equal to (33) in the main text. (S-44) implies that H̃ is positive definite (PD), if

the matrices M̃t are also PD.

Lemma C.1. The matrices D̃t, t = 1, . . . , T are PD.

Proof. From the recursion of D̃t ((28) in the main text), we have that when A, V0 and V
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commute and A is stable,

D̃t = V −1

ATA+

(
t−2∑
k=0

(ATA)k + V0V
−1(ATA)t−1

)−1
 , (S-45)

which is PD, by stability of A. The result holds also when the matrices do not commute,

although the formulas are more complicated.

Lemma C.2. The matrices M̃t, t = 1, . . . , T are PD for any choice of the threshold θ.

Proof. We introduce the matrices M̂t, defined as follows:

M̂1 = M1

M̂t = Dt +BT
t W

−1
t Bt − Et−1M̃

−1
t−1E

T
t−1.

(S-46)

These matrices are the matrices obtained from the exact BT recursion Mt = Dt+B
T
t W

−1
t Bt−

Et−1M
−1
t−1E

T
t−1, applied to the approximate matrices M̃−1

t−1. Using (28) and (29) from the main

text we can write M̂t as

M̂t = D̃t +BT
t W

−1
t Bt + Et−1Lt−1Σt−1L

T
t−1E

T
t−1 = D̃t +OtQtO

T
t . (S-47)

Using (S-47) we see that M̂t is the sum of a PD matrix (D̃t), and two semipositive definite

(SPD) matrices (Σt is always PD by definition). Therefore, M̂−1
t is also PD and equals

M̂−1
t = D̃−1

t − D̃−1
t Ot(Q

−1
t +OT

t D̃
−1
t Ot)

−1OT
t D̃

−1
t︸ ︷︷ ︸

Gt

. (S-48)

Now M̃−1
t is obtained by the low rank approximation of Gt. We can write the SVD of Gt as

Gt = [ Lt Rt ]blkdiag{Σt, St}[ Lt Rt ]T , (S-49)

and have that

M̃−1
t − M̂−1

t = RtStR
T
t (S-50)
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Consequently M̃−1
t is the sum of a PD and a SPD matrix and thus is PD and so is M̃t.

We now quantify the approximation error of the Hessian. It turns out that H − H̃ is

a block diagonal matrix, which simplifies our analysis. Using (33) from the main text, we

see that H̃ differs from H only in the diagonal blocks. From (S-46) and the Block-Thomas

recursion we have that

M̂t + Et−1M̃
−1
t−1E

T
t−1 = Dt +BT

t W
−1
t Bt = Mt + Et−1M

−1
t−1E

T
t−1

(S-51)

and therefore by adding and subtracting M̂t from the diagonal blocks of (33) we get that

H̃ = H + blkdiag{M̃1 − M̂1, . . . , M̃T − M̂T}. (S-52)

This makes some intuitive sense, because the low rank approximations are applied only

to the matrices that are formed from the measurements. In other words, the low rank

approximation does not throw away information about the state transition dynamics. It

only throws away information about the measurements, which corresponds to the entries of

the main block-diagonal of the Hessian.

Using (S-52), we can easily derive bounds on the error of our approximate solution s̃.

From (S-49), we have that M̃−1
t is obtained by truncating the term RT

t StRt of the SVD of

Gt such that

‖LtΣ1/2
t ‖2

F ≥ θ‖G1/2
t ‖2

F ⇒ ‖RtS
1/2
t ‖2

F ≤ (1− θ)‖G1/2
t ‖2

F ⇒ ‖RtStR
T
t ‖ ≤ (1− θ)‖G1/2

t ‖2
F ,

(S-53)

and

M̂−1
t − M̃−1

t = −RtStR
T
t ⇒ ‖M̂−1

t − M̃−1
t ‖ ≤ (1− θ)‖G1/2

t ‖2
F . (S-54)

Using the Taylor approximation of (S-2) we have

M̂t = (M̃−1
t −RtStR

T
t )−1 = M̃t + M̃tRtStR

T
t M̃t +O((1− θ)2). (S-55)
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By taking the spectral norm we have

‖M̂t − M̃t‖ ≤ ‖M̃t‖2‖RtStR
T
t ‖ ≤ (1− θ)‖M̃t‖2‖G1/2

t ‖2
F , (S-56)

We can similarly apply (S-2) to obtain bounds for ‖H−1 − H̃−1‖. By using (S-52) we get

‖H−1 − H̃−1‖ ≈ ‖H−1‖2‖M̃ − M̂‖ ≤ (1− θ) ‖H−1‖2 max
t

{
‖M̃t‖2‖G1/2

t ‖2
F

}
︸ ︷︷ ︸

Ψ

⇒

‖s̃− s‖ ≤ (1− θ)Ψ
∥∥∇∣∣

x=0

∥∥ .
(S-57)

Note that M̃t, Gt and thus Ψ, also depend on θ. However, this dependence is weak and

practically does not affect the approximation error bounds. In fact, since M̃t and Gt are

obtained from a series of low rank approximations we expect that the following relations

hold

‖M̃t‖ ≈ ‖Mt‖

‖G1/2
t ‖2

F ≤ ‖Z
−1/2
t UtD̃

−1
t ‖2

F ,
(S-58)

and since the right parts of (S-58) do not depend on θ, ‖H−1− H̃−1‖ and ‖s̃− s‖ scale both

as O(1− θ).

Remark C.3. For the O(1− θ) bound to hold, we also need to ensure that ‖M̃t‖ and ‖Gt‖

do not grow indefinitely as t increases. This holds if ‖A‖ < 1, since in this case D̃t from

(S-45) converges to a finite matrix, and consequently Mt stays bounded as can be seen from

(S-33) and (S-35). If ‖A‖ = 1, then D̃t grows without bound and our approximation result

does not hold. As a result our algorithm is not applicable in this case.

C.2 Discussion on the iterative LRBT algorithm

Since the objective function is quadratic, the step size of the iterative algorithm can be

obtained in closed form. To obtain the length of the step tn, note that the quadratic objective
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function can be written as

f(s) =
1

2
sTHs +∇T

0 s + const, (S-59)

where ∇0 denotes the gradient of f at the zero vector. Then to determine tn we want to

minimize f (sn + tsdir) with respect to t. Ignoring the terms that do not depend on t we

have

tn = arg min
t

{
1

2
(sTdirHsdir)t

2 + (∇T
0 sdir + sTnHsdir)t

}
= −∇

T
0 sdir + sTnHsdir

sTdirHsdir

. (S-60)

The algorithm is summarized below (Alg. S-1).

Algorithm S-1 Steepest Descent using the LRBT algorithm

Initialize: s̃0 = 0, ∇0 ,
(
∇
∣∣
X=0

)
.

repeat

sdir = −H̃−1
(
∇
∣∣
X=sn

)
. Compute using the LRBT Algorithm (Alg. 3).

tn = −(∇T
0 sdir + sTnHsdir)/(s

T
dirHsdir). Optimal step size.

sn+1 = sn + tnsdir.
until Convergence criterion satisfied. (e.g. ‖Hsn+1 +∇0‖/‖∇0‖ < ε.)

By denoting ∇n = ∇
∣∣
X=sn

and noting that ∇n = Hsn +∇0, tn can be rewritten as

tn = − ∇
T
nsdir

sTdirHsdir

=
∇T
n H̃

−1∇n

∇T
n H̃

−1HH̃−1∇n

. (S-61)

Since H̃ approximates H, we see that the algorithm will take almost full steps of the order

1−O(1− θ). Moreover, the convergence rate of this steepest descent algorithm is linear and

in general we have

f(sn)− f ∗ ≤ (1− 1/κ(H̃−1/2HH̃−1/2))(f(sn−1)− f ∗), (S-62)

where κ(·) denotes the condition number (Boyd and Vandenberghe, 2004). Theorem 4.1 and
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our simulations indicate that 1− 1/κ(H̃−1/2HH̃−1/2) = O(1− θ) and therefore

f(sn)− f ∗ ∝ γnθ , with γθ = O(1− θ). (S-63)

D Covariance estimation using the LRBT smoother

The LRBT algorithm provides only an approximate estimate of the smoothed mean E(xt|Y1:T ).

However, with a few modifications, we can also use it to provide an estimate of the smoothed

covariance Cs
t = Cov(xt|Y1:T ) as well, again with complexity that scales linearly with the

state dimension d. To do that we can adapt to our setting the algorithm of Rybicki and

Hummer (1991) for the fast solution for the diagonal elements of the inverse of a tridiagonal

matrix. In the exact case, Alg. S-2 shows the modifications of the BT algorithm to give Cs
t .

Algorithm S-2 Covariance Estimation with the Block-Thomas Algorithm

M1 = D1 +BT
1 W

−1
1 B1 (cost O(d3))

for t = 2 to T do
Mt = Dt +BT

t W
−1
t Bt − Et−1M

−1
t−1E

T
t−1 (cost O(d3))

NT = DT +BT
TW

−1
T BT (cost O(d3))

for t = T − 1 to 2 do
Nt = Dt +BT

t W
−1
t Bt − ET

t N
−1
t+1Et (cost O(d3))

for t = 1 to T − 1 do
Cs
t = (Id −M−1

t EtN
−1
t+1E

T
t )−1M−1

t (cost O(d3))
Cs
T = M−1

T

Compared to the exact BT algorithm, Alg. S-2 adds an additional backwards recursion

that constructs the sequence of the matrices Nt defined as

NT = DT +BT
TW

−1
T BT

Nt = Dt +BT
t W

−1
t Bt − ET

t N
−1
t+1Et, t = T − 1, . . . , 1.

(S-64)

It is easy to see the analogy between the matrices Nt and Mt; Nt are the matrices constructed

from the BT smoother when run backwards in time. Consequently, similar to (29) in the
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main text the matrices N−1
t can be approximated as

N−1
t ≈ Ñ−1

t = (D̃b
t )
−1 − LbtΣb

t(L
b
t)
T , (S-65)

where D̃b
t is matrix similar to D̃t that can be enables fast computations and (backwards)

updating, and the term LbtΣ
b
t(L

b
t)
T acts as a low rank perturbation. With that in mind,

it is easy to modify the LRBT algorithm to also produce approximations of the smoothed

covariance Cs
t = Cov(xt|Y1:T ), while still operating with O(d) complexity. Pseudocode for

this algorithm is given below (Alg. S-3). We leave the details as well as a theoretical analysis

of this approximation method for future work, but we provide an implementation in our

accompanying code.
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