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Abstract

We propose a compressed sensing (CS) calcium imaging framework for monitoring
large neuronal populations, where we image randomized projections of the spatial
calcium concentration at each timestep, instead of measuring the concentration at
individual locations. We develop scalable nonnegative deconvolution methods for
extracting the neuronal spike time series from such observations. We also address
the problem of demixing the spatial locations of the neurons using rank-penalized
matrix factorization methods. By exploiting the sparsity of neural spiking we
demonstrate that the number of measurements needed per timestep is significantly
smaller than the total number of neurons, a result that can potentially enable
imaging of larger populations at considerably faster rates compared to traditional
raster-scanning techniques. Unlike traditional CS setups, our problem involves a
block-diagonal sensing matrix and a non-orthogonal sparse basis that spans multiple
timesteps. We provide tight approximations to the number of measurements needed
for perfect deconvolution for certain classes of spiking processes, and show that
this number undergoes a “phase transition,” which we characterize using modern
tools relating conic geometry to compressed sensing.

1 Introduction

Calcium imaging methods have revolutionized data acquisition in experimental neuroscience; we
can now record from large neural populations to study the structure and function of neural circuits
(see e.g. Ahrens et al. (2013)), or from multiple locations on a dendritic tree to examine the detailed
computations performed at a subcellular level (see e.g. Branco et al. (2010)). Traditional calcium
imaging techniques involve a raster-scanning protocol where at each cycle/timestep the microscope
scans the image in a voxel-by-voxel fashion, or some other predetermined pattern, e.g. through
random access multiphoton (RAMP) microscopy (Reddy et al., 2008), and thus the number of
measurements per timestep is equal to the number of voxels of interest. Although this protocol
produces “eye-interpretable” measurements, it introduces a tradeoff between the size of the imaged
field and the imaging frame rate; very large neural populations can be imaged only with a relatively
low temporal resolution.

This unfavorable situation can potentially be overcome by noticing that many acquired measurements
are redundant; voxels can be “void” in the sense that no neurons are located there, and active voxels
at nearby locations or timesteps will be highly correlated. Moreover, neural activity is typically
sparse; most neurons do not spike at every timestep. During recent years, imaging practitioners have
developed specialized techniques to leverage this redundancy. For example, Nikolenko et al. (2008)
describe a microscope that uses a spatial light modulator and allows for the simultaneous imaging
of different (predefined) image regions. More broadly, the advent of compressed sensing (CS) has
found many applications in imaging such as MRI (Lustig et al., 2007), hyperspectral imaging (Gehm
et al., 2007), sub-diffraction microscopy (Rust et al., 2006) and ghost imaging (Katz et al., 2009),
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with available hardware implementations (see e.g. Duarte et al. (2008)). Recently, Studer et al.
(2012) presented a fluorescence microscope based on the CS framework, where each measurement
is obtained by projection of the whole image on a random pattern. This framework can lead to
significant undersampling ratios for biological fluorescence imaging.

In this paper we propose the application of the imaging framework of Studer et al. (2012) to the case
of neural population calcium imaging to address the problem of imaging large neural populations with
high temporal resolution. The basic idea is to not measure the calcium at each location individually,
but rather to take a smaller number of “mixed” measurements (based on randomized projections of
the data). Then we use convex optimization methods that exploit the sparse structure in the data in
order to simultaneously demix the information from the randomized projection observations and
deconvolve the effect of the slow calcium indicator to recover the spikes. Our results indicate that the
number of required randomized measurements scales merely with the number of expected spikes
rather than the ambient dimension of the signal (number of voxels/neurons), allowing for the fast
monitoring of large neural populations. We also address the problem of estimating the (potentially
overlapping) spatial locations of the imaged neurons and demixing these locations using methods for
nuclear norm minimization and nonnegative matrix factorization. Our methods scale linearly with
the experiment length and are largely parallelizable, ensuring computational tractability. Our results
indicate that calcium imaging can be potentially scaled up to considerably larger neuron populations
and higher imaging rates by moving to compressive signal acquisition.

In the traditional static compressive imaging paradigm the sensing matrix is dense; every observation
comes from the projection of all the image voxels to a random vector/matrix. Moreover, the underlying
image can be either directly sparse (most of the voxels are zero) or sparse in some orthogonal basis
(e.g. Fourier, or wavelet). In our case the sensing matrix has a block-diagonal form (we can only
observe the activity at one specific time in each measurement) and the sparse basis (which corresponds
to the inverse of the matrix implementing the convolution of the spikes from the calcium indicator) is
non-orthogonal and spans multiple timelags. We analyze the effect of these distinctive features in
Sec. 3 in a noiseless setting. We show that as the number of measurements increases, the probability of
successful recovery undergoes a phase transition, and study the resulting phase transition curve (PTC),
i.e., the number of measurements per timestep required for accurate deconvolution as a function of
the number of spikes. Our analysis uses recent results that connect CS with conic geometry through
the “statistical dimension” (SD) of descent cones (Amelunxen et al., 2013). We demonstrate that in
many cases of interest, the SD provides a very good estimate of the PTC.

2 Model description and approximate maximum-a-posteriori inference

See e.g. Vogelstein et al. (2010) for background on statistical models for calcium imaging data. Here
we assume that at every timestep an image or light field (either two- or three-dimensional) is observed
for a duration of T timesteps. Each observed field contains a total number of d voxels and can be
vectorized in a single column vector. Thus all the activity can be described by d× T matrix F . Now
assume that the field contains a total number of N neurons, where N is in general unknown. Each
spike causes a rapid increase in the calcium concentration which then decays with a time constant
that depends on the chemical properties of the calcium indicator. For each neuron i we assume that
the “calcium activity” ci can be described as a stable autoregressive process AR(1) process1 that
filters the neuron’s spikes si(t) according to the fast-rise slow-decay procedure described before:

ci(t) = γci(t− 1) + si(t), (1)
where γ is the discrete time constant which satisfies 0 < γ < 1 and can be approximated as
γ = 1− exp(−∆t/τ), where ∆t is the length of each timestep and τ is the continuous time constant
of the calcium indicator. In general we assume that each si(t) is binary due to the small length of
the timestep in the proposed compressive imaging setting, and we use an i.i.d. prior for each neuron
p(si(t) = 1) = πi.2 Moreover, let ai ∈ Rd+ the (nonnegative) location vector for neuron i, and
b ∈ Rd+ the (nonnegative) vector of baseline concentration for all the voxels. The spatial calcium
concentration profile at time t can be described as

f(t) =
∑N

i=1
aici(t) + b. (2)

1Generalization to general AR(p) processes is straightforward, but we keep p = 1 for simplicity.
2This choice is merely for simplicity; more general prior distributions can be incorporated in our framework.
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In conventional raster-scanning experiments, at each timestep we observe a noisy version of the d-
dimensional image f(t). Since d is typically large, the acquisition of this vector can take a significant
amount of time, leading to a lengthy timestep ∆t and low temporal resolution. Instead, we propose
to observe the projections of f(t) onto a random matrix Bt ∈ Rn×d (e.g. each entry of Bt could be
chosen as 0 or 1 with probability 0.5):

y(t) = Btf(t) + εt, εt ∼ N (0,Σt), (3)

where εt denotes measurement noise (Gaussian, with diagonal covariance Σt, for simplicity). If
n = dim(y(t)) satisfies n� d, then y(t) represents a compression of f(t) that can potentially be
obtained more quickly than the full f(t). Now if we can use statistical methods to recover f(t) (or
equivalently the location ai and spikes si of each neuron) from the compressed measurements y(t),
the total imaging throughput will be increased by a factor proportional to the undersampling ratio
d/n. Our assumption here is that the random projection matrices Bt can be constructed quickly.
Recent technological innovations have enabled this fast construction by using digital micromirror
devices that enable spatial light modulation and can construct different excitation patterns with a high
frequency (order of kHz). The total fluorescence can then be detected with a single photomultiplier
tube. For more details we refer to Duarte et al. (2008); Nikolenko et al. (2008); Studer et al. (2012).

We discuss the statistical recovery problem next. For future reference, note that eqs. (1)-(3) can be
written in matrix form as (vec(·) denotes the vectorizing operator)

S = CGT

F = AC + b1TT
vec(Y ) = Bvec(F ) + ε,

with G =


1 0 . . . 0
−γ 1 . . . 0

...
. . . . . .

...
0 . . . −γ 1

 , B = blkdiag{B1, . . . , BT }. (4)

2.1 Approximate MAP inference with an interior point method

For now we assume that A is known. In general MAP inference of S is difficult due to the discrete
nature of S. Following Vogelstein et al. (2010) we relax S to take continuous values in the interval
[0, 1] (remember that we assume binary spikes), and appropriately modify the prior for si(t) to
log p(si(t)) ∝ −(λisi(t))1(0 ≤ si(t) ≤ 1), where λi is chosen such that the relaxed prior has the
same mean πi. To exploit the banded structure of G we seek the MAP estimate of C (instead of S)
by solving the following convex quadratic problem (we let ȳ(t) = y(t)−Btb)

minimize
C

∑T

t=1

1

2
(ȳ(t)−BtAc(t))TΣ−1

t (ȳ(t)−BtAc(t))− log p(C)

subject to 0 ≤ CGT ≤ 1, c(1) ≥ 0,

(P-QP)

Using the prior on S and the relation S = CGT , the log-prior of C can be written as log p(C) ∝
−λTCGT1T .We can solve (P-QP) efficiently using an interior point method with a log-barrier
(Vogelstein et al., 2010). The contribution of the likelihood term to the Hessian is a block-diagonal
matrix, whereas the barrier-term will contribute a block-tridiagonal matrix where each non-zero
block is diagonal. As a result the Newton search direction −H−1∇ can be computed efficiently in
O(TN3) time using a block version of standard forward-backward methods for tridiagonal systems
of linear equations. We note that if N is large this can be inefficient. In this case we can use an
augmented Lagrangian method (Boyd et al., 2011) to derive a fully parallelizable first order method,
with O(TN) complexity per iteration. We refer to the supplementary material for additional details.

As a first example we consider a simple setup where all the parameters are assumed to be known.
We consider N = 50 neurons observed over T = 1000 timesteps. We assume that A, b are known,
with A = IN (corresponding to non-overlapping point neurons, with one neuron in each voxel) and
b = 0, respectively. This case of known point neurons can be thought as the compressive analog
of RAMP microscopy where the neuron locations are predetermined and then imaged in a serial
manner. (We treat the case of unknown and possibly overlapping neuron locations in section 2.2.)
Each neuron was assumed to fire in an i.i.d. fashion with probability per timestep p = 0.04. Each
measurement was obtained by projecting the spatial fluorescence vector at time t, f(t), onto a random
matrix Bt. Each row of Bt is taken as an i.i.d. normalized vector 2β/

√
N , where β has i.i.d. entries

following a fair Bernoulli distribution. For each set of measurements we assume that Σt = σ2In, and
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Figure 1: Performance of proposed algorithm under different noise levels. A: True traces, B:
Estimated traces with n = 5 (10× undersampling), SNR = 20dB. C: Estimated traces with n = 20
(2.5× undersampling), SNR = 20dB. D: True and estimated spikes from the traces shown in panels
B and C for a randomly selected neuron. E: Relative error between true and estimated traces for
different number of measurements per timestep under different noise levels. The error decreases with
the number of observations and the reconstruction is stable with respect to noise.

the signal-to-noise ratio (SNR) in dB is defined as SNR = 10 log10(Var[βTf(t)]/Nσ2); a quick
calculation reveals that SNR = 10 log10(p(1− p)/(1− γ2)σ2).

Fig. 1 examines the solution of (P-QP) when the number of measurements per timestep n varied from
1 to N and for 8 different SNR values 0, 5, . . . , 30 plus the noiseless case (SNR = ∞). Fig. 1A
shows the noiseless traces for all the neurons and panels B and C show the reconstructed traces for
SNR = 20dB and n = 5, 20 respectively. Fig. 1D shows the estimated spikes for these cases for a
randomly picked neuron. For very small number of measurements (n = 5, i.e., 10× undersampling)
the inferred calcium traces (Fig. 1B) already closely resemble the true traces. However, the inferred
MAP values of the spikes (computed by S = CGT , essentially a differencing operation here) lie
in the interior of [0, 1], and the results are not directly interpretable at a high temporal resolution.
As n increases (n = 20, red) the estimated spikes lie very close to {0, 1} and a simple thresholding
procedure can recover the true spike times. In Fig. 1E the relative error between the estimated and
true traces (‖C − Ĉ‖F /‖C‖F , with ‖ · ‖F denoting the the Frobenius norm) is plotted. In general the
error decreases with the number of observations and the reconstruction is robust with noise. Finally,
by observing the noiseless case (dashed curve) we see that when n ≥ 13 the error becomes practically
zero indicating fully compressed acquisition of the calcium traces with a roughly 4× undersampling
factor. We will see below that this undersampling factor is inversely proportional to the firing rate:
we can recover highly sparse spike signals S using very few measurements n.

2.2 Estimation of the spatial matrix A

The above algorithm assumes that the underlying neurons have known locations, i.e., the matrix
A is known. In some cases A can be estimated a-priori by running a conventional raster-scanning
experiment at a high spatial resolution and locating the active voxels. However this approach is
expensive and can still be challenging due to noise and possible spatial overlap between different
neurons. To estimate A within the compressive framework we note that the baseline-subtracted
spatiotemporal calcium matrix F (see eqs. (2) and (4)) can be written as F̄ = F − b1TT = AC; thus
rank(F̄ ) ≤ N where N is the number of underlying neurons, with typically N � d. Since N is also
in general unknown we estimate F̄ by solving a nuclear norm penalized problem (Recht et al., 2010)

minimize
F̄

T∑
t=1

1

2
(ȳ(t)−Btf̄(t))TΣ−1

t (ȳ(t)−Btf̄(t))− log p(F̄ ) + λNN‖F̄‖∗

subject to F̄GT ≥ 0, f̄(1) ≥ 0,

(P-NN)
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where ‖ · ‖∗ denotes the nuclear norm (NN) of a matrix (i.e., the sum of its singular values), which is
a convex approximation to the nonconvex rank function (Fazel, 2002). The prior of F̄ can be chosen
in a similar fashion as log p(C), i..e, log p(F̄ ) ∝ −λTF F̄GT1T , where λF ∈ Rd. Although more
complex than (P-QP), (P-NN) is again convex and can be solved efficiently using e.g. the ADMM
method of Boyd et al. (2011). From the solution of (P-NN) we can estimate N by appropriately
thresholding the singular values of the estimated F̄ .3 Having N we can then use appropriately
constrained nonnegative matrix factorization (NMF) methods to alternately estimate A and C. Note
that during this NMF step the baseline vector b can also be estimated jointly with A. Since NMF
methods are nonconvex, and thus prone to local optima, informative initialization is important. We
can use the solution of (P-NN) to initialize the spatial component A using clustering methods, similar
to methods typically used in neuronal extracellular spike sorting (Lewicki, 1998). Details are given
in the supplement (along with some discussion of the estimation of the other parameters in this
problem); we refer to Pnevmatikakis et al. (2013) for full details.
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Figure 2: Estimating locations and calcium concentration from compressive calcium imaging mea-
surements. A: True spatiotemporal concentration B: estimate by solving (P-NN) C: estimate by using
NMF methods. D: Logarithmic plot of the first singular values of the solution of (P-NN), E: Estima-
tion of baseline vector, F: true spatial locations G: estimated spatial locations. The NN-penalized
method estimates the number of neurons and the NMF algorithm recovers the spatial and temporal
components with high accuracy.

In Fig. 2 we present an application of this method to an example with N = 8 spatially overlapping
neurons. For simplicity we consider neurons in a one-dimensional field with total number of voxels
d = 128 and spatial positions shown in Fig. 2E. At each timestep we obtain just n = 5 noisy
measurements using random projections on binary masks. From the solution to the NN-penalized
problem (P-NN) (Fig. 2B) we threshold the singular values (Fig. 2D) and estimate the number of
underlying neurons (note the logarithmic gap between the 8th and 9th largest singular values that
enables this separation). We then use the NMF approach to obtain final estimates of the spatial
locations (Fig. 2G), the baseline vector (Fig. 2E), and the full spatiotemporal concentration (Fig. 2C).
The estimates match well with the true values. Note that n < N � d showing that compressive
imaging with significant undersampling factors is possible, even in the case of classical raster scanning
protocol where the spatial locations are unknown.

3 Estimation of the phase transition curve in the noiseless case

The results presented above indicate that reconstruction of the spikes is possible even with significant
undersampling. In this section we study this problem from a compressed sensing (CS) perspective
in the idealized case where the measurements are noiseless. For simplicity, we also assume that
A = I (similar to a RAMP setup). Unlike the traditional CS setup, where a sparse signal (in some
basis) is sensed with a dense fully supported random matrix, in our case the sensing matrix B has a
block-diagonal form. A standard justification of CS approaches proceeds by establishing that the
sensing matrix satisfies the “restricted isometry property” (RIP) for certain classes of sparse signals

3To reduce potential shrinkage but promote low-rank solutions this “global” NN penalty can be replaced by a
series of “local” NN penalties on spatially overlapping patches.
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with high probability (w.h.p.); this property in turn guarantees the correct recovery of the parameters
of interest (Candes and Tao, 2005). Yap et al. (2011) showed that for signals that are sparse in some
orthogonal basis, the RIP holds for random block-diagonal matrices w.h.p. with a number of sufficient
measurement that scales with the squared coherence between the sparse basis and the elementary
(identity) basis. For non-orthogonal basis the RIP property has only been established for fully dense
sensing matrices (Candes et al., 2011). For signals with sparse variations Ba et al. (2012) established
perfect and stable recovery conditions under the assumption that the sensing matrix at each timestep
satisfies certain RIPs, and the sparsity level at each timestep has known upper bounds.

While the RIP is a valuable tool for the study of convex relaxation approaches to compressed sensing
problems, its estimates are usually up to a constant and can be relatively loose (Blanchard et al.,
2011). An alternative viewpoint is offered from conic geometric arguments (Chandrasekaran et al.,
2012; Amelunxen et al., 2013) that examine how many measurements are required such that the
convex relaxed program will have a unique solution which coincides with the true sparse solution.
We use this approach to study the theoretical properties of our proposed compressed calcium imaging
framework in an idealized noiseless setting. When noise is absent, the quadratic program (P-QP) for
the approximate MAP estimate converges to a linear program4:

minimize
C

f(C), subject to: Bvec(C) = vec(Y ) (P-LP)

with f(C) =

{
(v ⊗ 1N )Tvec(C), (G⊗ Id)vec(C) ≥ 0

∞, otherwise , and v = GT1T .

Here ⊗ denotes the Kronecker product and we used the identity vec(CGT ) = (G⊗ Id)vec(C). To
examine the properties of (P-LP) we follow the approach of Amelunxen et al. (2013): For a fully
dense sensing i.i.d. Gaussian (or random rotation) matrix B, the linear program (P-LP) will succeed
w.h.p. to reconstruct the true solution C0, if the total number of measurements nT satisfies

nT ≥ δ(D(f, C0)) +O(
√
TN). (5)

D(f, C0) is the descent cone of f at C0, induced by the set of non-increasing directions from C0, i.e.,

D(f, C0) = ∪τ≥0

{
y ∈ RN×T : f(C0 + τy) ≤ f(C0)

}
, (6)

and δ(C) is the “statistical dimension” (SD) of a convex cone C ⊆ Rm, defined as the expected
squared length of a standard normal Gaussian vector projected onto the cone

δ(C) = Eg‖ΠC(g)‖2, with g ∼ N (0, Im).

Eq. (5), and the analysis of Amelunxen et al. (2013), state that as TN → ∞, the probability that
(P-LP) will succeed to find the true solution undergoes a phase transition, and that the phase transition
curve (PTC), i.e., the number of measurements required for perfect reconstruction normalized by
the ambient dimension NT (Donoho and Tanner, 2009), coincides with the normalized SD. In our
case B is a block-diagonal matrix (not a fully-dense Gaussian matrix), and the SD only provides an
estimate of the PTC. However, as we show below, this estimate is tight in most cases of interest.

3.1 Computing the statistical dimension

Using a result from Amelunxen et al. (2013) the statistical dimension can also be expressed as the
expected squared distance of a standard normal vector from the cone induced by the subdifferential
(Rockafellar, 1970) ∂f of f at the true solution C0:

δ(D(f, C0) = Eg inf
τ>0

min
u∈τ∂f(C0)

‖g − u‖2, with g ∼ N (0, INT ). (7)

Although in general (7) cannot be solved in closed form, it can be easily estimated numerically; in the
supplementary material we show that the subdifferential ∂f(C0) takes the form of a convex polytope,
i.e., an intersection of linear half spaces. As a result, the distance of any vector g from ∂f(C0) can
be found by solving a simple quadratic program, and the statistical dimension can be estimated with
a simple Monte-Carlo simulation (details are presented in the supplement). The characterization

4To illustrate the generality of our approach we allow for arbitrary nonnegative spike values in this analysis,
but we also discuss the binary case that is of direct interest to our compressive calcium framework.

6



of (7) also explains the effect of the sparsity pattern on the SD. In the case where the sparse basis
is the identity then the cone induced by the subdifferential can be decomposed as the union of the
respective subdifferential cones induced by each coordinate. It follows that the SD is invariant to
coordinate permutations and depends only on the sparsity level, i.e., the number of nonzero elements.
However, this result is in general not true for a nonorthogonal sparse basis, indicating that the precise
location of the spikes (sparsity pattern) and not just their number has an effect on the SD. In our case
the calcium signal is sparse in the non-orthogonal basis described by the matrix G from (4).

3.2 Relation with the phase transition curve

In this section we examine the relation of the SD with the PTC for our compressive calcium imaging
problem. Let S denote the set of spikes, Ω = supp(S), andC the induced calcium tracesC = SG−T .
As we argued, the statistical dimension of the descent cone D(f, C) depends both on the cardinality
of the spike set |Ω| (sparsity level) and the location of the spikes (sparsity pattern). To examine
the effects of the sparsity level and pattern we define the normalized expected statistical dimension
(NESD) with respect to a certain distribution (e.g. Bernoulli) χ from which the spikes S are drawn.

δ̃(k/NT, χ) = EΩ∼χ [δ(D(f, C))/NT ] , with supp(S) = Ω, and EΩ∼χ|Ω| = k.

In Fig. 3 we examine the relation of the NESD with the phase transition curve of the noiseless problem
(P-LP). We consider a setup with N = 40 point neurons (A = Id, d = N) observed over T = 50
timesteps and chose discrete time constant γ = 0.99. The spike-times of each neuron came from
the same distribution and we considered two different distributions: (i) Bernoulli spiking, i.e., each
neuron fires i.i.d. spikes with the probability k/T , and (ii) desynchronized periodic spiking where
each neuron fires deterministically spikes with discrete frequency k/T timesteps−1, and each neuron
has a random phase. We considered two forms of spikes: (i) with nonnegative values (si(t) ≥ 0),
and (ii) with binary values (si(t) = {0, 1}), and we also considered two forms of sensing matrices:
(i) with time-varying matrix Bt, and (ii) with constant, fully supported matrices B1 = . . . = BT .
The entries of each Bt are again drawn from an i.i.d. fair Bernoulli distribution. For each of these
8 different conditions we varied the expected number of spikes per neuron k from 1 to T and the
number of observed measurements n from 1 to N . Fig. 3 shows the empirical probability that the
program (P-LP) will succeed in reconstructing the true solution averaged over a 100 repetitions.
Success is declared when the reconstructed spike signal Ŝ satisfies5 ‖Ŝ − S‖F /‖S‖F < 10−3. We
also plot the empirical PTC (purple dashed line), i.e., the empirical 50% success probability line, and
the NESD (solid blue line), approximated with a Monte Carlo simulation using 200 samples, for each
of the four distinct cases (note that the SD does not depend on the structure of the sensing matrix B).

The results indicate that in all cases, our problem undergoes a sharp phase transition as the number of
measurements per timestep varies: in the white regions of Fig. 3, S is recovered essentially perfectly,
with a sharp transition to a high probability of at least some errors in the black regions. Note that
these phase transitions are defined as functions of the signal sparsity index k/T ; the signal sparsity
sets the compressibility of this data.

In addition, in the case of time-varying Bt, the NESD provides a surprisingly good estimate of the
PTC, especially in the binary case or when the spiking signal is actually sparse (k/T < 0.5), a result
that justifies our overall approach. Although using time-varying sensing matrices Bt leads to better
results, compression is also possible with a constantB. This is an important result for implementation
purposes where changing the sensing matrix might be a costly or slow operation. On a more technical
side we also observe the following interesting properties:

• Periodic spiking requires more measurements for accurate deconvolution, a property again
predicted by the SD. This comes from the fact that the sparse basis is not orthogonal and
shows that for a fixed sparsity level k/T the sparsity pattern also affects the number of required
measurements. This difference depends on the time constant γ. As γ → 0, G→ I; the problem
becomes equivalent to a standard nonnegative CS problem, where the spike pattern is irrelevant.
• In the binary case the results exhibit a symmetry around the axis k/T = 0.5. In fact this symmetry

becomes exact as γ → 1. In the supplement we prove that this result is predicted by the SD.
5Note that when calculating the reconstruction error we excluded the last 10 timesteps. As every spike is

filtered by the AR process it has an effect for multiple timelags in the future and an optimal encoder (with fixed
number of measurements per timestep) has to sense each spike over multiple timelags. The number of excluded
timesteps depends only on γ and not on the length T , and thus this behavior becomes negligible as T →∞.
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Figure 3: Relation of the statistical dimension with the phase transition curve for two different
spiking distributions (Bernouli, periodic), two different spike values (nonnegative, binary), and two
classes of sensing matrices (time-varying, constant). For each panel: x-axis normalized sparsity k/T ,
y-axis undersampling index n/N . Each panel shows the empirical success probability for each pair
(k/T, n/N), the empirical 50%-success line (dashed purple line) and the SD (blue solid line). When
B is time-varying the SD provides a good estimate of the empirical PTC.

• In the Bernoulli spiking nonnegative case, the SD is numerically very close to the PTC of the
standard nonnegative CS problem (not shown here), adding to the growing body of evidence for
universal behavior of convex relaxation approaches to CS (Donoho and Tanner, 2009).

As mentioned above, our analysis is only approximate since B is block-diagonal and not fully
dense. However, this approximation is tight in the time-varying case. Still, it is possible to construct
adversarial counterexamples where the SD approach fails to provide a good estimate of the PTC.
For example, if all neurons fire in a completely synchronized manner then the required number
of measurements grows at a rate that is not predicted by (5). We present such an example in the
supplement and note that more research is needed to understand such extreme cases.

4 Conclusion

We proposed a framework for compressive calcium imaging. Using convex relaxation tools from
compressed sensing and low rank matrix factorization, we developed an efficient method for extracting
neurons’ spatial locations and the temporal locations of their spikes from a limited number of
measurements, enabling the imaging of large neural populations at potentially much higher imaging
rates than currently available. We also studied a noiseless version of our problem from a compressed
sensing point of view using newly introduced tools involving the statistical dimension of convex
cones. Our analysis can in certain cases capture the number of measurements needed for perfect
deconvolution, and helps explain the effects of different spike patterns on reconstruction performance.

Our approach suggests potential improvements over the standard raster scanning protocol (unknown
locations) as well as the more efficient RAMP protocol (known locations). However our analysis is
idealistic and neglects several issues that can arise in practice. The results of Fig. 1 suggest a tradeoff
between effective compression and SNR level. In the compressive framework the cycle length can be
relaxed more easily due to the parallel nature of the imaging (each location is targeted during the
whole “cycle”). The summed activity is then collected by the photomultiplier tube that introduces the
noise. While the nature of this addition has to be examined in practice, we expect that the observed
SNR will allow for significant compression. Another important issue is motion correction for brain
movement, especially in vivo conditions. While new approaches have to be derived for this problem,
the novel approach of Cotton et al. (2013) could be adaptable to our setting. We hope that our work
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will inspire experimentalists to leverage the proposed advanced signal processing methods to develop
more efficient imaging protocols.
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A Parallel first order implementation using the ADMM method

The quadratic problem (P-QP) for finding the MAP estimate (repeated here for simplicity)

minimize
C

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + λTCGT1T

subject to CGT ≥ 0, c(1) ≥ 0,

(P-QP)

can be also expressed as

minimize
C,Z

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + λTZGT1T

subject to C = Z,CZT ≥ 0, z(1) ≥ 0.

Using the alternate direction method of multipliers (ADMM) (Boyd et al., 2011) we solve the problem
using the following iterative scheme until convergence:

Ck+1 = arg min
C

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + (ρ/2)‖C − Zk + Uk‖2

Zk+1 = arg min
Z:ZGT≥0,z(1)≥0

λTZGT1T + (ρ/2)‖Ck+1 − Z + Uk‖2

Uk+1 = Uk + Ck+1 − Zk+1,

with ρ > 0. Now for Ck+1 each c(t) can be estimated in parallel by solving a simple unconstrained
quadratic program. The Hessian of each of these programs is of the form Ht = ρId + BTt Σ−1

t Bt
and therefore can be inverted in O(Nn2) time via the application of the Woodbury matrix identity
(remember that each Bt ∈ Rn×d). Similarly, the estimation of Zk+1 can be split into N parallel
programs each of which determines a row of Zk+1 with cost O(T ) via a plain log-barrier method,
similar to Vogelstein et al. (2010). Unlike the interior point method described in Sec. 2.1, the ADMM
method is a first order method and typically requires more iterations for convergence. However, it
may be a method of choice in the case where the spatial dimensionality is high and parallel computing
resources are available.

B Parameter estimation details

B.1 Choice of number of neurons

To estimate the number of neurons we compute the vector σ of the singular values of F̂ , where F̂ is
the solution of the NN-penalized problem (P-NN). We then construct the vector of consecutive ratios
a with a(i) = σ(i)/σ(i+ 1) and find the local minima of a. We pick N as the location of the first
local minimum of a such that the N chosen singular values capture a large fraction (e.g. 99%) of
‖F̂‖2F . We have observed that this method in general works well in practice.

B.2 NMF step

We first note that the baseline vector b can be jointly estimated with the matrix A, since it can be
incorporated as an additional column of A that is multiplied with an additional row of C where each
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entry is equal to 1, i.e., the spatiotemporal calcium matrix can be written as

F = [A, b]

[
C
1TT

]
.

Given A and b, the calcium traces C for all the neurons can be estimated by solving the (P-QP)
problem presented in Sec. 2. Given C, the log-likelihood of [A, b] can be expressed as

log(Y |A, b;C) ∝ −1

2
‖Σ−1/2B((CT ⊗ Id)vec(A) + (1T ⊗ Id)b− vec(Y ))‖2. (8)

To jointly estimate A and b we can maximize (8) subject to nonnegativity constrains A ≥ 0, b ≥ 0.
Additional regularizers can be introduced to A to penalize the size of each neuron (via an l1-norm
on A) or to smooth the shape of each neuron (via a spatial derivative penalty on each row of A).
Note that since A ≥ 0 and b ≥ 0, the l1-norm just becomes the sum of the elements and therefore
the problem remains a nonnegative least squares problem that can be solved efficiently (e.g. with a
log-barrier method).

To initialize the NMF procedure we start from the solution of the NN-penalized problem (P-NN) and
initialize the spatial component as follows:

1. Extract the “voxel” spikes from the solution of problem (P-NN)

Ŝ = F̂GT

2. Threshold the extracted spikes with a relatively high threshold (e.g. 90% quantile).
3. Perform k-means clustering of the spike vectors at each timestep, with N + 1 clusters and

discard the cluster with the centroid closest to zero.
4. Use the remaining clusters to initialize A0.
5. The baseline vector can be initialized by computing the remainder between the solution F̂

and the extracted spikes and taking the mean for each voxel.

A full presentation of these methods will be pursued elsewhere (Pnevmatikakis et al., 2013).

C Computing the statistical dimension

We first rewrite the function f for convenience:

f(C) =

{
(v ⊗ 1N )Tvec(C), (G⊗ Id)vec(C) ≥ 0

∞, otherwise , and v = GT1T .

We can express δ(D(f, C)) in terms of the SDs of the descent cones induced by the rows of C. Let
ci denote the i-th row of C (in column format) and define the function fr(c) = vT c, for Gc ≥ 0

(and fr(c) =∞ otherwise). Note that f(C) =
∑N
i=1 fr(ci). Now if D(fr, ci) is the descent cone

of fr at ci, since the sparsifying basis does not multiplex the spikes of the different neurons we have

D(f, C) = D(fr, c1)×D(fr, c2)× . . .×D(fr, cN ) =⇒ δ(D(f, C)) =

N∑
i=1

δ(D(fr, ci)), (9)

where the last equality follows from a property of the SD of direct product cones (Amelunxen et al.,
2013). Using the expression of the statistical dimension in terms of the subdifferential (7), we have

δ(D(fr, c)) = Eg inf
τ>0

min
u∈τ∂fr(c)

‖g − u‖2.

To characterize the subdifferential consider the function z : RT 7→ R with z(x) = 1TTx if x ≥ 0
(pointwise), and z(x) =∞ otherwise. Then if Ω is the set of entries where x is nonzero, and Ωc its
complement, we have

∂z(x) = w, with
{
w(j) = 1, j ∈ Ω,
w(j) ≤ 1, j ∈ Ωc

.

For our case note that fr(c) = z(Gc). Let Ωi the set of spiketimes of neuron i and Ωci its complement
in the set [1, . . . , T ]. Using the relation for affine transformations of the subdifferential ∂fr(c) =
GT∂z(Gc), the subdifferential at ci, ∂fr(ci), can be characterized as

∂fr(ci) = GTw, with
{
w(j) = 1, j ∈ Ωi
w(j) ≤ 1, j ∈ Ωci

(10)
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Using (7) the SD equals the average value over all standard normal i.i.d. vectors g of the quadratic
programs

minimize
w,τ

‖g −GTw‖2, subject to: τ ≥ 0, {w(j) = τ, j ∈ Ωi}, {w(j) ≤ τ, j ∈ Ωci}. (SD-QP)

The statistical dimension can be estimated with a simple Monte Carlo simulation by averaging the val-
ues of a series of quadratic programs. Since G is a bidiagonal matrix, each of the quadratic programs
can be solved in O(T ) time using a standard interior point method. Note that the sparsity pattern here
matters as opposed to the function z(x) where the expected distance from the subdifferential cone is
invariant under permutations.

D Symmetry of the statistical dimension in the binary case

The above analysis assumes that the spikes signal S takes arbitrary nonnegative values. In the case
where the spikes are restricted to take only binary {0, 1} values, a similar analysis can be carried: By
inserting the additional condition Gc ≤ 1, i.e., fr(ci) =∞ if Gc1 6≤ 1, the subdifferential ∂fr(ci)
is now given by

∂fr(ci) = GTw, with
{
w(j) ≥ 1, j ∈ Ωi
w(j) ≤ 1, j ∈ Ωci

. (11)

Note that (11) is very similar to (10) with the difference that w(j) ≥ 1 for j ∈ Ωi.

When γ = 1 the objective function fr becomes a nonnegative total-variation norm. We now prove
the statistical dimension with is asymptotically symmetric. Let two binary spiking signals s1, s2

that satisfy s1 = 1 − s2 and also let Ω1,Ω2 the corresponding sets of spiketimes, and c1, c2 the
corresponding calcium traces. It holds that Ω1 = [1, . . . , T ]\Ω2. Define C1, C2 the set of conic
constraints that these signals induce when computing the statistical dimension of the descent cones
(eq. (SD-QP)):

C1 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ τ, j ∈ Ω1) ∩ (w(j) ≤ τ, j ∈ Ω2)}
C2 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ τ, j ∈ Ω2) ∩ (w(j) ≤ τ, j ∈ Ω1)}

Now define the functions hi : RT 7→ R+ (i = 1, 2) as the value of the quadratic problems

hi(g) = min
w,τ∈Ci

‖g −GTw‖2. (12)

By making the change of variablesw ← w− τ , the set of constraints and the value functions become
respectively

C̃1 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ 0, j ∈ Ω1) ∩ (w(j) ≤ 0, j ∈ Ω2)}
C̃2 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ 0, j ∈ Ω2) ∩ (w(j) ≤ 0, j ∈ Ω1)},

and the value functions of (12) can be expressed as

hi(g) = min
w,τ∈C̃i

‖g −GTw + τGT1T ‖2.

If γ = 1 we have GT1T = [0, 0, . . . , 0, 1]T and therefore we argue that the contribution of the term
τGT1T in the value function is of order O(1) and that we have

hi(g) = h̄i(g) +O(1),

where h̄i is defined as
h̄i(g) = min

w∈C̄i
‖g −GTw‖2,

with
C̄1 = {w : (w(j) ≥ 0, j ∈ Ω1) ∩ (w(j) ≤ 0, j ∈ Ω2)}
C̄2 = {w : (w(j) ≥ 0, j ∈ Ω2) ∩ (w(j) ≤ 0, j ∈ Ω1)}

Now note that C̄1 = −C̄2 and therefore h̄1(g) = h̄2(−g). Therefore
δ(D(fr, c1)) = Eg(h1(g)) = Eg(h̄1(g)) +O(1) = Eg(h̄2(g)) +O(1) = δ(D(fr, c2)) +O(1)

and in the asymptotic regime

lim
T→∞

1

T
δ(D(fr, c1)) = lim

T→∞

1

T
δ(D(fr, c2)),

which establishes our symmetry argument.
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E Counterexamples

As the mentioned in the main text, the condition (5)

nT ≥ δ(D(f, C0)) +O(
√
NT ), (13)

is exact only whenB is a fully dense i.i.d. random matrix. Here we construct a counterexample where
the statistical dimension fails to provide a tight lower bound on the phase transition curve. Consider
again N neurons. Each neuron has Bernoulli spiking with probability of spike per timestep k/T ,
but now assume that all the neurons are perfectly synchronized. From (9), the statistical dimension
δ(D(f, C)) can be decomposed as

δ(D(f, C)) =

N∑
i=1

δ(D(fr, ci)),

i.e., it does not depend on the spike correlations between the different neurons. However we expect
that the synchrony between the neurons will make the reconstruction harder. For example, when the
sensing matrix B is constant and the spikes have nonnegative values, then compressive acquisition
is impossible since the dense calcium signal will always projected in the same lower-dimensional
subspace spanned by the constant B, and thus it cannot be recovered.

Binary spikes

Sparsity index

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Statistical dimension

Empirical PTC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nonnegative spikes

U
n

d
e

rs
a

m
p

li
n

g
 I

n
d

e
x

Sparsity index
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Relation of the statistical dimension with the phase transition curve in a synchronized
firing case. For each panel: x-axis normalized sparsity k/T , y-axis undersampling index n/N . Left:
Nonnegative spikes. Right: Binary spikes. The statistical dimension (solid blue line) does not provide
a good estimate of the empirical PTC (purple dashed line) for this case.

In Fig. 4 we consider a time-varying sensing matrix B and examine the cases where the spikes take
nonnegative values (left) and binary values (right). We again considered N = 40 and T = 50 and
removed the last 10 timesteps from the calculation of the reconstruction error. We again varied the
probability of spiking k/T from 0 to 1 and the number of measurements per timestep n from 1 to
N . In both cases we see that the statistical dimension fails to provide a tight bound on the empirical
PTC. However, note that compression is still possible for the nonnegative spikes case, if the signal is
very sparse, a result which indicates that occasional synchronies can be tolerated within the proposed
compressive framework. In the binary case, compression is always possible, a result that is expected
from the relatively simple structure of binary signals, and is important for our compressive calcium
imaging framework, where the spiking signal is expect to be binary (present or absent).

Note that the failure of the SD to capture the PTC should not be attributed to the decomposition
property (9) which ignores the correlations between the different neurons, but rather on the block-
diagonal structure of the sensing matrix B. If B is fully dense, then the SD coincides with the PTC as
is predicted in general result of Amelunxen et al. (2013) (data not shown). More research is needed
to understand the effects of restricting B to be a block-diagonal matrix.

References
Ahrens, M. B., M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller (2013). Whole-brain functional imaging at

cellular resolution using light-sheet microscopy. Nature methods 10(5), 413–420.

12



Amelunxen, D., M. Lotz, M. B. McCoy, and J. A. Tropp (2013). Living on the edge: A geometric theory of
phase transitions in convex optimization. arXiv preprint arXiv:1303.6672.

Ba, D., B. Babadi, P. Purdon, and E. Brown (2012). Exact and stable recovery of sequences of signals with
sparse increments via differential l1-minimization. In Advances in Neural Information Processing Systems
25, pp. 2636–2644.

Blanchard, J. D., C. Cartis, and J. Tanner (2011). Compressed sensing: How sharp is the restricted isometry
property? SIAM review 53(1), 105–125.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends R© in Machine Learning 3(1),
1–122.
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