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Abstract

Kalman filtering-smoothing is a fundamental tool in statistical time series analysis.
However, standard implementations of the Kalman filter-smoother require O(d3) time
and O(d2) space per timestep, where d is the dimension of the state variable, and
are therefore impractical in high-dimensional problems. In this paper we note that
if a relatively small number of observations are available per time step, the Kalman
equations may be approximated in terms of a low-rank perturbation of the prior state
covariance matrix in the absence of any observations. In many cases this approximation
may be computed and updated very efficiently (often in just O(k2d) or O(k2d+kd log d)
time and space per timestep, where k is the rank of the perturbation and in general
k � d), using fast methods from numerical linear algebra. We justify our approach
and give bounds on the rank of the perturbation as a function of the desired accuracy.
For the case of smoothing we also quantify the error of our algorithm due to the
low rank approximation and show that it can be made arbitrarily low at the expense
of a moderate computational cost. We describe applications involving smoothing of
spatiotemporal neuroscience data.
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1 Introduction

Understanding the dynamics of large systems for which limited, noisy observations are avail-

able is a fundamental and recurring scientific problem. A key step in any such analysis in-

volves data assimilation: we must incorporate incoming observations and update our beliefs

about the dynamical state of the system accordingly. The Kalman filter may be consid-

ered the canonical method for data assimilation; this method provides a conceptually simple

recursive framework for online Bayesian inference in the context of linear and Gaussian dy-

namics and observation processes. Furthermore, the Kalman filter serves as the underlying

computational engine in a wide variety of more complicated non-Gaussian and nonlinear

statistical models.

However, these methods face a major limitation: standard implementations of the Kalman

filter require O(d3) time and O(d2) space per timestep, where d denotes the dimension of

the system state variable, and are therefore impractical for applications involving very high-

dimensional systems. The bottleneck is in the representation and computation of the forward

covariance matrix Ct = Cov(xt|Y1:t): this is the posterior covariance of the d-dimensional

state vector xt, given the sequence of observations Y1:t up to the current time t. Two natural

ideas for reducing the computational burden of storing and computing this d×d matrix have

been explored. First, if Ct is sparse (i.e., consists of mostly zeros), then we can clearly store

and perform matrix-vector computations with Ct with o(d2) complexity. In many examples

Ct has a nearly banded, or strongly tapered, structure (i.e., most of the large components

of Ct are near the diagonal), and sparse approximate matrix updates can be exploited. This

approach has been shown to be extremely effective in some cases (Furrer and Bengtsson,

2007; Khan and Moura, 2008; Bickel and Levina, 2008; Kaufman et al., 2008; El Karoui,

2008), but in many settings there is no a priori reason to expect Ct to have any useful sparse

structure, and therefore this idea can not be applied generally.

Second, we could replace Ct with a low-rank approximation. For example, a major theme

in the recent literature on numerical weather prediction (where the system of interest is the

atmosphere discretized in a spatial grid, leading in many cases to a state dimension in the tens

or hundreds of millions) has been the development of the theory of the “ensemble Kalman
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filter” (Verlaan, 1998; Treebushny and Madsen, 2005; Chandrasekar et al., 2008; Evensen,

2009), which implements a Monte Carlo-based, low-rank approximation of the full Kalman

filter. Low-rank approximations for Ct are typically justified on computational grounds but

may also be justified statistically in the case that many high-signal-to-noise-ratio (high-SNR)

observations are available: in this setting, we can argue that our posterior uncertainty Ct

will be approximately restricted to a subspace of dimension significantly less than d, as

discussed, e.g., by Solo (2004). Alternatively, we may impose a low-rank structure on the

posterior covariance Ct directly by choosing our prior covariance matrix to be of low rank

(Wikle and Cressie, 1999; Wood, 2006; Cressie and Johannesson, 2008; Banerjee et al., 2008;

Cressie et al., 2010); however, our focus in this work is on approximating Ct given a prior

covariance matrix which is of full rank.

The low-SNR setting, where a relatively small number of noisy observations are available

per time step, has been explored less thoroughly. One exception is the neuronal dendritic

application discussed by Paninski (2010), where we noted that Ct could be approximated

very accurately in terms of a low-rank perturbation of C0, the prior equilibrium covariance of

the state variable xt in the absence of any observations Y . (Note that this approximation is

very different from the high-SNR case, where we approximate Ct as a low-rank perturbation

of the zero matrix, not of C0.) To efficiently update this low-SNR approximation to Ct,

Paninski (2010) exploited the special structure of the dynamics in this application: dendritic

voltage dynamics are governed by a cable equation on a tree (Koch, 1999), which may be

solved using symmetric sparse matrix methods in O(d) time (Hines, 1984). In turn, this

implied that Ct could be updated in O(k2d) time, where k is the rank of the perturbation

of C0 used to represent Ct. Since empirically a k � d sufficed to accurately approximate Ct

in this application, this approach resulted in a much faster implementation of the Kalman

filter, with linear instead of cubic complexity in d.

In this paper we extend this basic idea in a number of ways. We first develop a methodol-

ogy that provides upper bounds on the rank of the perturbation on C0 required to represent

Ct. Our analysis shows that the basic idea is applicable to both high and low-SNR cases, and

that the rank of the perturbation is indeed small and thus the algorithm can lead to substan-

tial computational gains. We also develop a similar fast algorithm for full forward-backward
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smoothing by deriving an efficient low-rank block-Thomas (LRBT) recursive algorithm for

the solution of block-tridiagonal systems. For this LRBT algorithm we also characterize the

the tradeoff between the rank of the approximation (and thus the computational cost) and

the induced approximation error. We show that the error can be made arbitrarily small,

with a relatively moderate computational cost incurred by the corresponding increase in

the rank of the perturbation. We also show that the LRBT algorithm efficiently calculates

the steepest descent direction under an appropriate quadratic norm. As a result it can be

used as an iterative steepest-descent algorithm, or as a preconditioner in standard itera-

tive methods (e.g. conjugate gradients), to converge to the exact solution faster than exact

forward-backward methods.

We describe a number of examples where special features of the system dynamics al-

low us to compute and update the low-rank approximation to Ct efficiently (often in just

O(k2d) or O(k2d + kd log d) time and O(kd) space per timestep), using fast methods from

numerical linear algebra. One particularly simple setting involves spatiotemporal smoothing

applications; as a concrete example, we describe how to apply the proposed methods to effi-

ciently smooth certain kinds of high-dimensional spatiotemporal neuroscience data. Finally,

we briefly describe extensions of our methods to non-linear, non-Gaussian settings.

2 Basic Kalman filtering setup

We begin by briefly reviewing the Kalman filter and establishing notation. Again, let xt

denote our d-dimensional state variable, and yt the observation at time t. We assume that

xt and yt satisfy the following linear-Gaussian dynamics and observation equations:

xt+1 = Axt + ut + εt, εt ∼ N (0, V ) (1)

yt = Btxt + ηt, ηt ∼ N (µηt ,Wt), (2)

with initial conditions x0 ∼ N (µ0, V0). Here A represents the system dynamics matrix; ut is

a deterministic input to the system at time t, and εt is an i.i.d. Gaussian vector with mean

zero and covariance V . Bt denotes the observation gain matrix, Wt the observation noise
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covariance, and µηt an offset mean in the observation. Our methods are sufficiently general

that the dimension of yt can vary with time. From now on, without loss of generality we

assume that µ0 = 0, and ut = 0, µηt = 0 for all t. Nonlinear and non-Gaussian observa-

tions may also be incorporated in some cases, as we will discuss further below. Moreover,

extensions to non-stationary models, where A and/or V in the dynamics equation vary with

time, are also possible in some cases (Pnevmatikakis and Paninski, 2012), but will not be

discussed here.

Now the focus of this paper is the efficient implementation of the Kalman filter recursion

for computing the forward mean µt = E(xt|Y1:t), and covariance Ct = Cov(xt|Y1:t), where

Y1:t denotes the observed data {ys} up to time t. The Kalman recursions may be written as

(Anderson and Moore, 1979):

Ct =
(
P−1t +BT

t W
−1
t Bt

)−1
(3)

µt = Aµt−1 + PtB
T
t (Wt +BtPtB

T
t )−1(yt −BtAµt−1) (4)

with Pt , Cov(xt|Y1:t−1) = ACt−1A
T + V. (5)

Note that computing the inverses in the recursion for Ct requires O(d3) time in general, or

O(d2) time via the Woodbury lemma (Golub and Van Loan, 1996) if the observation matrix

Bt is of low rank (i.e., if rank(Bt)� d). In either case, O(d2) space is required to store Ct.

A key quantity is the prior covariance C0,t, i.e., the covariance of xt in the absence of any

observations. From the Kalman filter recursion, C0,t evolves as

C0,t = AC0,t−1A
T + V. (6)

This is just the Kalman recursion for Ct above in the special case that B = 0 (i.e., no

observations are available). Throughout the paper we make the assumption that A is stable,

i.e., ‖A‖ < 1, where ‖ · ‖ denotes the spectral norm. In this case C0,t converges to the

equilibrium prior covariance C0 = limt→∞C0,t. To enforce stationarity of the prior, the

Kalman recursion is often initialized with V0 , C0,0 = C0. In this case we have C0,t = C0 for
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all t, since the equilibrium covariance C0 satisfies the discrete Lyapunov equation

AC0A
T + V = C0. (7)

This equation can be solved explicitly in many cases (Anderson and Moore, 1979), as we

discuss briefly now. If A is normal (i.e., AAT = ATA), and commutes with the dynamics

noise covariance V , then C0 can be explicitly computed using the standard moving-average

recursion (Brockwell and Davis, 1991) for the autoregressive model xt:

C0 =
∞∑
i=0

AiV (AT )i = V

∞∑
i=0

(AAT )i = V (I − AAT )−1. (8)

More generally, if V and A do not commute then we can employ the (linear) whitening

change of variables x̃t = V −1/2xt (assuming V is of full rank). Defining the reparameterized

covariance matrix C ′0 via C0 = V 1/2C ′0V
1/2, AV through the similarity transformation AV =

V −1/2AV 1/2, and assuming AV is normal, we rewrite (7) as

AVC
′
0A

T
V + C ′0 ⇒ C ′0 =

(
I − AVATV

)−1 ⇒ C0 = V 1/2
(
I − AVATV

)−1
V 1/2. (9)

The case where V is of reduced rank, or the resulting AV is non-normal, appears to be

more difficult, as noted in more detail in the Discussion section below. From now on unless

noted otherwise we make the assumption that A is normal and commutes with V .

3 Fast Kalman filtering

Now the basic idea is that when rank(Bt) � d, Ct should be close to C0,t: i.e., we should

be able to represent the time-varying covariance Ct as a small perturbation about the prior

covariance C0,t, in some sense. Thus, more concretely, we will approximate Ct as

Ct ≈ C̃t , C0,t − LtΣtL
T
t , (10)
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where LtΣtL
T
t is a low-rank matrix we will update directly, and C0,t = Cov(xt). We will

show that it is straightforward to compute and update the perturbations Lt and Σt efficiently

whenever fast methods are available to solve linear equations involving A and C0,t.

But first, why does the approximation in eq. (10) make sense? It is easy to see, using the

Woodbury matrix lemma, that if we make b observations at time t = 1 then (10) will hold

exactly, for L1Σ1L
T
1 of rank at most b. If we make no further observations, then Ct follows

the simple update rule

Ct =ACt−1A
T + V ⇒ C2 = A(C0,1 − L1Σ1L

T
1 )AT + V = C0,2 − AL1Σ1L

T
1A

T ;

the last equality follows from (6). Iterating, we see that

Ct = C0,t − At−sLsΣsL
T
s (At−s)T ,

where s denotes the time of the last available observation. Since A is assumed to be stable,

this implies that the perturbation to Ct around the equilibrium covariance C0,t caused by the

observations up to time s will decay exponentially; for t− s sufficiently large, we can discard

some dimensions of the perturbation At−sLsΣsL
T
s (At−s)T without experiencing much error in

Ct. In the case that additional observations become available with each timestep t, a similar

phenomenon governs the behavior of Ct: long-ago observations are eventually “forgotten,”

due to the exponential decay caused by the double multiplication ACtA
T . We may exploit

this exponential decay by discarding some dimensions of Ct−C0,t as they become sufficiently

small, and if the observations are sufficiently low-rank relative to the decay rate imposed by

A, then the effective rank of Ct − C0,t will remain small.

3.1 The fast Kalman filtering algorithm

Now we can describe a method for efficiently updating Lt and Σt. We will use A and

C0,t in what follows; it is easy to substitute the transformed matrices AV and C ′0,t (defined

previously) if necessary. First, as above, for the approximate predictive covariance P̃t write

7



P̃−1t , (AC̃t−1A
T + V )−1 = (A(C0,t−1 − Lt−1Σt−1L

T
t−1)A

T + V )−1

= (C0,t − ALt−1Σt−1L
T
t−1A

T )−1 = C−10,t + Φt∆tΦ
T
t ,

(11)

where we applied (6) and the Woodbury lemma, and abbreviated Φt = C−10,tALt−1 and

∆t = (Σ−1t−1 − LTt−1ATC−10,tALt−1)
−1.

Now plug this into the covariance update and apply Woodbury1 again:

C̃t =
(
C−10,t + Φt∆tΦ

T
t +BT

t W
−1
t Bt

)−1
=
(
C−10,t +OtQtO

T
t

)−1
= C0,t − C0,tOt(Q

−1
t +OT

t C0,tOt)
−1OT

t C0,t, (12)

where Ot = [Φt BT
t ], Qt = blkdiag{∆t,W

−1
t }. (13)

We obtain Lt and Σt by truncating the partial SVD of the right-hand side of (12):

[L̂t, Σ̂
1/2
t ] = svd(C0,tOt(Q

−1
t +OT

t C0,tOt)
−1/2), (14)

then choose Lt as the first kt columns of L̂t and Σt as the first kt diagonal elements Σ̂t,

where kt is chosen to be large enough (for accuracy) and small enough (for computational

tractability). A reasonable choice of kt is as the least solution of the inequality:

∑
i≤kt

[Σ̂t]ii ≥ θ
∑
i

[Σ̂t]ii; (15)

i.e., choose kt to capture at least a large fraction θ of the term L̂tΣ̂
1/2
t (i.e., the square root of

the term perturbing C0,t in (12)). Now for the update of the approximate Kalman mean µ̃t

we can use the exact formula (4) but replace Pt with the approximate predictive covariance

P̃t (11). Note that we update the mean µ̃t first, then truncate Lt and Σt.

1It is well-known that the Woodbury formula can be numerically unstable when the observation covariance
W is small (i.e., the high-SNR case). It should be possible to derive a low-rank square-root filter (Treebushny
and Madsen, 2005; Chandrasekar et al., 2008) to improve the numerical stability here, though we have not
yet pursued this direction. Meanwhile, a crude but effective method to guarantee that Ct remains positive
definite is to simply shrink Σt slightly if any negative eigenvalues are detected. This can be done easily in
O(d) time by restricting attention to the subspace spanned by Lt.
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To review, we have introduced simple low-rank recursions for Lt, Σt, and µt in terms of

C0,t and A. The key point is that C0,t or C−10,t need never be computed explicitly; instead, all

we need is to multiply by A and multiply and divide by C0,t or C−10,t , whichever is easiest (by

“divide,” we mean to solve equations of the form C0,tv = r for the unknown vector v and

known vector r). The SVD step requires O((kt−1 + bt)
2d) time, where kt−1 is the order of the

perturbation (effective rank) at timestep t− 1, and bt is the number of measurements taken

at timestep bt. All the other steps involve O(kt) matrix-vector multiplications or divisions

by C0,t or A. Thus, if K(d) denotes the cost of such a single matrix-vector operation,

the computational complexity of each low-rank update is approximately O(k2t d + ktK(d)).

In many cases of interest (see below) K(d) = o(d2), and therefore the low-rank method

is significantly faster than the standard Kalman recursion for large d. The algorithm is

summarized below (Alg. 1).

Algorithm 1 Fast Kalman filtering algorithm

L1 = C0,1B
T
1 , Σ1 = (W1 +B1C0,1B

T
1 )−1 (cost O(b31 + b1K(d)))

C̃1 = C0,1 − L1Σ1L
T
1

µ̃1 = L1Σ
−1
1 y1

for t = 2 to T do
C0,t = AC0,t−1A

T + V
Φt = C−10,tALt−1, ∆t = (Σ−1t−1 − LTt−1ATC−10,tALt−1)

−1 (cost O(k3t−1 + kt−1K(d)))

Ot = [Φt Bt], Qt = blkdiag{∆t,W
−1
t }

[L̂t, Σ̂
1/2
t ] = svd(C0,tOt(Q

−1
t +OT

t C0,tOt)
−1/2) (cost O((bt + kt−1)

2d))

Truncate L̂t and Σ̂t to Lt and Σt. (effective rank kt ≤ bt + kt−1 � d)
C̃t = C0,t − LtΣtL

T
t

P̃t = C0,t − ALt−1Σt−1L
T
t−1A

T (cost O(kt−1K(d)))

µ̃t = Aµ̃t−1 + P̃tB
T
t (Wt +BtP̃tB

T
t )−1(yt −BtAµ̃t−1) (cost O(b3t + btK(d)))

We close this section by noting that the posterior marginal variance difference [C̃t−C0,t]ii

can be computed in O(ktd) time, since computing the diagonal of C̃t − C0,t just requires us

to sum the squared elements of Σ
1/2
t Lt. This quantity is useful in a number of contexts

(Huggins and Paninski, 2012). In addition, the method can be sped up significantly in the

special case that B and W are time-invariant (or vary in a periodic manner): in this case,

C̃t will converge to a limit as an approximate solution of the corresponding Riccati equation,

(or C̃t will also be periodic) and we can stop recomputing Lt and Σt on every time step.
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3.2 Examples for which the proposed fast methods are applicable

There are many examples where the required manipulations with A, V and C0 are relatively

easy. The following list is certainly non-exhaustive. First, if A or its inverse is banded (or

tree-banded, in the sense that Aij 6= 0 only if i and j are neighbors on a tree) then so is C−10 ,

and multiplying and dividing by C0 costs just O(d) time and space per timestep (Rue and

Held, 2005; Davis, 2006).

Second, in many cases A is defined in terms of a partial differential operator. (The exam-

ple discussed in Paninski (2010) falls in this category; the voltage evolution on the dendritic

tree is governed by a cable equation.) A in these cases is typically sparse and has a special-

ized local structure; multiplication by A and C−10 requires just O(d) time and space. In many

of these cases multigrid methods or other specialized PDE solvers can be used to divide by

C−10 in O(d) time and space (Briggs et al., 2000). As one specific example, multigrid meth-

ods are well-established in electroencephalographic (EEG) and magnetoencephalographic

(MEG) analysis (Wolters, 2007; Lew et al., 2009), and therefore could potentially be utilized

to significantly speed up the Kalman-based analyses described in Long et al. (2006); Galka

et al. (2008); Freestone et al. (2011).

Third, A will have a Toeplitz (or block-Toeplitz) structure in many physical settings, e.g.

whenever the state variable xt has a spatial structure and the dynamics are spatially-invariant

in some sense. Multiplication by A and C−10 via the fast Fourier transform (FFT) requires

just O(d log d) time and space in these cases (Press et al., 1992). Similarly, division by C−10

can be performed via preconditioned conjugate gradient descent, which in many cases again

requires O(d log d) time and space (Chan and Ng, 1996). Of course, if A is circulant then

FFT methods may be employed directly to multiply and divide by C0 with cost O(d log d).

Finally, in all of these cases, block or Kronecker structure in A may be exploited easily,

since the transpose and product involved in the construction of C0 will preserve this structure.

3.3 Analysis of the effective rank

As discussed above, the complexity of each iteration is O(k2t d + ktK(d)), where kt is the

effective rank of the perturbation to C0,t at time t. In this section we formalize the notion
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of the effective rank and present some simple bounds that provide some insight into the

efficiency of our algorithm. A more detailed treatment can be found in appendix B.

Definition 3.1. Let U be a matrix and θ a constant with 0 ≤ θ ≤ 1. The effective rank of

U at threshold θ, zθ(U), is defined as the minimum integer k, such that there exists a matrix

X with rank(X) = k and

‖X − U‖2F ≤ (1− θ)‖U‖2F ,

where ‖ · ‖F denotes the Frobenius norm.

Based on the above definition, the number of singular values kt (15) in the fast Kalman

recursion can be expressed as kt = zθ(G
1/2
t ), with Gt defined as

Gt = C0,tOt(Q
−1
t +OT

t C0,tOt)
−1OT

t C0,t. (16)

To estimate the complexity of the algorithm, we need to characterize zθ(G
1/2
t ). However,

this is challenging since Gt is obtained from a series of successive low-rank approximations.

From (12), Gt corresponds to the perturbing term of the approximate covariance C̃t. We

instead analyze the effective rank of the perturbing term of the exact covariance Ct as given

in the following proposition (proved in appendix B).

Proposition 3.2. The covariance matrices Ct can be written recursively as

Ct = C0,t − C0,tU
T
t Z
−1
t UtC0,t (17)

where Zt = F−1t + UtC0,tU
T
t , (18)

and the matrices Ut and Ft are defined recursively as

Ut =

 Bt

Ut−1C0,t−1A
TC−10,t

 , U1 = B1

F−1t =

 W 0

0 F−1t−1 + Ut−1(C0,t−1 + C0,t−1A
TC−10,tAC0,t−1)U

T
t−1

 , F1 = W−1.

(19)
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Since C̃t is an approximation of Ct we expect that for at least high threshold θ we have

zθ(G
1/2
t ) ≈ zθ(Z

−1/2
t UtC0,t). (20)

Here we analyze the effective rank of the matrices UtC0,t. In the appendix we analyze the

effective rank of Z
−1/2
t UtC0,t and also provide a heuristic method for estimating the actual

effective rank of G
−1/2
t . Our analysis and simulations show that zθ(G

1/2
t ) ≤ zθ(Z

−1/2
t UtC0,t),

with equality when θ ↑ 1; this is unsurprising, since Z
−1/2
t UtC0,t corresponds to the full

perturbation in Ct away from C0,t, while G
1/2
t is an approximation of this perturbation.

For large t, the prior covariance C0,t converges to the equilibrium covariance C0. There-

fore, under the assumption that A is normal and commutes with V , we can make the ap-

proximation C0,t ≈ C0 = V (I − AAT )−1 and the recursion of (19) can be rewritten as

Ut ≈ [BT
t AUT

t−1]
T , F−1t ≈ blkdiag{W,F−1t−1 + Ut−1V U

T
t−1}. (21)

If bt is the number of measurements taken at time t, then the matrices Ut, Ft have dimensions[∑t
l=1 bt, d

]
and

[∑t
l=1 bt,

∑t
l=1 bt

]
respectively. However we see that at each timestep t, all

the blocks of Ut that correspond to times 1, . . . , t − 1 are multiplied with AT . Therefore

at time t, the effect of the measurements from time t − s will be limited and thus past

measurements are eventually “forgotten,” as discussed above.

To characterize the effective rank in a specific tractable setting, suppose that each Bt is

a b × d i.i.d. random matrix where each entry has zero mean and variance 1/d. Let [Ut]1:l

be the matrix that consists of the first l blocks of Ut, and define kU as the minimum number

of blocks required to capture a θ fraction of the expected energy,

kU = arg min
l∈N

{l : E‖[Ut]1:lC0,t‖2F ≥ θE‖UtC0,t‖2F}. (22)

Using (21) the (m+1)-th block of UtC0,t is approximately Bt−m(AT )mC0. Using the identity
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‖X‖2F = Tr(XTX), we have that the expected energy of the (m+ 1)-th block is equal to

E‖[[Ut]m+1C0,t‖2F ≈ E‖Bt−m(AT )mC0‖2F = E
(
Tr[Bt−m(AT )mC2

0A
mBT

t−m]
)

=
b

d
Tr[(AT )mC2

0A
m] =

b

d

d∑
i=1

c2iα
2m
i ,

(23)

where α1 ≥ . . . ≥ αd are the singular values of A and c1, . . . , cd are the corresponding singular

values of C0. Plugging into (22) and summing over the blocks, assuming t→∞, we get

kU = arg min
l∈N

{
d∑
i=1

c2i
1− α2l

i

1− α2
i

≥ θ

d∑
i=1

c2i
1

1− α2
i

}
(∗)
≤ arg min

l∈N

{
1− α2l

1 ≥ θ
}

=

⌈
log(1− θ)
2 log(‖A‖)

⌉
,

(24)

where (∗) follows since 1 − α2l
1 ≥ θ ⇒ 1 − α2l

i ≥ θ for all the other singular values αi and

dxe denotes the least integer greater or equal than x. The bound of (24) becomes tight if

c1 � c2, . . . , cd or if all the singular values of A are approximately equal, i.e., A becomes

proportional to the identity matrix. Note that the bound of (24) covers only the expected

case and is probabilistic. It is possible to derive concentration inequalities on the probability

that the bound does not hold, but for our purposes it suffices to state that the bound is

expected to hold with high probability. Therefore with high probability the first bkU rows

of UtC0,t capture a θ fraction of its energy and

zθ(UtC0,t) ≤ bkU . (25)

In other words, we expect that the algorithm will lead to high computational gains if d� bkU .

Note that the derived bound grows only mildly with θ and is also independent of d. Therefore

for large d we see that the total cost of the fast Kalman filtering algorithm becomes at most

O((k2Ud + kUK(d))T ). In appendix B we argue that a tighter bound for zθ(G
1/2) can be

derived by taking into account the recursive nature of the thresholding procedure. More

specifically, we argue that

zθ(G
1/2
t ) ≤ b arg min

l∈N
{E‖[Ut]1:lC0,t‖2F ≥ θE‖[Ut]1:l+1C0,t‖2F} ≤ b

⌈
log(1− θ)− log(1− ‖A‖2θ)

2 log(‖A‖)

⌉
,
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which provides a significantly tighter bound. Moreover, we examine the effective rank of

Z
−1/2
t UtC0,t and show that zθ(Z

−1/2
t UtC0,t) ≤ zθ(UtC0,t) with equality holding in the limiting

case where the noise power becomes infinite, i.e., in the low-SNR regime. Finally, we derive

another heuristic bound on zθ(G
1/2
t ), based on zθ(Z

−1/2
t UtC0,t) and present a simulation

example that supports the several bounds.

4 Full forward-backward smoothing

So far we have focused on the forward problem of computing estimates of xt given the data

available up to time t. To incorporate all of the available information Y1:T (not just Y1:t),

we need to perform a backward recursion. Two methods are available: we can use the

Kalman backward smoother (Shumway and Stoffer, 2006), which provides both E(xt|Y1:T )

and Cov(xt|Y1:T ), or a version of the Thomas recursion for solving block-tridiagonal systems.

Both recursions can be adapted to our low-rank setting. In the Kalman backward

smoother we can approximate Cov(xt|Y1:T ) ≈ C0 − LstΣ
s
t(L

s
t)
T , for an appropriately cho-

sen low-rank matrix LstΣ
s
t(L

s
t)
T , which can be updated efficiently using methods similar to

those we have described here for the forward low-rank approximation C0−LtΣtL
T
t ; see Hug-

gins and Paninski (2012) for full details. Here we focus on deriving an efficient low-rank

block-Thomas (LRBT) approach, and examining its convergence characteristics.

4.1 The low-rank block-Thomas algorithm

First we recall that the output of Kalman filter-smoother, st = E(xt|Y1:T ), may be written as

the solution to a block-tridiagonal linear system (Fahrmeir and Kaufmann, 1991; Paninski

et al., 2010), i.e.

Hs = −∇
∣∣
x=0

, (26)

where ∇
∣∣
x=0

, H denote the gradient evaluated at zero and the Hessian of the negative log-

posterior f = − log p(X|Y1:T ) with respect to X, because f is simply a quadratic function
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in this linear-Gaussian setting. We have

f ∝ 1

2

T∑
t=1

(yt −Btxt)
TW−1

t (yt −Btxt) +
1

2

T−1∑
t=1

(xt+1 − Axt)TV −1(xt+1 − Axt) +
1

2
xT1 V

−1
0 x1

∇t ,
∂f

∂xt
= −BT

t W
−1
t (yt −Btxt)− ATV −1(xt+1 − Axt) + V −1(xt − Axt−1) (27)

H =


D1 +BT

1 W
−1
1 B1 −E1 0 . . . 0

−ET
1 D2 +BT

2 W
−1
2 B2 −E2 . . . 0

...
. . . . . . . . .

...

0 0 . . . −ET
T−1 DT +BT

TW
−1
T BT

 ,

with Dt =


V −10 + ATV −1A, t = 1

V −1 + ATV −1A, 1 < t < T

V −1, t = T

and Et = ATV −1, 1 ≤ t ≤ T.

The solution of (26), which corresponds to the full forward-backward smoothing can be given

by the classic block-Thomas (BT) algorithm (Isaacson and Keller, 1994), which we repeat

here for completeness (Alg. 2).

Algorithm 2 Classic Block-Thomas Algorithm (computes s = −H−1∇)

M1 = D1 +BT
1 W

−1
1 B1, Γ1 = M−1

1 E1 (cost O(d3))
q1 = −M−1

1 ∇1 (cost O(d2))
for i = 2 to T do
Mt = Dt +BT

t W
−1
t Bt − Et−1M−1

t−1E
T
t−1, Γt = M−1

t Et (cost O(d3))
qt = −M−1

t (∇t − ET
t−1qt−1) (cost O(d2))

sT = qT
for t = T − 1 to 1 do

st = qt + Γtst+1 (cost O(d2))

The expensive part in the BT algorithm is the multiplication and division with the

matrices Mt, which correspond to a modified version of the inverse covariance matrices C−1t .

In the case where Bs = 0 for all s ≤ t, we have that Mt = D̃t where the matrices D̃t

correspond to a modified version of the inverse equilibrium covariance C−10,t (in fact for t = T
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we have that D̃T = C−10,T and MT = C−1T ) and are defined recursively as

D̃t = Dt − Et−1D̃−1t−1ET
t−1, with D̃1 = D1. (28)

Using a similar argument as in the fast Kalman filtering case (see (10)), to derive a similar

fast algorithm in the case where Bs 6= 0, we want to approximate the matrices M−1
t as

M−1
t ≈ M̃−1

t = D̃−1t − LtΣtL
T
t , (29)

where LtΣtL
T
t is a suitable low rank matrix. To gain some insight into this approximation,

suppose that (29) holds at time t − 1. Then following the BT recursion we can define the

matrices M̂t as

M̂t = Dt +BT
t W

−1
t Bt − Et−1M̃−1

t−1E
T
t−1

(28)
= D̃t +BT

t W
−1
t Bt + Et−1Lt−1Σt−1L

T
t−1E

T
t−1 = D̃t +OtQtO

T
t ⇒

M̂−1
t

(w)
= D̃−1t − D̃−1t Ot(Q

−1
t +OT

t D̃
−1
t Ot)

−1OT
t D̃

−1
t , (30)

with Ot = [BT
t Et−1Lt−1], Qt = blkdiag{W−1

t ,Σt−1}. (31)

Lt,Σt can be derived by taking the partial SVD of the term D̃−1t Ot(Q
−1
t + OT

t D̃
−1
t Ot)

−1/2

and keeping only the singular values/vectors that express a θ fraction of the energy2. This

results in the approximation of (29). Note again the resemblance of (30) and (31) with (12)

and (13) respectively, for the fast KF case. The resulting LRBT algorithm is summarized

below (Alg. 3). As in the fast Kalman filtering case, the use of this fast low-rank approach

will lead to substantial gains if the cost K(d) of matrix-vector multiplication or division

with the matrices D̃−1t and Et, satisfies K(d) = o(d2) for d large. (Again, we assume that

fast methods are available for updating D̃t; for example, in the case that A is normal and

commutes with V , if we choose the stationary initial condition C0,t = C0, then updating D̃t

turns out to be trivial, as can be demonstrated with a simple direct computation.)

2Note that in a slight abuse of notation, we will recycle the names of some matrices (e.g., Ot and Qt) that
play a similar role in the LRBT approach as in the fast Kalman method described in the previous sections.
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Algorithm 3 Low-Rank Block-Thomas Algorithm

D̃1 = D1, L1 = D−11 BT
1 (cost O(b1d), k1 = b1)

Σ1 = (W1 +B1D
−1
1 BT

1 )−1 (cost O(b31))
q̃1 = (−D−11 + L1Σ1L

T
1 )∇1 (= −M̃−1

1 ∇1) (cost O(b1K(d)))
for t = 2 to T do
D̃t = Dt − Et−1D̃−1t−1ET

t−1
Ot = [BT

t Et−1Lt−1], Qt = blkdiag{W−1
t ,Σt−1}

[L̂t, Σ̂
1/2
t ] = svd(D̃−1t Ot(Q

−1
t +OT

t D̃
−1
t Ot)

−1/2) (cost O((bt + kt−1)
2K(d)))

Truncate L̂t and Σ̂t to Lt and Σt. (effective rank kt ≤ bt + kt−1 � d)
q̃t = −(D̃−1t − LtΣtL

T
t )(∇t − ET

t−1q̃t−1) (= −M̃−1
t (∇t − ET

t−1q̃t−1)) (cost O(ktK(d)))
s̃T = q̃T
for i = T − 1 to 1 do

s̃t = q̃t + (D̃−1t ET
t − LtΣtL

T
t E

T
t )s̃t+1 (= q̃t + Γ̃ts̃t+1) (cost O(ktK(d)))

The BT algorithm provides the smoothed mean E(xt|Y1:T ) by solving (26). The Hessian

H can also be used to obtain the smoothed covariance Cs
t = Cov(xt|Y1:T ) since Cs

t is equal

to the t-th diagonal block of H−1. We can obtain the diagonal blocks of H−1 in O(d3T ) time

and O(d2T ) space using the algorithm of Rybicki and Hummer (1991) for the fast solution

for the diagonal elements of the inverse of a tridiagonal matrix. In appendix D we present

this algorithm and show how we can modify it in a similar fashion to the LRBT algorithm,

to obtain estimates of Cs
t in just O(K(d)T ) time and O(dT ) space.

4.2 Analysis of the LRBT algorithm

The forward-backward procedure allows us to analyze the error of our LRBT algorithm. In

appendix C we prove that although the algorithm involves an approximation at every step

the error does not accumulate, and thus remains of the order O(1− θ).

Theorem 4.1. The solution s̃ of the LRBT algorithm can be written as

s̃ = −H̃−1∇
∣∣
x=0

(32)

with H̃ =


M̃1 −E1 . . . 0

−ET
1 M̃2 + E1M̃

−1
1 ET

1 . . . 0
...

. . . . . .
...

0 . . . −ET
T−1 M̃T + ET−1M̃

−1
T−1ET−1

 . (33)
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Moreover, H̃ is positive definite and, under the assumption ‖A‖ < 1, it approximates the

true Hessian H, defined in (27), as

‖H̃ −H‖ = O(1− θ). (34)

Theorem 4.1 has several useful implications. First, it establishes that the LRBT smoother

approximation error is also of order O(1− θ), since

‖s̃− s‖ = ‖(H̃−1 −H−1)∇
∣∣
x=0
‖ ≤ ‖(H̃−1 −H−1)‖‖∇

∣∣
x=0
‖. (35)

Moreover, since H̃ is positive definite, it follows that the LRBT performs the steepest descent

step for the quadratic norm ‖x‖H̃ = (xT H̃x)1/2. Therefore when applied as a search direction

in an iterative algorithm, it converges to the solution of (26). The convergence rate is linear,

but can be made arbitrarily fast since it is controlled by the threshold θ. In fact if f ∗ is

the minimum value of the negative log-likelihood function f (27), then we can show that

f(sn) − f ∗ ∝ γnθ , with γθ = O(1 − θ). A short discussion can be found in appendix C. H̃

can also be used as an effective preconditioner for other iterative methods, e.g. conjugate

gradients that in general lead to faster convergence than plain steepest descent. Note that

the condition ‖A‖ < 1 is critical for the O(1 − θ) approximation error, since it guarantees

that the matrix Mt that we approximate stays finite. This issue is discussed in somewhat

more detail in appendix C (remark C.3). Finally, we note that the effective rank of the

matrices involved in the LRBT algorithm has exactly the same scaling properties as in the

fast KF case. The interested reader is referred to appendix B for more details.

5 Application to high-dimensional smoothing

Now for the main statistical examples we have in mind. In many statistical settings, the

dynamics matrix A and noise covariance V are not directly defined; the analyst has some

flexibility in choosing these matrices according to criteria including physical realism and

computational tractability. Perhaps the simplest approach is to use a separable prior, de-
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fined most easily as A = aI, 0 < a < 1. Now C0 = (1 − a2)−1V ; thus it is clear that

when it is easy to multiply and divide by V , we may apply the fast methods discussed

above with no modifications. Note that in this case the prior covariance of the vector

X is separable: Cov(X) = C0 ⊗ CAR, where ⊗ denotes the Kronecker product and CAR

denotes the covariance of the standardized one-dimensional autoregressive AR(1) process,

xt+1 = axt +
√

1− a2εt, εt ∼ N (0, 1). However the posterior covariance Cov(X|Y ) is not

separable in general, which complicates exact inference.

It is straightforward to construct more interesting nonseparable examples. For example,

in many cases we may choose a basis so that V and A are diagonal and the transformation

back to the “standard” basis is fast. Examples include the discrete Fourier basis, common

spline bases and wavelet bases. Now the interpretation is that each basis element is endowed

with an AR(1) prior: the (i, i)-th element of A defines the temporal autocorrelation width

of the i-th process, while the elements of the diagonal matrix (I −A2)−1V set the processes’

prior variance (and therefore (I − A2)−1V expressed in the “standard” basis sets the prior

covariance C0). The difficulty in applying the standard Kalman recursion in this setting

is that if B is not also diagonal in this representation, then direct implementations of the

Kalman filter require O(d3) time per timestep, since Ct does not remain diagonal in general.

Nonetheless, the fast low-rank smoother may be applied in a straightforward manner in this

setting: computing E(xt|Y ) and Cov(xt|Y ) requires O(k2t d) time, to which we add the time

necessary to transform back into the standard basis.

A further speedup is possible in this diagonal case, if the observation matrices Bt are

sparse; i.e., if each observation yt only provides information about a few elements of the

state vector xt. This setting arises frequently in environmental applications, for example,

where just a few sampling stations are often available to take spatially-localized samples

of large spatiotemporal processes of interest (Stroud et al., 2001). Another example, from

neuroscience, will be discussed in the following section. If It denotes the set of indices for

which Bs is nonzero for s ≤ t, then it is easy to show that the forward covariance Ct matrix

need only be evaluated on the |It| × |It| submatrix indexed by It; if i or j are not in It,

then [Ct]ij = [C0]ij. Thus, we need only update the low-rank matrix Lt at the indices It,

reducing the computational complexity of each update from O(k2t d) to O(k2t |It|). Clearly,
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with each new update at time t, we will add some elements to It, but we can also discard some

elements as we go because our low-rank updates will effectively “forget” information as time

progresses, as discussed above. (In particular, the indices for which the recent observations

provide no information will eventually be dropped.) Thus in practice |It| often remains much

smaller than d, leading to a significant speedup.

5.1 Two neuroscience examples

To make these ideas more concrete, we now examine two examples from neuroscience. For

our first example we consider neurons in the rodent hippocampal brain region; many of

these neurons respond selectively depending on the animal’s current location. This spatial

dependency can be summarized in terms of a “place field” f(~x), where f(~x) is the expected

response of the neuron (quantified by the number of action potentials emitted by the neuron

in a fixed time interval), given that the animal is located at position ~x. It is known that

these place fields can in some cases change with time; in this case we might replace f(~x)

with f(~x, t). These time-varying place fields f(~x, t) are often represented as a sum of some

fixed spatial basis functions (Brown et al., 2001; Frank et al., 2002; Czanner et al., 2008),

weighted by some appropriate weights which are to be inferred:

f(~x, t) =
∑
i

qitfi(~x). (36)

For example, the basis {fi(~x)} could consist of spline functions defined on the spatial variable

~x. Now we place a prior on how the weights qit evolve with time. In the simplest case, qit

could evolve according to independent AR(1) processes; as emphasized above, this means

that the dynamics matrix A is diagonal. Now the observation model in this setting may be

taken to be yt = f(~xt, t) + ηt, with ηt denoting an i.i.d. Gaussian noise source, or we can use

a slightly more accurate Poisson model, yt ∼ Poiss{exp(f(~xt, t))}, where in either case ~xt

represents the (known) location of the animal as a function of time t, and Poiss{λt} denotes

a Poisson process with rate λt. The observation matrix Bt is just a d-dimensional vector,

Bit = fi(~xt), if we use d basis vectors to represent the place field f . Computing Bt requires
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at most O(d) time; if the basis functions fi have compact support, then Bt will be sparse

(i.e., computable in O(1) time), and we can employ the speedup based on the sparse index

vector It described above. More detailed models are possible, of course (Czanner et al., 2008;

Rahnama Rad and Paninski, 2010), but this basic formulation is sufficient to illustrate the

key points here.

A second example comes from sensory systems neuroscience. The activity of a neuron in a

sensory brain region depends on the stimulus which is presented to the animal. The activity

of a visual neuron, for example, is typically discussed using the notion of a “receptive field,”

which summarizes the expected response of the neuron as a function of the visual stimulus

presented to the eye (Dayan and Abbott, 2001). We can use a similar model structure to

capture these stimulus-dependent responses; for example, we might model yt = sTt f
t + ηt in

the Gaussian case, or yt ∼ Poiss{exp(sTt f
t)} in the Poisson case, where st is the sensory

stimulus presented to the neuron at time t, sTt f
t =

∑
x s(~x, t)f(~x, t) denotes the linear

projection of the stimulus st onto the receptive field f t at time t, and f(~x, t) is proportional

to the expectation of yt given that a light of intensity s(~x, t) was projected onto the retina

at location ~x. As indicated by the notation f t, these receptive fields can in many cases

themselves vary with time, and to capture this temporal dependence it is common to use a

weighted sum of basis functions model, as in equation (36). This implies that the observation

matrix Bt can be written as Bt = sTt F , where the i-th column of the basis matrix F is given

by fi. If the basis functions fi are Fourier or wavelet functions, then the matrix-vector

multiplications sTt F can be performed in O(d log d) time per timestep; if fi are compactly

supported, F will be sparse, and computing sTt F requires just O(d) time.

Now in each of these settings the fast Kalman filter is easy to compute. In the case of

Gaussian observation noise ηt we proceed exactly as described above, once the observation

matrices Bt are defined; in the Poisson case we can employ well-known extensions of the

Kalman filter described, for example, in (Fahrmeir and Kaufmann, 1991; Fahrmeir and

Tutz, 1994; Brown et al., 1998; Paninski et al., 2010); see appendix A for details. In either

case, the filtering requires O(k2t |It|) time for timestep t. When the filtering is complete

(i.e., E(qt|Y ) has been computed for each desired t), we typically want to transform from

the qt space to represent E(f |Y ); again, if the basis functions fi correspond to wavelet or
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Fourier functions, this costs O(d log d) time per timestep, or O(d) time if the fi functions

are compactly supported.

Figures 1 and 2 illustrate the output of the fast filter-smoother applied to simulated

place field data. The spatial variable ~x is chosen to be one-dimensional here, for clarity. We

chose the true place field f(~x, t) to be a Gaussian bump (as a function of ~x) whose mean

varied sinusoidally in time but whose height and width were held constant (see the upper

left panel of Fig. 1). The basis matrix F consisted of 50 equally-spaced bump functions with

compact support (specifically, spatial Gaussians truncated at σ ≈ 4, with each bump located

one standard deviation σ apart from the next.) The dynamics coefficient a (in the diagonal

dynamics matrix A = aI) was about 0.97, which corresponds to a temporal correlation time

of τ = 30 timesteps; the simulation shown in Fig. 1 lasted for T = 1000 timesteps. To

explore the behavior of the filter in two regimes, we let ~xt begin by sampling a wide range of

locations (see Fig. 1 for t < 200 or so), but then settling down to a small spatial subset for

larger values of t. We used the Gaussian noise model for yt in this simulation with standard

deviation 0.1.

We find that, as expected, the filter does a good job of tracking f(~x, t) for locations ~x

near the observation points ~xt, where the observations yt carry a good deal of information,

but far from ~xt the filter defaults to its prior mean value, significantly underestimating

f(~x, t). The posterior uncertainty V (f(~x, t)|Y ) = diag{FCov(qt|Y )F T} remains near the

prior uncertainty diag{FC0F
T} in locations far from ~xt, as expected. Fig. 2 illustrates that

the low-rank approximation works well in this setting, despite the fact that (at least for t

sufficiently large) only a few singular values are retained in our low-rank approximation (c.f.

Fig. 1, lower left panel). We set θ = 0.99 in (15) for this simulation.

We have also applied the filter to real neuronal data, recorded from single neurons in

the mouse hippocampal region by Dr. Pablo Jercog. In these experiments the mouse was

exploring a two-dimensional cage, and so we estimated the firing rate surface f(~x, t) as a

function of time t and a two-dimensional spatial variable ~x. The results are most easily

viewed in movie form; see http://www.stat.columbia.edu/~liam/research/abstracts/

fast-Kalman-abs.html for details.

Figure 3 illustrates an application of the fast filter-smoother to the second context de-
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Figure 1: Output of the filter-smoother applied to simulated one-dimensional place field
data. The superimposed black trace in all but the lower left panel indicates the simulated
path ~xt of the animal; ~xt begins by sampling a wide range of locations for t < 200, but settles
down to a small spatial subset for larger values of t. Upper left: true simulated place field
f(~x, t) is shown in color; f(~x, t) has a Gaussian shape as a function of ~x, and the center of this
Gaussian varies sinusoidally as a function of time t. Top middle and right panels: estimated
place fields, forward (E(f(~x, t)|Y1:t)) and forward-backward (E(f(~x, t)|Y1:T )), respectively.
Here (in a slight abuse of notation) we use E(f t|Y ) to denote the projected mean FE(qt|Y ),
where F is the basis matrix corresponding to the basis coefficients q. Note that the estimated
place fields are accurate near the observed positions ~xt, but revert to the prior mean when no
information is available. Bottom middle and right panels: marginal variance of the estimated
place fields, forward (V (f(~x, t)|Y1:t)) and forward-backward (V (f(~x, t)|Y1:T )), respectively.
Again, note that the filter output is most confident near ~xt. Lower left panel: effective rank
of C0−Cs

t as a function of t in the forward-backward smoother; the effective rank is largest
when ~xt samples many locations in a short time period.

scribed above. We simulated neuronal responses of the form yt = sTt f
t+ηt, where the sensory

stimulus st was taken to be a spatiotemporal Gaussian white noise process normalized to unit

energy and the response noise ηt was also modeled as Gaussian and white, for simplicity with

variance 0.1. As discussed above, we represented f t as a time-varying weighted sum of fixed
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Figure 2: Justification of our low rank approximation in the place field example (section
5.1). Upper row: Ct is fairly close to C0. Left: true Ct. Middle: C0. Both C0 and Ct are
plotted on the same colorscale, to facilitate direct comparison. Right: eigenvalue spectrum
of I − C−1/20 CtC

−1/2
0 ; an approximation of rank about 20 seems to suffice here. Lower row:

Comparison of the true vs. approximate projected covariance FCtF
T and mean Fµt at

t = 200. Left panel: true forward projected covariance FCtF
T . Middle panel: approximate

forward covariance F (C0 − LtΣtLt)F
T . The maximal pointwise error between these two

matrices less than 1%. Right panel: true (exact) and approximate means. The traces for
the exact and approximate means are barely distinguishable.

basis functions fi. In this case the basis F consisted of real-valued Fourier functions (sines

and cosines), and multiplication by this basis matrix was implemented via the fast Fourier

transform. As in the previous example, we chose the dynamics matrix A to be proportional

to the identity; the effective autocorrelation time was τ = 50 time steps here. The dynamics

noise covariance V was diagonal (and therefore so was the prior covariance C0), with the di-

agonal elements chosen so that the prior variance of the ω-th frequency basis coefficient falls

off proportionally to ω−2; this led to an effective smoothing prior. The dimensionality of this

basis was chosen equal to d = 29. Figure 3 provides a one-dimensional example, where the full

spatiotemporal output of the filter-smoother can be visualized directly. We have also applied
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Figure 3: Tracking a time-varying one-dimensional receptive field (section 5.1). Top panel:
the true receptive field f t was chosen to be a spatial Gaussian bump whose center varied
sinusoidally as a function of time t. Second panel: the stimulus st was chosen to be spa-
tiotemporal white Gaussian noise. Third panel: simulated output observed according to
the Gaussian model yt = sTt f

t + ηt with ηt ∼ N (0, 0.1). Lower four panels: the forward
filter mean E(f t|Y1:t) and marginal variance Var(f t(~x)|Y1:t) and the full forward-backward
smoother mean and marginal variance E(f t|Y1:T ) and marginal variance Var(f t(~x)|Y1:T ). The
dimension of the state variable f t here was 210; inference required seconds on a standard
laptop. Time units are arbitrary here; the assumed prior autocorrelation time was τ = 50
timesteps, leading to A = αI with α ≈ 0.98, while the total length of the experiment was
T = 200 timesteps.
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the filter to higher-dimensional examples; a two-dimensional example movie is available at

http://www.stat.columbia.edu/~liam/research/abstracts/fast-Kalman-abs.html.

0 5 10 15 20 25 30

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration # 

R
e

la
ti
v
e

 R
e

s
id

u
a

l 
# of PCG Iterations

 

 

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

80

90

100

Fraction of energy dropped: 1−θ 

T
im

e
 (

s
e

c
) 

Total Time to Reach Tolerance

 

 

LRBT

Exact BT

θ=0.900000

θ=0.990000

θ=0.999000

θ=0.999900

θ=0.999990

θ=0.999999

θ=1 (exact)

Figure 4: Solving a quadratic problem using preconditioned conjugate gradients with a
LRBT preconditioner. Left: Relative residual error ‖Hsk + ∇0‖/‖∇0‖, where H denotes
the Hessian and sk the search direction at the k-th iteration, and ∇0 the gradient at 0, as a
function of the number of iterations for various choices of the threshold θ. As θ approaches
1 the PCG method requires fewer iterations to converge to the exact solution within a small
tolerance (10−6). Right: Total computational cost to reach desired tolerance as a function
of the threshold. The total cost for convergence is always smaller than the cost required by
the exact BT algorithm. The computational gain (ratio of the required time at best θ vs
θ = 1) scales with d (data not shown).

As discussed in section 4, both the LRBT approach and the fast Kalman filter-smoother

can be used to approximate the Newton direction for maximizing the posterior. Apart from

approximating the exact solution, the LRBT algorithm can also be used as a preconditioner

for solving for the exact direction s = −H−1∇. We investigated this is in Fig. 4, where we

examine the convergence rates of the preconditioned conjugate gradient method (PCG) using

the LRBT method as a preconditioner, for the example presented in Fig. 3. As expected,

the number of iterations required for convergence drops as the threshold θ approaches 1 (see

Fig. 4 left). Trivially, when θ = 1, the exact BT algorithm is performed and we achieve

convergence within one iteration. The cost per iteration increases slowly with the threshold

(since the effective rank scales only as O(| log(1− θ)|)), so the overall cost to reach a desired

tolerance is always significantly smaller than the cost required for the exact BT algorithm.

The total cost for the PCG method reaches a global minimum for an intermediate value of
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θ. This value depends on the behavior of the effective rank (and therefore on the dynamics

A and the size of the observation matrices Bt), as well as the desired relative tolerance level

(set to 10−6 here).

6 Discussion

We have presented methods for efficiently computing the Kalman filter and the block-Thomas

(BT) smoother recursions in the few-observation setting. For the Kalman filter, the basic idea

is that, when fast methods are available for multiplying and dividing by the prior equilibrium

state covariance C0, then the posterior state covariance Ct can be well-approximated by

forming a low-rank perturbation of the prior C0. A similar argument holds for the BT

smoother. These low-rank perturbations, in turn, can be updated in an efficient recursive

manner. We provided a theoretical analysis that characterizes the tradeoff between the

computational cost of the algorithm (via the effective rank), and the accuracy of the low

rank approximation. We also showed that our methods can be applied in an iterative fashion

to reach any level of accuracy, at a reduced cost compared to standard exact methods.

There are a number of clear opportunities for application of this basic idea. Some ex-

citing examples involve optimal control and online experimental design in high-dimensional

settings; for instance, optimal online experimental design requires us to choose the observa-

tion matrix Bt adaptively, in real time, to minimize some objective function that expresses

the posterior uncertainty in some sense (Fedorov, 1972; Lewi et al., 2009; Seeger and Nick-

isch, 2011). Our fast methods can be adapted to compute many of these objective functions,

including those based on the posterior state entropy, or weighted sums of the marginal pos-

terior state variance. See Huggins and Paninski (2012) for an application of these ideas to

the neuronal dendritic setting.

The fast low-rank methods can also greatly facilitate the selection of hyperparameters

in the smoothing setting: typically the data analyst will need to set the scale over which

the data are smoothed, both temporally and spatially, and we would often like to do this

in a data-dependent manner. There are a number of standard approaches for choosing hy-

perparameters (Hastie et al., 2001), including cross-validation, generalized cross-validation,
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expectation-maximization, and maximum marginal likelihood or empirical Bayes methods.

In all of these cases, it is clearly beneficial to be able to compute the estimate more rapidly for

a variety of hyperparameter settings. In addition, the output of the filter-smoother is often

a necessary ingredient in hyperparameter selection. For example, the standard expectation-

maximization method of Shumway and Stoffer (2006) can be easily adapted to the low-rank

setting: we have already discussed the computation of the sufficient statistics E(xt|Y ) and

Cov(xt|Y ), and the remaining needed sufficient statistics E(xtx
T
t+1|Y ) follow easily. Similarly,

a straightforward application of the low-rank determinant lemma allows us to efficiently com-

pute the marginal log-likelihood log p(Y ), via a simple adaptation of the standard forward

recursion for the log-likelihood in the Kalman filter model (Rabiner, 1989).

We have seen that the prior covariance is especially easy to compute in the case that

the dynamics matrix A is normal: here C0 may be computed analytically, assuming the

dynamics noise covariance V can be transformed via a convenient whitening transformation.

A key direction for future work will be to extend these methods to the case that A is a non-

normal matrix, a situation that arises quite frequently in practice. For example, weather

prediction applications involve dynamics with strong drift (not just diffusion) terms, making

A non-symmetric and perhaps non-normal in many cases. Standard direct methods for

solving the Lyapunov equation given a non-normal dynamics matrix A (e.g., the Bartels-

Stewart algorithm (Antoulas, 2005)) require an orthogonalization step that takes O(d3) time

in general. There is a large applied mathematics literature on the approximate solution of

Lyapunov equations with sparse dynamics (see e.g. Sabino (2007) for a nice review), but the

focus of this literature is on the case that the noise covariance matrix is of low rank, which

may be less relevant in some statistical applications. Further research is needed into how to

adapt modern methods for solving the Lyapunov equation to the fast Kalman filter setting.

Another important direction for future research involves generalizations beyond the sim-

ple Kalman setting explored here. The smoothers we have discussed are all based on a simple

AR(1) framework. It is natural to ask if similar methods can be employed to efficiently han-

dle the general autoregressive-moving average (ARMA) case, or other temporal smoothing

methodologies (e.g., penalized spline methods (Green and Silverman, 1994; DiMatteo et al.,

2001; Wood, 2006)), since all of these techniques rely heavily on solving linear equations for
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which the corresponding matrices are block banded in the temporal domain.

Finally, for the methods discussed here, we assumed that the underlying dynamics model

(A, V ) does not change with time, in order to compute the equilibrium state covariance C0.

However, as noted in the presentation of our methods C0 can be interpreted as the limit of a

time varying prior covariance C0,t. In this case, our methods can be applied when C0,t can be

updated efficiently and used for fast matrix-vector operations. This is possible in a number

of setups (Pnevmatikakis and Paninski, 2012), and opens up some interesting applications

involving the incorporation of non-Gaussian priors (Park and Casella, 2008) and efficient

sampling of the full posterior p(X|Y ) using the perturbation technique of Papandreou and

Yuille (2010). We are currently pursuing these directions further.
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Supplementary Material

Appendix.pdf: Appendix including the omitted proofs and further technical results. Sec-

tion A deals with extensions to non-Gaussian measurements. Section B provides further

analysis and tighter bounds for the effective rank. Section C provides the proof for

Theorem 4.1 and discusses the convergence properties of the LRBT algorithm when

applied in an iterative fashion. Section D discusses how the LRBT can be extended to

provide estimates of the smoothed covariance in O(K(d)T ) time and O(dT ) space.

Matlab code: Matlab code including routines for all the algorithms described in the paper

(fast Kalman filter, LRBT, steepest descent LRBT, conjugate gradients with LRBT

preconditioner). The wrapper code calls all the algorithms as well the exact Kalman
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filter and BT algorithms for the receptive field example presented in section 5.1.
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