Asymptotics for p-value based threshold estimation in regression settings

Atul Mallik*, Moulinath Banerjee*
Department of Statistics
University of Michigan
Ann Arbor, Michigan 48109
e-mail: atulm@umich.edu; moulib@umich.edu
and
Bodhisattva Sen ${ }^{\dagger}$
Department of Statistics
Columbia University
New York, New York 10027
e-mail: bodhi@stat.columbia.edu

Abstract

We investigate the large sample behavior of a p-value based procedure for estimating the threshold level at which a regression function takes off from its baseline value - a problem that frequently arises in environmental statistics, engineering and other related fields. The estimate is constructed via fitting a "stump" function to approximate p-values obtained from tests for deviation of the regression function from its baseline level. The smoothness of the regression function in the vicinity of the threshold determines the rate of convergence: a "cusp" of order k at the threshold yields an optimal convergence rate of $n^{-1 /(2 k+1)}, n$ being the number of sampled covariates. We show that the asymptotic distribution of the normalized estimate of the threshold, for both i.i.d. and short range dependent errors, is the minimizer of an integrated and transformed Gaussian process. We study the finite sample behavior of confidence intervals obtained through the asymptotic approximation using simulations, consider extensions to short-range dependent data, and apply our inference procedure to two real data sets.

AMS 2000 subject classifications: Primary 62G20, 62G86; secondary 62G30.
Keywords and phrases: Baseline value, change-point, integral of a transformed Gaussian process, least squares, nonparametric estimation, stump function.

Received March 2013.

1. Introduction

Consider a data generating model of the form $Y=\mu(X)+\epsilon$, where μ is a continuous function on $[0,1]$ such that $\mu(x)=\tau$ for $x \leq d_{0}$, and $\mu(x)>\tau$ for $x>d_{0}$. The covariate X may arise from a random or a fixed design setting and we as-

[^0]sume that ϵ has mean zero with finite positive variance. The function μ need not be monotone and the baseline value τ is not necessarily known. We are interested in estimating and constructing confidence intervals (CI's) for the threshold d_{0}, $d_{0} \in(0,1)$, the point from where the function starts to deviate from its baseline value.

Recently, Mallik et al. (2011) introduced a novel method for estimating the threshold d_{0} using a p-value based criterion function but did not provide a recipe for constructing confidence intervals (CI's) for the point d_{0}. In this paper, we address the inference problem: we study the asymptotic properties of their procedure in the regression setting and use these results to construct asymptotically valid CI's for the threshold, both in simulation settings and for two key motivating examples from Mallik et al. (2011). The problem, which falls within the sphere of non-regular M-estimation is rather hard, and involves non-trivial applications of techniques from modern empirical processes, as well as results from martingale theory and the theory of Gaussian processes. Along the way, we also deduce results on the large sample behavior of a kernel estimator at local points (see Lemma 2 and Proposition 4) that are of independent interest. In most of the literature, kernel estimates are considered at various fixed points and are asymptotically independent (Csörgő and Mielniczuk, 1995a,b; Robinson, 1997). Hence, they do not admit a functional limit. However, these estimates, when considered at local points, deliver an invariance principle; see Lemma 2 and the proof of Proposition 4.

It is instructive to note that our problem of interest has natural connections with change-point analysis, though it is not a change-point problem for the regression function itself. Under mild assumptions, estimating d_{0} can be treated as a problem of detecting a change-point in the derivative of a certain order of μ. The literature on change-point detection is enormous; earlier work includes Hinkley (1970), Korostelëv (1987), Dümbgen (1991), Müller (1992), Korostelëv and Tsybakov (1993), Loader (1996), Müller and Song (1997). We also refer the reader to Brodsky and Darkhovsky (1993), Bhattacharya (1994) and Csörgő and Horváth (1997) for an overview of results on change-point estimation in various settings. Change-points have been extensively studied in time-series and sequential problems as well; see Horváth, Horváth and Hušková (2008), Hušková et al. (2008), Gut and Steinebach (2009), Steland (2010) and the references therein. There has also been some work in settings with gradually changing regression functions (local alternative type formulations) but under certain parametric assumptions (Hušková, 1998; Jarušková, 1998).

In particular, the problem of estimating change-points in derivatives within the context of regression has been addressed by a number of authors, e.g. Müller (1992), Cheng and Raimondo (2008), Wishart (2009), Wishart and Kulik (2010). We compare and contrast our approach to the work of these authors in the next section. We further note that our problem can be viewed as a special case of the more general problem of identifying the region where a function, defined on some multi-dimensional space, assumes its baseline (minimum or maximum) value. This problem is relevant to applications in fMRI and image detection (Willett and Nowak, 2007).

In what follows we show that the smoothness of the function in the vicinity of d_{0} determines the rate of convergence of our estimator: for a "cusp" of order k at d_{0}, the best possible rate of convergence turns out to be $n^{-1 /(2 k+1)}$. The limiting distribution of an appropriately normalized version of the estimator is that of the minimizer of the integral of a transformed Gaussian process. The limiting process is new, and while the uniqueness of the minimizer remains unclear (and appears to be an interesting nontrivial exercise in probability), we can bypass the lack of uniqueness and still provide a thorough mathematical framework to construct honest CI's. Under the assumption of uniqueness, which appears to be a reasonable conjecture based on extensive simulations, we establish auxiliary results to construct asymptotically exact CI's.

The paper is organized thus: we briefly discuss the estimation procedure and the basic assumptions in Section 2. The rate of convergence and the asymptotic distribution of the estimated threshold for a particular version of our procedure, along with some auxiliary results for constructing CI's, are deduced in Sections 3.1 and 3.2 , assuming a known τ. Asymptotic results for variants of the procedure are discussed in Section 3.3 and extensions of these results to the situation with an unknown τ are presented in Section 4. We study the coverage performance of the resulting CI's through simulations in Section 5. The applicability of our approach to short-range dependent data is the content of Section 6. We implement our procedure to two data examples in Section 7 and end with a discussion in Section 8. The proofs of several technical results are available in the Appendix.

2. The method

For simplicity, we first consider the uniform fixed design regression model of the form:

$$
\begin{equation*}
Y_{i}=\mu\left(\frac{i}{n}\right)+\epsilon_{i}, \quad 1 \leq i \leq n \tag{2.1}
\end{equation*}
$$

with ϵ_{i} 's i.i.d. having variance σ_{0}^{2}. Although we suppress the dependence on n, Y_{i} and ϵ_{i} must be viewed as triangular arrays. Let K be a symmetric probability density (kernel) and $h_{n}=h_{0} n^{-\lambda}$ denote the smoothing bandwidth, for some $\lambda \in(0,1), h_{0}>0$. Then an estimate of the regression function, at stage n, is given by

$$
\begin{equation*}
\hat{\mu}(x)=\frac{1}{n h_{n}} \sum_{i=1}^{n} Y_{i} K\left(\frac{x-i / n}{h_{n}}\right) . \tag{2.2}
\end{equation*}
$$

For $x<d_{0}$, the statistic $\sqrt{n h_{n}}(\hat{\mu}(x)-\tau)$, whose variance is

$$
\begin{equation*}
\Sigma_{n}^{2}(x)=\Sigma_{n}^{2}\left(x, \sigma_{0}\right)=\operatorname{Var}\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)=\frac{\sigma_{0}^{2}}{n h_{n}} \sum_{i=1}^{n} K^{2}\left(\frac{x-i / n}{h_{n}}\right) \tag{2.3}
\end{equation*}
$$

converges to a normal distribution with zero mean and variance $\Sigma^{2}(x)=\sigma_{0}^{2} \bar{K}^{2}$ with $\vec{K}^{2}=\int K^{2}(u) d u$. Let $\hat{\sigma}$ be an estimator of σ_{0}. Mallik et al. (2011) estimate
d_{0} by constructing p-values for testing the null hypothesis $H_{0, x}: \mu(x)=\tau$ against the alternative $H_{1, x}: \mu(x)>\tau$. The approximate p-values are

$$
p_{n}(x, \tau)=1-\Phi\left(\frac{\sqrt{n h_{n}}(\hat{\mu}(i / n)-\tau)}{\Sigma_{n}(i / n, \hat{\sigma})}\right) .
$$

To the left of d_{0}, the null hypothesis holds and these approximate p-values converge weakly to the $\operatorname{Uniform}(0,1)$ distribution which has mean $1 / 2$. Moreover, to the right of d_{0}, where the alternative is true, the p-values converge in probability to 0 . This dichotomous behavior of the p-values motivates minimizing

$$
\begin{equation*}
\left[\sum_{i: i / n \leq d}\left\{p_{n}(i / n, \tau)-\frac{1}{2}\right\}^{2}+\sum_{i: i / n>d}\left\{p_{n}(i / n, \tau)\right\}^{2}\right] \tag{2.4}
\end{equation*}
$$

over values of d in $(0,1)$ to yield an estimate of d_{0}. Simple calculations show that this is equivalent to minimizing

$$
\begin{align*}
\widetilde{\mathbb{M}}_{n}(d) & \equiv \widetilde{\mathbb{M}}_{n}(d, \hat{\sigma}) \tag{2.5}\\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\Phi\left(\frac{\sqrt{n h_{n}}(\hat{\mu}(i / n)-\tau)}{\Sigma_{n}(i / n, \hat{\sigma})}\right)-\gamma\right\} 1\left(\frac{i}{n} \leq d\right)
\end{align*}
$$

Here, $\gamma=3 / 4$. We refer to the above approach as Method 1.
We next describe an approach which avoids estimating σ_{0} altogether. Relying upon the simple fact that $E[\Phi(Z)]=1 / 2$ for a normally distributed Z with zero mean and arbitrary variance, it can be seen that $E\left[\Phi\left(\sqrt{n h_{n}}(\hat{\mu}(x)-\tau)\right)\right]$ converges to $1 / 2$ for $x<d_{0}$, while for $x>d_{0}$, it converges to 1 . So, the desired dichotomous behavior is preserved even without normalization by the estimate of the variance. To this end, let

$$
\begin{equation*}
\mathbb{M}_{n}(d)=\frac{1}{n} \sum_{i=1}^{n}\left[\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\tau\right)\right)-\gamma\right] 1\left(\frac{i}{n} \leq d\right) . \tag{2.6}
\end{equation*}
$$

Then, an estimate of d_{0} is given by

$$
\hat{d}_{n}=\underset{d \in[0,1]}{\operatorname{sargmin}} \mathbb{M}_{n}(d)
$$

where sargmin denotes the smallest argmin of the criterion function, which does not have a unique minimum. We refer to this approach as Method 2 and study its limiting behavior in the paper. Analyzing this method is useful in illustrating the core ideas while avoiding some of the tedious details encountered in analyzing Method 1.
Remark 1. The above methods are based on a known τ. When τ is unknown, a plug-in estimate can be substituted in its place (more about this in Section 4). Also, for any choice of $\gamma \in(1 / 2,1)$ in (2.5) and (2.6), the estimator of d_{0} is consistent. The proof follows along the lines of arguments in Mallik et al. (2011, pp. 898-900).

2.1. Variants

If the covariate X is random, one could still use the Nadaraya-Watson estimator to construct p-values. More precisely, let \mathbb{P}_{n} denote the empirical measure of $\left(Y_{i}, X_{i}\right), i=1, \ldots, n$, which are independent realizations from the model $Y=$ $\mu(X)+\epsilon$ with $\sigma_{0}^{2}(x)=\operatorname{Var}(\epsilon \mid X=x)>0$ and X having a continuous positive density f on $[0,1]$. Then the Nadaraya-Watson estimator is:

$$
\tilde{\mu}(x)=\frac{\mathbb{P}_{n}\left[Y K\left((x-X) / h_{n}\right)\right]}{\mathbb{P}_{n}\left[K\left((x-X) / h_{n}\right)\right]} .
$$

and a consistent estimator of d_{0} is:

$$
\begin{equation*}
\tilde{d}_{n}=\underset{d \in(0,1)}{\operatorname{sargmin}} \mathbb{P}_{n}\left[\left\{\Phi\left(\sqrt{n h_{n}}(\tilde{\mu}(X)-\tau)\right)-\gamma\right\} 1(X \leq d)\right] \tag{2.7}
\end{equation*}
$$

(see Mallik et al. (2011, pp. 892)). An estimate based on p-values normalized by the estimate of variance can also be constructed but is computationally more complicated as an estimate of the variance function is needed.

2.2. Basic assumptions

We adhere to the setup of Section 2, i.e., we assume the errors to be independent and homoscedastic and consider a fixed design for the regression setting. The smoothness of the function in the vicinity of d_{0} plays a crucial role in determining the rate of convergence. Throughout this paper, we make the following assumptions.

1. Assumptions on μ :
(a) μ is continuous on $[0,1]$. We additionally assume that μ is Lipschitz continuous of order α_{1} with $\alpha_{1} \in(1 / 2,1]$.
(b) μ has a cusp of order k, k being a known positive integer, at d_{0}, i.e., $\mu^{(l)}\left(d_{0}\right)=0,1 \leq l \leq k-1$, and $\mu^{(k)}\left(d_{0}+\right)>0$, where $\mu^{(l)}(\cdot)$ denotes the l-th derivative of μ. Also, the k-th derivative, $\mu^{(k)}(x)$ is assumed to be continuous and bounded for $x \in\left(d_{0}, d_{0}+\zeta_{0}\right]$ for some $\zeta_{0}>0$.
2. The error ϵ possesses a continuous positive density on an interval.
3. Assumptions on the kernel K :
(a) K is a symmetric probability density.
(b) $K(u)$ is non-increasing in $|u|$.
(c) K is compactly supported, i.e., $K(x)=0$ when $|x| \geq L_{0}$, for some $L_{0}>0$.
(d) K is Lipschitz continuous of order $\alpha_{2} \in(1 / 2,1]$.

As a consequence of these assumptions, μ and K are bounded, $\bar{K}^{2}=$ $\int K^{2}(u) d u<\infty$ and $E|W|^{k}<\infty$, where W has density K. Also, both μ and K are Lipschitz continuous of order $\alpha=\min \left(\alpha_{1}, \alpha_{2}\right)$. These facts are frequently
used in the paper. Common kernels such as the Epanechnikov kernel and the triangular kernel conveniently satisfy the assumptions mentioned above. The results in the next section are developed for a $\gamma \in(1 / 2,1)$ (cf. Remark 1) and a known τ. It will be seen in Section 4 that τ can be estimated at a sufficiently fast rate; consequently, even if τ is unknown, appropriate estimates can be substituted in its place to construct the p-values that are instrumental to the methods of this paper, without changing the limit distributions. Without loss of generality, we take $\tau \equiv 0$ in the next section, as one can work with $\left(Y_{i}-\tau\right)$ s in place of $Y_{i} \mathrm{~s}$.

Comparison with existing approaches. Under the above assumptions, d_{0} is a 'change-point' in the k-th derivative of μ. Our procedure for estimating this change-point relies on the discrepancy of p-values, the construction of which requires a kernel-smoothed estimate (or if one desires, local polynomial estimate) of μ. As noted in the Introduction, the estimation of a change-point in the derivative of a regression function has been studied by a number of authors using kernel-based strategies. However, the approaches in these papers are quite different from ours and more importantly, our problem cannot be solved by these methods without making stronger model assumptions than those above. In Müller (1992), the change-point is obtained by direct estimation of the k-th derivative (k corresponds to ν in that paper) on either side of the change-point via one-sided kernels and measuring the difference between these estimates. In contrast, our approach does not rely on derivative estimation. We use an ordinary kernel function to construct a smooth estimate of μ which is required for the point wise testing procedures that lead to the p-values. In fact, a consistent estimate that attains the same rate of convergence as our current estimate could have been constructed using a simple regressogram estimator with an appropriate bin-width, in contrast to the approach in Müller (1992) which uses a k-times differentiable kernel. Müller (1992) also assumes that the k-th derivative of the regression function is at least twice continuously differentiable at all points except d_{0} - see, pages $738-739$ of that paper - which is stronger than our continuity assumption on $\mu^{(k)}$ (1(b) above). Cheng and Raimondo (2008) develop kernel methods for optimal estimation of the first derivative building on an idea by Goldenshluger, Tsybakov and Zeevi (2006), which is followed up in the context of dependent errors by Wishart and Kulik (2010), and Wishart (2009), but these papers do not consider the case $k>1$. We also note that our method is fairly simple to implement.

3. Main results

We state and prove results on the limiting behavior of the estimator obtained from Method 2. Results on the variant of the procedure discussed in Section 2.1 follow analogously and are stated in Section 3.3. We consider the model stated in (2.1) with homoscedastic errors and uniform fixed design, and study the limiting behavior of \hat{d}_{n} which minimizes (2.6). Recall that τ is taken to be zero without loss of generality.

3.1. Rate of convergence

We first consider the population equivalent of \mathbb{M}_{n}, given here by $M_{n}(d)=$ $E\left\{\mathbb{M}_{n}(d)\right\}$, and study the behavior of its smallest argmin. Let

$$
Z_{i n}=\frac{1}{\sqrt{n h_{n}}} \sum_{l=1}^{n} \epsilon_{l} K\left(\frac{i / n-l / n}{h_{n}}\right)
$$

for $i=1, \ldots, n$, and Z_{0} be a standard normal random variable independent of $Z_{\text {in }}$'s. Also, let

$$
\begin{equation*}
\bar{\mu}(x)=\frac{1}{n h_{n}} \sum_{l=1}^{n} \mu\left(\frac{l}{n}\right) K\left(\frac{x-l / n}{h_{n}}\right) . \tag{3.1}
\end{equation*}
$$

Note that $\sqrt{n h_{n}} \hat{\mu}(i / n)=\sqrt{n h_{n}} \bar{\mu}(i / n)+Z_{\text {in }}$ and $\operatorname{Var}\left(Z_{\text {in }}\right)=\Sigma^{2}(i / n)$ with $\Sigma(\cdot)$ as in (2.3). We have

$$
\begin{align*}
E\left[\Phi\left(\sqrt{n h_{n}} \hat{\mu}(i / n)\right)\right] & =E\left[\Phi\left(\sqrt{n h_{n}} \bar{\mu}(i / n)+Z_{i n}\right)\right] \\
& =E\left[1\left(Z_{0} \leq \sqrt{n h_{n}} \bar{\mu}(i / n)+Z_{i n}\right)\right] \\
& =\Phi_{i, n}\left(\frac{\sqrt{n h_{n}} \bar{\mu}(i / n)}{\sqrt{1+\Sigma_{n}^{2}(i / n)}}\right) \tag{3.2}
\end{align*}
$$

where $\Phi_{i, n}$ denotes the distribution function of $\left(Z_{0}-Z_{i n}\right) / \sqrt{1+\Sigma_{n}^{2}(i / n)}$. Hence,

$$
M_{n}(d)=\frac{1}{n} \sum_{i=1}^{n}\left\{\Phi_{i, n}\left(\frac{\sqrt{n h_{n}} \bar{\mu}(i / n)}{\sqrt{1+\Sigma_{n}^{2}(i / n)}}\right)-\gamma\right\} 1\left(\frac{i}{n} \leq d\right)
$$

For $L_{0} h_{n} \leq i / n \leq 1-L_{0} h_{n}$, $\Phi_{i, n}$'s and $\Sigma_{n}(i / n)$'s do not vary with i. We denote them by $\tilde{\Phi}_{n}$ and $\tilde{\Sigma}_{n}$ for convenience. Using Corollary 1 and (A.1) from the Appendix, $\tilde{\Sigma}_{n}$ converges to $\sigma_{0} \sqrt{\bar{K}^{2}}$. Also, for such i 's, any $\eta>0$ and sufficiently large n,

$$
\frac{1}{n h_{n} \tilde{\Sigma}_{n}^{2}} \sum_{l:|l-i| \leq L_{0} n h_{n}}^{n} E\left[\epsilon_{l}^{2} K^{2}\left(\frac{(i-l) / n}{h_{n}}\right) 1\left(\frac{\left|\epsilon_{l}\right| K\left((i-l) /\left(n h_{n}\right)\right)}{\sqrt{n h_{n}} \tilde{\Sigma}_{n}(l / n)}>\eta\right)\right]
$$

is bounded from above by

$$
\frac{2\left\lceil 2 L_{0} n h_{n}\right\rceil\|K\|_{\infty}^{2}}{n h_{n}\left(\sigma_{0}^{2} \bar{K}^{2}\right)} E\left[\epsilon_{1}^{2} 1\left(\frac{2\|K\|_{\infty}}{n h_{n}\left(\sigma_{0} \sqrt{\bar{K}^{2}}\right)}\left|\epsilon_{1}\right|>\eta\right)\right]
$$

which converges to zero. Hence, by Lindeberg-Feller CLT, $Z_{i n} / \tilde{\Sigma}_{n}$ and consequently, $\tilde{\Phi}_{n}$ converge weakly to Φ. In fact, for any i, we can also show that $\Phi_{i, n}$ converges weakly to Φ.

Let $d_{n}=\operatorname{sargmin}_{d} M_{n}(d)$. As mentioned earlier, sargmin denotes the smallest argmin of the objective function M_{n} which does not have a unique minimizer. The following lemma provides the rate at which d_{n} converges to d_{0}.

Lemma 1. Let $\nu_{n}=\min \left(h_{n}^{-1},\left(n h_{n}\right)^{1 / 2 k}\right)$. Then $\nu_{n}\left(d_{n}-d_{0}\right)=O(1)$.
Proof. It can be shown by arguments analogous to Mallik et al. (2011, pp. 898$900)$ that $\left(d_{n}-d_{0}\right)$ is $o(1)$. As d_{0} is an interior point of $[0,1], d_{n} \in\left(L_{0} h_{n}, 1-L_{0} h_{n}\right)$ and corresponds to a local minima of M_{n} for sufficiently large n, i.e., d_{n} satisfies

$$
\begin{equation*}
\tilde{\Phi}_{n}\left(\frac{\sqrt{n h_{n}} \bar{\mu}\left(d_{n}\right)}{\sqrt{1+\tilde{\Sigma}_{n}^{2}}}\right) \leq \gamma \text { and } \tilde{\Phi}_{n}\left(\frac{\sqrt{n h_{n}} \bar{\mu}\left(d_{n}+1 / n\right)}{\sqrt{1+\tilde{\Sigma}_{n}^{2}}}\right)>\gamma \tag{3.3}
\end{equation*}
$$

By Pólya's theorem, $\tilde{\Phi}_{n}$ converges uniformly to Φ. Consequently,

$$
\begin{equation*}
0 \leq \sqrt{n h_{n}} \bar{\mu}\left(d_{n}\right) \leq \Phi^{-1}(\gamma) \sqrt{1+\sigma_{0}^{2} \bar{K}^{2}}+o(1) \tag{3.4}
\end{equation*}
$$

Note that $\bar{\mu}(x)=0$ for $x<d_{0}-L_{0} h_{n}$ and $\tilde{\Phi}_{n}(0)$ converges to $\Phi(0)=0.5<\gamma$. So, if $d_{n}<d_{0}$, then for (3.3) to hold, $d_{n}+1 / n+L_{0} h_{n}>d_{0}$ for large n and thus $h_{n}^{-1}\left(d_{n}-d_{0}\right)=O(1)$ which gives the result. Also, when $d_{0}<d_{n} \leq d_{0}+L_{0} h_{n}$, the result automatically holds. So, it suffices to consider the case $d_{n}>d_{0}+L_{0} h_{n}$.

Let $u_{n}(x, v)=\left(1 / h_{n}\right) \mu(v) K\left((x-v) / h_{n}\right)$ for $x \in[0,1]$ and $v \in \mathbb{R}$. By Lemma 4 from the Appendix,

$$
\left|\bar{\mu}\left(d_{n}\right)-\int_{0}^{1} u_{n}\left(d_{n}, v\right) d v\right|=O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right)
$$

By a change of variable, $\int_{0}^{1} u_{n}\left(d_{n}, v\right) d v=\int_{-L_{0}}^{L_{0}} \mu\left(d_{n}+u h_{n}\right) K(u) d u$ for large n. As $d_{n}>d_{0}+L_{0} h_{n}$, the first part of the integrand, $\mu\left(d_{n}+u h_{n}\right)$, is positive for $u \in\left[-L_{0}, L_{0}\right]$. Let $\left[-L_{1}, L_{1}\right]$ be an interval where K is positive. Such an interval exists due to assumptions $4(\mathrm{a})$ and $4(\mathrm{~b})$. Hence, $\int_{-L_{1}}^{L_{1}} \mu\left(d_{n}+u h_{n}\right) K(u) d u=$ $2 L_{1} \mu\left(d_{n}+\xi_{n} h_{n}\right) K\left(\xi_{n}\right) \leq \int u_{n}\left(d_{n}, v\right) d v$, where ξ_{n} is some point in $\left[-L_{1}, L_{1}\right]$. Using Taylor expansion around $d_{0}, \mu\left(d_{n}+\xi_{n} h_{n}\right)=\left\{\mu^{(k)}\left(\zeta_{n}\right) / k!\right\}\left(d_{n}+\xi_{n} h_{n}-\right.$ $\left.d_{0}\right)^{k}$, for some ζ_{n} lying between d_{0} and $d_{n}+\xi_{n} h_{n}$. By (3.4), we get

$$
2 L_{1} \frac{\mu^{(k)}}{k!}\left(\zeta_{n}\right)\left(d_{n}+\xi_{n} h_{n}-d_{0}\right)^{k} K\left(\xi_{n}\right)=O\left(\left(n h_{n}\right)^{-1 / 2}\right)
$$

As $d_{n} \rightarrow d_{0}, \mu^{(k)}\left(\zeta_{n}\right)$ converges to $\mu^{(k)}\left(d_{0}+\right)$, which is positive. Also, as $\xi_{n} \in$ $\left[-L_{1}, L_{1}\right], K\left(\xi_{n}\right)$ is bounded away from zero, and thus $\left(d_{n}+\xi_{n} h_{n}-d_{0}\right)=$ $O\left(\left(n h_{n}\right)^{-1 / 2 k}\right)$, which yields the result.

As \hat{d}_{n} is, in fact, estimating d_{n}, its rate of convergence for d_{0} can at most be ν_{n}^{-1}. Fortunately, ν_{n}^{-1} turns out to be the exact rate of convergence of \hat{d}_{n}.

Theorem 1. Let ν_{n} be as defined in Lemma 1. Then $\nu_{n}\left(\hat{d}_{n}-d_{0}\right)=O_{p}(1)$.
The proof is given in Section A. 1 of the Appendix. It involves coming up with an appropriate distance ρ_{n} based on the behavior of M_{n} near d_{0} (Lemma 5) and then establishing a modulus of continuity bound for $\mathbb{M}_{n}-M_{n}$ with respect to ρ_{n}. As the summands that constitute \mathbb{M}_{n} are dependent, the latter cannot be
handled directly through VC or bracketing results (Theorems 2.14.1 or 2.14.2 of van der Vaart and Wellner (1996)); rather, we require a blocking argument followed by an application of Doob's inequality to the blocks.

The optimal rate is attained when $h_{n}^{-1} \sim\left(n h_{n}\right)^{1 /(2 k)}$ and corresponds to $h_{n}=$ $h_{0} n^{-1 /(2 k+1)}$ and $\nu_{n}=n^{1 /(2 k+1)}$. We now deduce the asymptotic distribution for this particular choice of bandwidth.

3.2. Asymptotic distribution

With $h_{n}=h_{0} n^{-1 /(2 k+1)}$, we study the limiting behavior of the process

$$
\begin{equation*}
Z_{n}(t)=h_{n}^{-1}\left[\mathbb{M}_{n}\left(d_{0}+t h_{n}\right)-\mathbb{M}_{n}\left(d_{0}\right)\right], \quad t \in \mathbb{R} \tag{3.5}
\end{equation*}
$$

where \mathbb{M}_{n} is defined in (2.6). The process $Z_{n}(t)$ is minimized at $h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)$. At the core of the process $Z_{n}(t)$ lies the estimator $\hat{\mu}$, computed at local points $d_{0}+t h_{n}$. Let

$$
\begin{equation*}
W_{n}(t)=\sqrt{n h_{n}} \hat{\mu}\left(d_{0}+t h_{n}\right) \tag{3.6}
\end{equation*}
$$

and $B_{\text {loc }}(\mathbb{R})$ denote the space of locally bounded functions on \mathbb{R}, equipped with the topology of uniform convergence on compacta. We have the following lemma on the limiting behavior of W_{n}.

Lemma 2. There exists a Gaussian process $W(t), t \in \mathbb{R}$, with almost sure continuous paths and drift

$$
m(t)=E(W(t))=\frac{h_{0}^{k+1 / 2} \mu^{(k)}\left(d_{0}+\right)}{k!} \int_{-\infty}^{t}(t-v)^{k} K(v) d v
$$

and covariance function $\operatorname{Cov}\left(W\left(t_{1}\right), W\left(t_{2}\right)\right)=\sigma_{0}^{2} \int K\left(t_{1}+u\right) K\left(t_{2}+u\right) d u$ such that the process $W_{n}(\cdot)$ converges weakly to $W(\cdot)$ in $B_{l o c}(\mathbb{R})$.

The proof is given in Section A. 2 of the Appendix. For brevity, $-\int_{y}^{x}$ is written as \int_{x}^{y} whenever $x>y$.

Theorem 2. For $h_{n}=h_{0} n^{-1 /(2 k+1)}$ and $t \in \mathbb{R}$, the process $Z_{n}(t)$ converges weakly to the process

$$
Z(t)=\int_{0}^{t}[\Phi(W(y))-\gamma] d y
$$

in $B_{l o c}(\mathbb{R})$.
Proof. Split $Z_{n}(t)$ as $I_{n}(t)+I I_{n}(t)$, where

$$
\begin{aligned}
I_{n}(t)= & \frac{1}{n h_{n}} \sum_{i=1}^{n}\left[\left\{\Phi\left(\sqrt{n h_{n}} \hat{\mu}(i / n)\right)-\gamma\right\}\right. \\
& \left.\times\left\{1\left(\frac{i}{n} \leq d_{0}+t h_{n}\right)-1\left(\frac{i}{n} \leq d_{0}\right)\right\}\right]
\end{aligned}
$$

$$
-\frac{1}{h_{n}} \int_{d_{0}}^{d_{0}+t h_{n}}\left(\Phi\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)-\gamma\right) d x
$$

and $I I_{n}=h_{n}^{-1} \int_{d_{0}}^{d_{0}+t h_{n}}\left(\Phi\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)-\gamma\right) d x$. Fix $T>0$ and let $t \in[-T, T]$. Using arguments almost identical to those for proving Lemma 4 in the Appendix, we have

$$
\begin{aligned}
\left|I_{n}(t)\right| \leq & \sum_{\substack{\left|d_{0}-i / n\right| \\
\leq T h_{n}}} \int_{i / n}^{(i+1) / n} \frac{1}{h_{n}}\left|\Phi\left(\sqrt{n h_{n}} \hat{\mu}(i / n)\right)-\Phi\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)\right| d x \\
& +O\left(\frac{1}{n h_{n}}\right)+\frac{\gamma}{n h_{n}}\left(\left\lfloor n\left(d_{0}+t h_{n}\right)\right\rfloor-\left\lfloor n\left(d_{0}\right)\right\rfloor\right)-\gamma t
\end{aligned}
$$

where the $O\left(1 /\left(n h_{n}\right)\right)$ factor accounts for the boundary terms. Using the fact that $x-1 \leq\lfloor x\rfloor \leq x+1$, the term $\frac{\gamma}{n h_{n}}\left(\left\lfloor n\left(d_{0}+t h_{n}\right)\right\rfloor-\left\lfloor n\left(d_{0}\right)\right\rfloor\right)-\gamma t$ is bounded by $2 \gamma\left(1 /\left(n h_{n}\right)+T / n\right)$ which goes to zero. The sum of integrals in the above display is further bounded by

$$
\begin{aligned}
& \frac{\left\lceil 2 T n h_{n}\right\rceil}{n h_{n}} \sup _{\substack{|x-y|<1 / n \\
x, y \in\left[d_{0}-T h_{n}, d_{0}+T h_{n}\right]}}\left|\Phi\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)-\Phi\left(\sqrt{n h_{n}} \hat{\mu}(y)\right)\right| \\
& \quad \leq \frac{\left\lceil 2 T n h_{n}\right\rceil}{2 \pi n h_{n}} \sup _{\substack{|u-v|<1 /\left(n h_{n}\right) \\
u, v \in[-T, T]}}\left|W_{n}(u)-W_{n}(v)\right| .
\end{aligned}
$$

The above display goes in probability to zero due to the asymptotic equicontinuity of the process W_{n} and hence the term I_{n} converges in probability to zero uniformly in t over compact sets. Further, we have

$$
\begin{aligned}
I I_{n}(t) & =h_{n}^{-1} \int_{d_{0}}^{d_{0}+t h_{n}}\left(\Phi\left(\sqrt{n h_{n}} \hat{\mu}(x)\right)-\gamma\right) d x \\
& =\int_{0}^{t}\left[\Phi\left(\sqrt{n h_{n}} \hat{\mu}\left(d_{0}+y h_{n}\right)\right)-\gamma\right] d y \\
& =\int_{0}^{t}\left[\Phi\left(W_{n}(y)\right)-\gamma\right] d y
\end{aligned}
$$

As the mapping $W(\cdot) \mapsto \int_{0}^{*} \Phi(W(y)) d y$ from $B_{l o c}(\mathbb{R})$ to $B_{l o c}(\mathbb{R})$ is continuous, using Lemma 2, the term $I I_{n}$ converges weakly to the process $\int_{0}^{t}[\Phi(W(y))-\gamma] d y$, $t \in \mathbb{R}$. This completes the proof.

A conservative asymptotic CI for d_{0} can be obtained using the following result.
Theorem 3. The process $Z(t)$ goes to infinity almost surely (a.s.) as $|t| \rightarrow \infty$. Moreover, let ξ_{0}^{s} and ξ_{0}^{l} denote the smallest and the largest minimizers of the process Z. Also, let $c_{\alpha / 2}^{s}$ and $c_{1-\alpha / 2}^{l}$ be the $(\alpha / 2)$ th and $(1-\alpha / 2)$ th quantiles of ξ_{0}^{s} and ξ_{0}^{l} respectively. For $h_{n}=h_{0} n^{-1 /(2 k+1)}$, we have

$$
\liminf _{n \rightarrow \infty} P\left[c_{\alpha / 2}^{s}<h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)<c_{1-\alpha / 2}^{l}\right] \geq 1-\alpha
$$

Note that ξ_{0}^{s} and ξ_{0}^{l} are indeed well defined by continuity of the sample paths of Z and the fact that $Z(t)$ goes to infinity as $|t| \rightarrow \infty$. Also, they are Borel measurable as, say for ξ_{0}^{s}, the events $\left[\xi_{0}^{s} \leq a\right]$ and the measurable event $\left[\inf _{t \leq a} Z(t) \leq \inf _{t>a} Z(t)\right]$ are equivalent for any $a \in \mathbb{R}$. Hence $c_{\alpha / 2}^{s}$ and $c_{1-\alpha / 2}^{l}$ are well defined. The proof of the result is given in Section A. 3 of the Appendix.

A minimum of the underlying limiting process lies in the set $\{y: \Phi(W(y))=\gamma\}$. As any fixed number has probability zero of being in this set, the distributions of ξ_{0}^{s} and ξ_{0}^{l} are continuous. The process $\{W(y): y \in \mathbb{R}\}$ has zero drift for $y<-L_{0}$ and is therefore stationary to the left of $-L_{0}$. Hence, it must cross γ infinitely often implying that Z has multiple local extrema. On the other hand, simulations strongly suggest that Z has a unique argmin though a theoretical justification appears intractable at this point. The issue of the uniqueness of the argmin of a stochastic process has mostly been addressed in context of Gaussian processes (Lifshits, 1982; Kim and Pollard, 1990; Ferger, 1999), certain transforms of compound Poisson processes (Ermakov, 1976; Pflug, 1983) and set-indexed Brownian motion (Müller and Song, 1996). These techniques do not apply to our setting; in fact, an analytical justification of the uniqueness of the minimizer of Z appears non-trivial. As the simulations provide strong evidence in support of a unique argmin, we use the following result for constructing CI's in practice.

Theorem 4. Assuming that the process Z has a unique argmin, we have

$$
h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}}\{Z(t)\}
$$

for $h_{n}=h_{0} n^{-1 /(2 k+1)}$.
Note that when the argmin is unique, Theorem 3 and Theorem 4 yield the same CI. The proof of Theorem 4 is a direct application of the argmin(argmax)continuous mapping theorem; see Kim and Pollard (1990, Theorem 2.7) or van der Vaart and Wellner (1996, Theorem 3.2.2).

3.3. Limit distributions for variants of the procedure

The rates of convergence and asymptotic distributions can be obtained similarly for most of the variants of the procedure that were discussed in Section 2.1. In what follows, we state the limiting distributions for some of these variants.

Results analogous to Theorem 3 can be shown to hold in the setting with heteroscedastic errors, i.e., $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{0}^{2}(i / n)$, where $\sigma_{0}^{2}(\cdot)$ is a positive continuous function. The process Z has the same form as in Theorem 2 apart from the fact that the σ_{0}^{2} involved in the covariance kernel of the process W that appears in the definition of Z is replaced by $\sigma_{0}^{2}\left(d_{0}\right)$. When normalized p-values are used to estimate d_{0}, we have the following form for the limiting distribution; an outline of its proof is given in Section A. 4 of the Appendix.

Proposition 1. Consider the setting with homoscedastic errors and covariates sampled from the fixed uniform design, as discussed in Section 2. Let \hat{d}_{n}^{1} denote
the estimate obtained from Method 1 by minimizing $\widetilde{\mathbb{M}}_{n}$ defined in (2.5). Let $h_{n}=h_{0} n^{-1 /(2 k+1)}$ and $W^{1}(t), t \in \mathbb{R}$, be a Gaussian process with drift

$$
E\left(W^{1}(t)\right)=\frac{h_{0}^{k+1 / 2} \mu^{(k)}\left(d_{0}+\right)}{k!\sigma_{0} \sqrt{K^{2}}} \int_{-\infty}^{t}(t-v)^{k} K(v) d v
$$

and covariance function $\operatorname{Cov}\left(W^{1}\left(t_{1}\right), W^{1}\left(t_{2}\right)\right)=\left(\bar{K}^{2}\right)^{-1} \int K\left(t_{1}+u\right) K\left(t_{2}+u\right) d u$. Let $Z^{1}(t)=\int_{0}^{t}\left\{\Phi\left(W^{1}(y)\right)-\gamma\right\} d y$, for $t \in \mathbb{R}$. If $\hat{\sigma}$ is a \sqrt{n}-consistent estimate of σ_{0}, then $h_{n}^{-1}\left(\hat{d}_{n}^{1}-d_{0}\right)$ is $O_{p}(1)$. For Z^{1} possessing a unique argmin a.s., we have

$$
h_{n}^{-1}\left(\hat{d}_{n}^{1}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}} Z^{1}(t) .
$$

When the covariate is sampled from a random design with heteroscedastic errors, the result extends as follows for the estimate based on non-normalized p-values. A sketch of the proof is given in Section A. 5 of the Appendix.

Proposition 2. Consider the setting with covariates sampled from a random design with design density f and heteroscedastic errors, as discussed in Section 2.1. The variance function $\sigma_{0}^{2}(x)=\operatorname{Var}(\epsilon \mid X=x)$ is assumed to be continuous and positive. Let $h_{n}=h_{0} n^{-1 /(2 k+1)}$ and $\tilde{W}(t), t \in \mathbb{R}$, be a Gaussian process with drift

$$
E(\tilde{W}(t))=\frac{h_{0}^{k+1 / 2} \mu^{(k)}\left(d_{0}+\right)}{k!} \int_{-\infty}^{t}(t-v)^{k} K(v) d v
$$

and covariance function $\operatorname{Cov}\left(\tilde{W}\left(t_{1}\right), \tilde{W}\left(t_{2}\right)\right)=\frac{\sigma_{0}^{2}\left(d_{0}\right)}{f\left(d_{0}\right)} \int K\left(t_{1}+u\right) K\left(t_{2}+u\right) d u$. Let $\tilde{Z}(t)=\int_{0}^{t}\{\Phi(\tilde{W}(y))-\gamma\} d y$, for $t \in \mathbb{R}$. For \tilde{d}_{n} defined as in (2.7), assume that $h_{n}^{-1}\left(\tilde{d}_{n}-d_{0}\right)$ is $O_{p}(1)$. For \tilde{Z} possessing a unique argmin a.s., we have

$$
h_{n}^{-1}\left(\tilde{d}_{n}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}} \tilde{Z}(t)
$$

4. The case of an unknown τ

Although most of the results have been deduced under the assumption of a known τ, in real applications τ is generally not known. In this situation, one would need to impute an estimate of τ in the objective function to carry out the procedure. It can be shown that the rate of convergence and the limit distribution does not change as long as we have a \sqrt{n}-consistent estimator of τ. The following result makes this formal; its proof is given in Section A. 6 of the Appendix.
Proposition 3. Let \hat{d}_{n} now denote the minimizer of

$$
\mathbb{M}_{n}(d, \hat{\tau})=\frac{1}{n} \sum_{i=1}^{n}\left[\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\hat{\tau}\right)\right)-\gamma\right] 1\left(\frac{i}{n} \leq d\right)
$$

where $\sqrt{n}(\hat{\tau}-\tau)=O_{p}(1)$ and $h_{n}=h_{0} n^{-1 /(2 k+1)}$. Then $h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)$ is $O_{p}(1)$. Assuming that the process Z defined in Theorem 2 has a unique argmin, we have

$$
h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}}\{Z(t)\}
$$

Quite a few choices are possible for estimating τ. If d_{0} can be safely assumed to be larger than some η, then a simple averaging of the observations below η would yield a \sqrt{n}-consistent estimator of τ. If a proper choice of η is not available, one can obtain an initial (consistent) estimate of τ using the method proposed in Section 2.4 of Mallik et al. (2011) (see (5.1)), compute \hat{d}_{n} and then average the responses from, say, $\left[0, c \hat{d}_{n}\right], c \in(0,1)$, to obtain a \sqrt{n}-consistent estimator of τ. This leads to an iterative procedure which we discuss in more detail in Section 5. In what follows, we justify that such an estimate of τ is indeed \sqrt{n}-consistent.
Lemma 3. Let $0<c<1$. For any consistent estimator d_{n}^{\prime} of d_{0}, define

$$
\hat{\tau}:=\frac{1}{\left\lfloor n c d_{n}^{\prime}\right\rfloor} \sum_{i=1}^{n} Y_{i} 1\left(\frac{i}{n} \leq c d_{n}^{\prime}\right) .
$$

We have $\sqrt{n}(\hat{\tau}-\tau)=O_{p}(1)$.
Proof. Note that for $T>0$ and $0<\kappa<\min (c,(1-c)) d_{0}$,

$$
\begin{aligned}
P[\sqrt{n}|\hat{\tau}-\tau|>T] \leq & P\left[\sqrt{n}|\hat{\tau}-\tau|>T, \kappa<c d_{n}^{\prime}<d_{0}-\kappa\right] \\
& +P\left[d_{n}^{\prime}-d_{0}<\left(\kappa-c d_{0}\right) / c\right] \\
& +P\left[d_{n}^{\prime}-d_{0}>\left((1-c) d_{0}-\kappa\right) / c\right]
\end{aligned}
$$

The second and the third term on the right side of the above display both converge to zero. Also,

$$
\begin{aligned}
E & {\left[n(\hat{\tau}-\tau)^{2} 1\left(\kappa<c d_{n}^{\prime}<d_{0}-\kappa\right)\right] } \\
& =n E\left[\left(\frac{1}{\left\lfloor n c d_{n}^{\prime}\right\rfloor} \sum_{i=1}^{\left\lfloor n c d_{n}^{\prime}\right\rfloor} \epsilon_{i}\right)^{2} 1\left(\kappa<c d_{n}^{\prime}<d_{0}-\kappa\right)\right] \\
& \leq \frac{n}{(n \kappa-1)^{2}} E\left[\sup _{a \leq d_{0}-\kappa}\left(\sum_{i=1}^{\lfloor n a\rfloor} \epsilon_{i}\right)^{2}\right] \\
& \leq \frac{4 n}{(n \kappa-1)^{2}} E\left[\left(\sum_{i=1}^{\left\lfloor n\left(d_{0}-\kappa\right)\right\rfloor} \epsilon_{i}\right)^{2}\right] \leq \frac{4 n\left(n\left(d_{0}-\kappa\right)+1\right) \sigma_{0}^{2}}{(n \kappa-1)^{2}} .
\end{aligned}
$$

Here, the penultimate step followed from Doob's inequality. Hence, $E[n(\hat{\tau}-$ $\left.\tau)^{2} 1\left(\kappa<c d_{n}^{\prime}<d_{0}-\kappa\right)\right]=O(1)$. Thus, by Chebyshev's inequality,

$$
P\left[\sqrt{n}|\hat{\tau}-\tau|>T, \kappa<c d_{n}^{\prime}<d_{0}-\kappa\right] \leq O(1) / T^{2}
$$

which can be made arbitrarily small by choosing T large. This completes the proof.

5. Simulations

We consider three choices for the underlying regression function $\mu_{k}(x)=[2(x-$ $0.5)]^{k} 1(x>0.5), x \in[0,1], k=1,2$ and $\mu_{3}(x)=[(x-0.5)+(1 / 5) \sin (5(x-$ $\left.0.5))+0.3 \sin \left(100(x-0.5)^{2}\right)\right] 1(x>0.5)$. All these functions are at their baseline value 0 up to $d_{0}=0.5$. The functions μ_{1} (linear) and μ_{2} (quadratic) both rise to 1 while μ_{3} exhibits non-isotonic sinusoidal behavior after rising at d_{0}. The right derivative at d_{0}, a factor that appears in the limiting process Z, is the same for μ_{1} and μ_{3}. The functions are plotted in the upper left panel of Figure 1. The functions μ_{1} and μ_{2} are paired up with normally distributed errors having mean 0 and standard deviation $\sigma_{0}=0.1$, while the noise added with μ_{3} is from a t distribution with 5 degrees of freedom, scaled to have the standard deviation σ_{0}. The three models, μ_{1} with normal errors, μ_{2} with normal errors and μ_{3} with t-distributed errors, are referred to by the the name of their regression functions only. We work with $\gamma=3 / 4$ as extreme values of γ (close to 0.5 or 1) tend to cause instabilities.

We construct the estimate of d_{0} using the normalized p-values as they exhibit better finite sample performance and study the coverage performance of the approximate CI's obtained from the limiting distributions with estimated nuisance parameters. The error variance σ_{0}^{2} is estimated in a straightforward manner using $\hat{\sigma}^{2}=(1 / n) \sum_{i}\left\{Y_{i}-\hat{\mu}(i / n)\right\}^{2}$. More sophisticated estimates of the error variance are also available (Gasser, Sroka and Jennen-Steinmetz, 1986; Hall, Kay and Titterington, 1990) but we avoid them for the sake of simplicity. We use the Epanechnikov kernel for constructing the estimate of μ. For moderate samples, the bad behavior of kernel estimates near the boundary affects the coverage performance. In order to correct for this, we only consider the terms between h_{n} to $1-h_{n}$ in our objective function, i.e., for $d \in\left(h_{n}, 1-h_{n}\right)$,

$$
\mathbb{M}_{n}(d, \tau)=\frac{1}{n} \sum_{h_{n} \leq \frac{i}{n} \leq 1-h_{n}}\left\{\Phi\left(\frac{\sqrt{n h_{n}}(\hat{\mu}(i / n)-\tau)}{\Sigma_{n}(i / n, \hat{\sigma})}\right)-\gamma\right\} 1\left(\frac{i}{n} \leq d\right)
$$

The asymptotic distribution of the minimizer of this restricted criterion function still has the same form as in Proposition 1. A good choice for h_{0} in the optimal bandwidth $h_{n}=h_{0} n^{-1 /(2 k+1)}$ can be obtained through minimizing the MSE of $\hat{\mu}\left(d_{0}\right)$. Standard calculations show that

$$
\begin{aligned}
\operatorname{Bias}\left(\hat{\mu}\left(d_{0}\right)\right) & =\frac{\mu^{(k)}\left(d_{0}+\right)}{k!} h_{n}^{k} E\left[W^{k} 1(W>0)\right]+o\left(h_{n}^{k}\right)+O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right), \text { and } \\
\operatorname{Var}\left(\hat{\mu}\left(d_{0}\right)\right) & =\frac{\sigma_{0}^{2}}{n h_{n}} \bar{K}^{2}+o\left(\frac{1}{n h_{n}}\right),
\end{aligned}
$$

Fig 1. Regression functions and $Q-Q$ plots.
where W has density K. The MSE is minimized at $h_{n}=h_{0}^{o p t} n^{-1 /(2 k+1)}$ where

$$
h_{0}^{o p t}=\left[\frac{\sigma_{0}^{2} \bar{K}^{2}(k!)^{2}}{2 k\left\{\mu^{(k)}\left(d_{0}+\right) E\left[W^{k} 1(W>0)\right]\right\}^{2}}\right]^{-1 /(2 k+1)}
$$

This bandwidth goes to 0 at the right rate needed for estimating d_{0}. Moreover, efficient estimation of μ in the vicinity of d_{0} is likely to aid in estimating d_{0}. Hence, we advocate the use of this choice of h_{0} for our procedure.

With the above mentioned choice of h_{0}, we compare the distribution of $h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)$ for $n=1000$ data points over 2000 replications with the deduced asymptotic distribution. As τ is assumed unknown, we implement an iterative scheme. We obtain an initial estimate of τ using the method prescribed in Mallik et al. (2011), i.e.,

$$
\begin{equation*}
\hat{\tau}_{\text {init }}=\underset{\tilde{\tau} \in \mathbb{R}}{\operatorname{argmin}} \sum\left\{\Phi\left(\frac{\sqrt{n h_{n}}(\hat{\mu}(i / n)-\tilde{\tau})}{\Sigma_{n}(i / n, \hat{\sigma})}\right)-\frac{1}{2}\right\}^{2} . \tag{5.1}
\end{equation*}
$$

This estimate of τ, based on $h_{0}^{o p t}$, is used to compute \hat{d}_{n}. We re-estimate τ by averaging the responses for which $i / n \in\left[0,0.9 \hat{d}_{n}\right]$, use this new estimate of τ
to update the estimate of d_{0}, and proceed thus. The Q-Q plots are shown in Figure 1 which show considerable agreement between the two distributions.

Next, we explore the coverage performance of the CI's constructed by imputing estimates of the nuisance parameters in the limiting distribution. Computing h_{0} requires the knowledge of the k-th derivative of μ at d_{0} which we also need to generate from the limit process. To estimate $\mu^{(k)}\left(d_{0}+\right)$, first observe that $\mu(x)=\mu^{(k)}\left(d_{0}+\right)\left(x-d_{0}\right)^{k} / k!+o\left(\left(x-d_{0}\right)^{k}\right)$ for $x>d_{0}$. Hence, an estimate of $\mu^{(k)}\left(d_{0}+\right)$ can be obtained by fitting a k-th power of the covariate to the right of \hat{d}_{n}. More precisely, an estimate of $\xi_{0} \equiv \mu^{(k)}\left(d_{0}+\right) / k$! is given by

$$
\begin{aligned}
\hat{\xi} & =\underset{\xi}{\operatorname{argmin}} \sum_{i=1}^{n}\left\{Y_{i}-\xi\left(i / n-\hat{d}_{n}\right)^{k}\right\}^{2} 1\left(i / n \in\left(\hat{d}_{n}, \hat{d}_{n}+b_{n}\right]\right) \\
& =\frac{\sum Y_{i}\left(i / n-\hat{d}_{n}\right)^{k} 1\left(i / n \in\left(\hat{d}_{n}, \hat{d}_{n}+b_{n}\right]\right)}{\sum\left(i / n-\hat{d}_{n}\right)^{2 k} 1\left(i / n \in\left(\hat{d}_{n}, \hat{d}_{n}+b_{n}\right]\right)}
\end{aligned}
$$

where $b_{n} \downarrow 0$ and $n b_{n}^{2 k+1} \rightarrow \infty$. For the optimal h_{n}, this provides a good estimate of ξ_{0}.

We include this in our iterative method where we start with an arbitrary choice of h_{0} and compute $\hat{\tau}_{\text {init }}$. We use $\hat{\tau}_{\text {init }}$ to compute \hat{d}_{n} and $\hat{\mu}^{(k)}\left(d_{0}+\right)$. The parameter $\hat{\mu}^{(k)}\left(d_{0}+\right)$ is estimated using a reasonably wide smoothing bandwidth $b_{n}, b_{n}=5(n / \log n)^{-1 /(2 k+1)}$. These initial estimates are used to compute the next level estimate of h_{0} using the expression for $h_{0}^{o p t}$. We re-estimate τ by averaging the responses for which $i / n \in\left[0,0.9 \hat{d}_{n}\right]$ and proceed thus. On average, the estimates stabilize within 7 iterations. The coverage performance over 5000 replications is given below in Table 1. The approximate CI's mostly exhibit overcoverage for moderate sample sizes for μ_{1} and μ_{3} but converge to the desired confidence levels for large n. Also, the limiting distribution is same under models μ_{1} and μ_{3} which is evident from the coverages and the length of CI's for large n.

6. Dependent data

We briefly discuss the extension of Method 2 to dependent data in this section. Our problem is relevant to applications from time series models (see Section 7) where it is not reasonable to assume that the errors ϵ_{i} 's are independent. A data generating model of the form (2.1) can be assumed here with the exception that the errors now arise from a stationary sequence $\left\{\ldots, \epsilon_{-1}, \epsilon_{0}, \epsilon_{1}, \ldots\right\}$ and exhibit short-range dependence in the sense of Robinson (1997). As with (2.1), the dependence of Y_{i} 's and ϵ_{i} 's on n is suppressed but they must be viewed as triangular arrays. The extension to this setting would work along the following lines. The estimate of μ with dependent errors still has the same form as (2.2). With additional assumptions (Assumptions 1-5 of Robinson (1997)), it is guaranteed that $\sqrt{n h_{n}}\left(\hat{\mu}\left(x_{i}\right)-\mu\left(x_{i}\right)\right), x_{i} \in(0,1)$ and $x_{1} \neq x_{2}$, converge jointly in distribution to independent normals with zero mean - a fact that justifies the consistency of our p-value based estimates in this setting (Mallik et al., 2011). Hence, \hat{d}_{n}, defined using (2.6), can still be used to estimate the threshold. The limiting distribution would be of the same form as in Lemma 2 but with a dif-

Table 1
Coverage probabilities and length of the CI (in parentheses) using the true parameters (T) and the estimated parameters (E) for different sample sizes under μ_{1}, μ_{2} and μ_{3}

n	90\% CI		95\% CI	
	T	E	T	E
30	0.949 (0.462)	0.961 (0.614)	0.989 (0.588)	0.987 (0.659)
50	0.943 (0.420)	0.951 (0.539)	0.971 (0.547)	0.978 (0.625)
100	0.921 (0.357)	0.939 (0.448)	0.965 (0.483)	0.972 (0.559)
500	0.914 (0.218)	0.922 (0.258)	0.961 (0.299)	0.965 (0.346)
1000	0.907 (0.173)	0.911 (0.197)	0.955 (0.237)	0.959 (0.265)
2000	0.900 (0.137)	0.903 (0.153)	0.951 (0.188)	0.954 (0.205)
μ_{1}				
n	90\% CI		95\% CI	
	T	E	T	E
30	0.957 (0.544)	0.849 (0.651)	0.992 (0.624)	0.899 (0.665)
50	0.948 (0.539)	0.876 (0.615)	0.973 (0.620)	0.908 (0.627)
100	0.933 (0.519)	0.883 (0.602)	0.964 (0.617)	0.917 (0.616)
500	0.917 (0.415)	0.889 (0.477)	0.962 (0.548)	0.934 (0.555)
1000	0.907 (0.385)	0.894 (0.424)	0.957 (0.511)	0.944 (0.525)
2000	0.904 (0.350)	0.899 (0.384)	0.951 (0.471)	0.948 (0.490)
μ_{2}				
n	90\% CI		95\% CI	
	T	E	T	E
30	0.960 (0.461)	0.968 (0.620)	0.992 (0.590)	0.994 (0.672)
50	0.949 (0.424)	0.959 (0.541)	0.977 (0.548)	0.982 (0.630)
100	0.925 (0.358)	0.941 (0.472)	0.970 (0.482)	0.976 (0.539)
500	0.915 (0.218)	0.925 (0.304)	0.961 (0.299)	0.966 (0.348)
1000	0.906 (0.173)	0.914 (0.199)	0.954 (0.237)	0.958 (0.264)
2000	0.901 (0.138)	0.904(0.154)	0.950 (0.188)	0.954 (0.204)
μ_{3}				

ferent scaling factor that appears in the covariance function of the process W. We outline the form of the limiting distribution below. The technical details are more involved in the sense of tedium but the approach in deriving the limiting distribution remains the same at the conceptual level.

To precisely state the limiting distribution, let $\rho(i, j)=\rho(i-j)$ denote the covariance between ϵ_{i} and ϵ_{j} and let ψ denote the underlying spectral density defined through the relation $\sigma_{0}^{2} \rho(l)=\int_{-\pi}^{\pi} \psi(u) \exp (\imath l u) d u, l \in \mathbb{Z}$. Let \bar{W} be a Gaussian process with drift $m(\cdot)$ (defined in Lemma 2) and covariance function

$$
\operatorname{Cov}\left(\bar{W}\left(t_{1}\right), \bar{W}\left(t_{2}\right)\right)=2 \pi \psi(0) \int K\left(t_{1}+u\right) K\left(t_{2}+u\right) d u
$$

It is not uncommon for the spectral density at zero, $\psi(0)=(2 \pi)^{-1} \sigma_{0}^{2} \sum_{j \in \mathbb{Z}} \rho(j)$, to appear in settings with short range dependence (Robinson, 1997; Anevski and Hössjer, 2006).

Proposition 4. Consider the setup of Method 2 with the errors now exhibiting short-range dependence as discussed above. Assume that for $h_{n}=h_{0} n^{-1 /(2 k+1)}$, the resulting estimate \hat{d}_{n} obtained using (2.6) satisfies $h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)=O_{p}(1)$ and that the process $\bar{Z}(t)=\int_{0}^{t}[\Phi(\bar{W}(y))-\gamma] d y, t \in \mathbb{R}$, has a unique minimum a.s. Then

$$
h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)=\underset{t \in \mathbb{R}}{\operatorname{argmin}} \bar{Z}(t)
$$

FIG 2. Regression setting with dependent errors: $Q-Q$ plot under μ_{1}.

The proof is outlined in Section A. 7 of the Appendix.
An illustration of the above phenomenon is shown through a Q-Q plot (Figure 2), where we generate ϵ_{i} 's from an $\operatorname{AR}(1)$ model $\epsilon_{i}=0.25 \epsilon_{i-1}+z_{i}$. Here, z_{i} 's are mean 0 normal random variables with variance 0.0094 so that ϵ_{i} 's have variance $(0.1)^{2}$. The Q-Q plot shows considerable agreement between the empirical quantiles, obtained from samples of size $n=1000$, with the theoretical quantiles.

7. Data analysis

We now apply our procedure to two interesting examples from Mallik et al. (2011).

The first data set involves measuring concentration of mercury in the atmosphere through a LIDAR experiment. There are 221 observations with the predictor variable 'range' varying from 390 to 720 and there is visible evidence of heteroscedasticity. The observed covariates can be considered to have arisen from a random design and the threshold d_{0} corresponds to the distance at which there is a sudden rise in the concentration of mercury. See pages 2 and 10 of Mallik et al. (2011) for more details.

We employ a variant of Method 2 based on the Nadaraya-Watson estimator without normalizing by the estimate of the variance. It is reasonable to assume here that the function is at its baseline till range value 480 . The estimate of τ is obtained by taking the average of observations until range reaches 480 , which gives $\hat{\tau}=-0.0523$. The estimate \hat{d}_{n} is obtained through the iterative approach described in Section 5. The expression for the approximate bias of the NadarayaWatson estimator turns out to be the same as that for the fixed design kernel estimator at d_{0} while the approximate variance turns out to be $\left(\sigma_{0}^{2} \overline{K^{2}}\right) /\left(n h_{n} f\left(d_{0}\right)\right)$ and the optimal value of h_{0} is adjusted accordingly. The limiting distribution, as well as the optimal h_{0}, involves the parameter $\sigma_{0}\left(d_{0}\right)$, which we estimate using $\hat{\sigma}\left(\hat{d}_{n}\right)$ where $\hat{\sigma}^{2}(x)=\left[\mathbb{P}_{n}(Y-\hat{\mu}(X))^{2} K\left((x-X) / h_{n}\right)\right] /\left[\mathbb{P}_{n} K\left((x-X) / h_{n}\right)\right]$.

The estimate \hat{d}_{n} has an inherent bias which is a recurring feature in boundary estimation problems. A simple but effective way to reduce this bias is to subtract
the median of the limiting distribution with imputed parameters, say $\hat{q}_{0.5}$, from our crude estimate, after proper normalization (so that the limiting median is zero). More precisely, $\hat{d}_{n}-n^{-1 /(2 k+1)} \hat{q}_{0.5}$ is our final estimate. Assuming k to be 1 , the resulting estimate of d_{0} is 551.05 which appears reasonable (see Figure 1 of Mallik et al. (2011)). Moreover, the CI's are [550.53, 555.17] and [549.75, 557.82] for confidence levels of 90% and 95%, respectively, which also seem reasonable.

Our second data set, which comes from the last example in the Introduction of Mallik et al. (2011) (see pages 3 and 10 of that paper for more details), involves the measurement of annual global temperature anomalies, in degree Celsius, over the years 1850 to 2009. The depiction of the data (see Figure 1 of Mallik et al. (2011)) suggests a trend function which stays at its baseline value for a while followed by a nondecreasing trend. We follow the approach of Wu, Woodroofe and Mentz (2001) and Zhao and Woodroofe (2012), and model the data as having a non-parametric trend function and short-range dependent errors. The flat stretch at the beginning is also noted in Zhao and Woodroofe (2012), where isotonic estimation procedures are considered in settings with dependent data. They also provide evidence for the errors to be arising from a lower order auto-regressive process. A comprehensive approach would incorporate a cyclical component as well (Schlesinger and Ramankutty, 1994), which we do not pursue in our paper.

The estimate of the baseline value, after averaging the anomalies up to the year 1875, is $\hat{\tau}=-0.3540$. Using this estimate of τ, we employ Method 2 with non-normalized p-values (see (2.6)) in this example with the optimal h_{0} chosen through an iterative approach. Constructing the CI involves estimating an extra parameter $\psi(0)$ for which we use the estimates computed in Wu, Woodroofe and Mentz (2001, pp. 800) (the parameter σ^{2} estimated in that paper is precisely $2 \pi \psi(0))$. Assuming k to be 1 , the estimate of the threshold d_{0} after bias correction, which signifies the advent of global warming, turns out to be 1912. The CI's are $[1908,1917]$ and $[1906,1919]$ for confidence levels 90% and 95% respectively. This is compatible with the observation on page 2 of Zhao and Woodroofe (2012) that global warming does not appear to have begun until 1915.

8. Conclusion

We conclude with a discussion of some open problems that can provide avenues for further investigation into this problem.

Adaptivity. In this paper we have provided a comprehensive treatment of the asymptotics of a p-value based procedure to estimate the threshold d_{0} at which an unknown regression function μ takes off from its baseline value, with the aim of constructing CI's for d_{0}. We have assumed knowledge of the order of the 'cusp' of μ at d_{0}, which we need to achieve the optimal rate of convergence (and construct the corresponding CI's), though not for consistency. When k is unknown, ideas from multiscale testing procedures for white noise models
(Dümbgen and Spokoiny, 2001; Dümbgen and Walther, 2008) can conceivably be used to develop adaptive procedures in our model. This is a hard open problem and will be a topic of future research.

Resampling. A natural alternative to using the limit distribution (with estimated nuisance parameters) to construct CI's for d_{0} would be to use bootstrap/resampling methods. Drawing from results obtained in similar changepoint and non-standard problems (see e.g., Sen, Banerjee and Woodroofe (2010); Seijo and Sen (2011)) it is very likely that the usual bootstrap method will be inconsistent in our setup. However, model based bootstrap procedures have recently been studied in the change-point context and have been shown to work (Seijo and Sen, 2011). Similar ideas may work for our problem as well, but a thorough understanding of such bootstrap procedures is beyond the scope of the present paper. Subsampling can be proven to be consistent in our setting, but its finite sample properties were seen to be rather dismal.

Behavior near the boundary. For our simulations, we concentrated on the case $d_{0}=0.5$. The estimate also performs well (in terms of MSE's) in settings where d_{0} is close to the boundary as long as there are sufficiently many observations on either side of d_{0} (see Section 2.3 of Supplementary material of Mallik et al. (2011)). We do not address the cases where d_{0} is exactly at the boundary, e.g, $d_{0}=0$. This leads to a testing problem (flat stretch vs. no flat stretch) which goes beyond the scope of our discussion. However, we would like to point out that \hat{d}_{n} would be consistent even when $d_{0}=0$ or 1 regardless of the bad behavior of the kernel estimates near the boundary.

Simultaneous estimation of d_{0} and τ. When τ is unknown, we have provided a procedure which estimates the threshold d_{0} and the baseline value τ simultaneously through an iterative scheme (see Section 5); however, our method requires the use of two objective functions, one for updating the estimate of d_{0} and the other that of τ. While estimating τ and d_{0} from a single objective function, say by minimizing (2.4) over putative values of both d_{0} and τ would be ideal, this optimization problem is hard to solve. In fact, it is unclear whether a tractable solution that provides consistent estimates can be obtained. For example, note that minimizing the least squares criterion in (2.4) naively over choices of τ (say $\tilde{\tau}$) does not necessarily yield meaningful estimates as the criterion goes to 0 when $\tilde{\tau} \rightarrow-\infty$ and $d \rightarrow 0$, so constraining the optimization would appear necessary.

Of course, modifications to the above least squares criterion are possible. As the average of the responses up to d_{0} yields an estimate of τ_{0}, one can alternatively minimize

$$
\left[\sum_{i: i / n \leq d}\left\{p_{n}\left(i / n, \tau_{d}\right)-\frac{1}{2}\right\}^{2}+\sum_{i: i / n>d}\left\{p_{n}\left(i / n, \tau_{d}\right)\right\}^{2}\right]
$$

where $\tau_{d}=(1 /\lfloor n d\rfloor) \sum_{i \leq n} Y_{i} 1[i / n \leq d]$. This is expected to yield consistent estimates for d_{0} and $\tau\left(\hat{\tau}=\tau_{\hat{d}}\right)$. However, the estimate of τ may be biased
and it is far from clear whether the estimate of d_{0} will exhibit the same rate of convergence. Note that the above criterion runs over the data twice (once while computing τ_{d} and the second time through the sum up to d) and is harder to handle analytically. One can also consider a slightly different criterion by replacing τ_{d} by $c \tau_{d}(c \in(0,1))$ in the above display, which does not estimate τ as efficiently as its predecessor but avoids the bias issue. Finally, it is unclear whether other useful criteria can be formulated to simultaneously estimate d_{0} and τ in this non-parametric setup, mainly owing to the fact that d_{0} is a feature of the covariate domain while τ is a feature of the response domain.

Minimaxity. The estimators studied in our paper attain the convergence rate of $n^{-1 /(2 k+1)}$. This leads to a natural question as to whether this is the best possible rate of convergence. When μ is monotone increasing, d_{0} is precisely $\mu^{-1}(\tau)$, where μ^{-1} is the right continuous inverse of μ. Wright (1981) (Theorem 1) shows that the rate of convergence of the isotonic least squares estimate μ at a point, x_{0}, where the first $k-1$ derivatives vanish but the k th does not, is precisely $n^{-k /(2 k+1)}$. A slightly more general result establishing a process convergence is stated in Fact 1 of Banerjee (2009). Using this in conjunction with the techniques for the proof of Theorem 1 in Banerjee and Wellner (2005), it can be deduced that the rate of convergence of the isotonic estimate of μ^{-1} at $\mu\left(x_{0}\right)$ is $n^{-1 /(2 k+1)}$, which matches the rate attained by our approach. Hence, we expect this rate to be minimax in our setting. We note that this rate is not the same as the faster rate $\min \left(n^{-2 /(2 k+3)}, n^{-1 /(2 k+1)}\right)$ obtained in Neumann (1997) for a change-point estimation problem in a density deconvolution model and also observed in the convolution white noise models of Goldenshluger, Tsybakov and Zeevi (2006) and Goldenshluger et al. (2008). These models are related to our setting; e.g., Problem 1 in Goldenshluger et al. (2008) is a Gaussian white noise model where the underlying regression function also has a cusp of a known order at an unknown point of interest. The convolution white noise model considered in Goldenshluger, Tsybakov and Zeevi (2006) (Problem 2 in Goldenshluger et al. (2008)) is equivalent to this problem for a particular choice of the convolution operator; see Goldenshluger, Tsybakov and Zeevi (2006, pp. 352-353) and Goldenshluger et al. (2008, pp. 790-791) for more details. Besides these being white noise models, they differ from our setting through an additional smoothness condition (Goldenshluger, Tsybakov and Zeevi, 2006, pp. 354-355), which translates, in our setting, to assuming that $\mu^{(k)}$ is Lipschitz outside any neighborhood of d_{0}, an assumption not made in this paper. Hence, Neumann's rate need not be minimax for our setting. The faster rate of Neumann (1997) was also observed for $k=1$ in Cheng and Raimondo (2008) but once again under the assumption that the derivative of the regression function is at least twice differentiable away from the change-point, again an assumption not made in this paper.

Acknowledgments

We thank Michael Woodroofe for numerous stimulating discussions that helped develop several ideas and simplify some of the proofs in the paper.

Appendix A: Appendix

We use the notations ' \lesssim ' and ' \gtrsim ' to imply that the corresponding inequalities hold up to some positive constant multiple, and E^{*} to denote the outer expectation with respect to the concerned probability measure.

We start with proving a few auxiliary results that are repeatedly used in the paper. Recall that K and μ are Lipschitz continuous of order $\alpha \in(1 / 2,1]$. Let $u_{n}(x, v)=\left(1 / h_{n}\right) \mu(v) K\left((x-v) / h_{n}\right)$ for $x \in[0,1]$ and $v \in \mathbb{R}$.
Lemma 4. For $\bar{\mu}(\cdot)$ as in (3.1), we have

$$
\sup _{x \in[0,1]}\left|\bar{\mu}(x)-\int_{0}^{1} u_{n}(x, v) d v\right|=O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right) .
$$

Proof. Note that $\bar{\mu}(x)=(1 / n) \sum_{i} u_{n}(x, i / n)$ and $u_{n}(x, v)=0$ whenever $\mid x-$ $v \mid \geq L_{0} h_{n}$. Moreover, the difference between

$$
\bar{\mu}(x)-\int_{0}^{1} u_{n}(x, v) d v
$$

and

$$
\sum_{\substack{1 \leq i \leq n \\|x-i / n| \leq L_{0} h_{n}}} \int_{i / n}^{(i+1) / n}\left\{u_{n}(x, i / n)-u_{n}(x, v)\right\} d v
$$

is at most

$$
\int_{0}^{1 / n}\left|u_{n}(x, v)\right| d v+\int_{x-L_{0} h_{n}}^{x-L_{0} h_{n}+1 / n}\left|u_{n}(x, v)\right| d v
$$

which is bounded by $(1 / n) \sup _{x, v} u_{n}(x, v) \leq\|\mu\|_{\infty}\|K\|_{\infty} /\left(n h_{n}\right)$. Hence,

$$
\begin{aligned}
& \left|\bar{\mu}(x)-\int_{0}^{1} u_{n}(x, v) d v\right| \\
\leq & O\left(\frac{1}{n h_{n}}\right)+\sum_{\substack{1 \leq i \leq n \\
|x-i / n| \leq L_{0} h_{n}}} \int_{i / n}^{(i+1) / n}\left|u_{n}(x, i / n)-u_{n}(x, v)\right| d v .
\end{aligned}
$$

For $v_{1}, v_{2} \in \mathbb{R}, h_{n}\left|u_{n}\left(x, v_{1}\right)-u_{n}\left(x, v_{2}\right)\right| \leq\left|\mu\left(v_{1}\right)-\mu\left(v_{2}\right)\right| K\left(\left(x-v_{1}\right) / h_{n}\right)+$ $\left|\mu\left(v_{2}\right)\right|\left|K\left(\left(x-v_{1}\right) / h_{n}\right)-K\left(\left(x-v_{2}\right) / h_{n}\right)\right|$. As K and μ are Lipschitz continuous of order $\alpha,\left|u_{n}\left(x, v_{1}\right)-u_{n}\left(x, v_{2}\right)\right| \lesssim 1 / h_{n}^{1+\alpha}\left|v_{1}-v_{2}\right|^{\alpha}$. Also, the cardinality of the set $\left\{i: 1 \leq i \leq n,|x-i / n| \leq L_{0} h_{n}\right\}$ is at most $2 L_{0} n h_{n}+2$ and therefore, the above display is further bounded (up to a positive constant multiple) by
$O\left(\frac{1}{n h_{n}}\right)+\sum_{\substack{1 \leq i \leq n \\|x-i / n| \leq L_{0} h_{n}}} \int_{i / n}^{(i+1) / n} \frac{|i / n-v|^{\alpha}}{h_{n}^{1+\alpha}} d v \leq O\left(\frac{1}{n h_{n}}\right)+\frac{2 L_{0} n h_{n}+2}{(\alpha+1)\left(n h_{n}\right)^{1+\alpha}}$,
which is $O\left(1 /\left(n h_{n}\right)^{\alpha}\right)$. Here, the final bound does not depend on x and thus, we get the desired result.

Note that the above result holds for generic functions μ and K, satisfying assumptions 1 (a), 4(c) and $4(\mathrm{~d})$. Letting $\mu(x) \equiv \sigma_{0}^{2}$ and substituting K^{2} for K, we get:

Corollary 1. Let $z_{n}(x, v)=\left(\sigma_{0}^{2} / h_{n}\right) K^{2}\left((x-v) / h_{n}\right)$. Then,

$$
\sup _{x \in[0,1]}\left|\Sigma_{n}^{2}(x)-\int_{0}^{1} z_{n}(x, v) d v\right|=O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right)
$$

As a consequence, when $i / n \in\left[L_{0} h_{n}, 1-L_{0} h_{n}\right]$,

$$
\begin{align*}
\Sigma_{n}^{2}(i / n) & =\int_{0}^{1} z_{n}(i / n, v) d v+o(1) \\
& =\sigma_{0}^{2} \min _{j} \int_{(i-n) /\left(n h_{n}\right)}^{i /\left(n h_{n}\right)} K^{2}(u) d u+o(1) \\
& =\sigma_{0}^{2} \bar{K}^{2}+o(1) . \tag{A.1}
\end{align*}
$$

A.1. Proof of Theorem 1

To prove Theorem 1, we use Theorem 3.2.5 of van der Vaart and Wellner (1996) (see also Theorem 3.4.1) which requires coming up with a non-negative map $d \mapsto \rho_{n}\left(d, d_{n}\right)$ such that

$$
M_{n}(d)-M_{n}\left(d_{n}\right) \geq \rho_{n}^{2}\left(d, d_{n}\right)
$$

Then a bound on the modulus of continuity with respect to ρ_{n} is needed, i.e.,

$$
\begin{align*}
& E\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta}\left|\left(\mathbb{M}_{n}(d)-\mathbb{M}_{n}\left(d_{n}\right)\right)-\left(M_{n}(d)-M_{n}\left(d_{n}\right)\right)\right|\right] \tag{A.2}\\
& \quad=E\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta}\left|\left(\mathbb{M}_{n}-M_{n}\right)(d)-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}\right)\right|\right] \lesssim \phi_{n}(\delta)
\end{align*}
$$

where the $\operatorname{map} \delta \mapsto \phi_{n}(\delta) / \delta^{\alpha}$ is decreasing for some $\alpha<2$. The rate of convergence is then governed by the behavior of ϕ_{n}. We start with the following choice for ρ_{n}.

Lemma 5. Fix $\eta>2 L_{0}>0$. Let $d \mapsto \rho_{n}\left(d, d_{n}\right)$ be a map from $(0,1)$ to $[0, \infty)$ such that

$$
\begin{aligned}
\rho_{n}^{2}\left(d, d_{n}\right)= & \left(K_{1} / n\right)\left\{\left|\lfloor n d\rfloor-\left\lfloor n\left(d_{0}-L_{0} h_{n}\right)\right\rfloor\right| 1\left(d \leq d_{0}-L_{0} h_{n}\right)\right. \\
& \left.+\left|\lfloor n d\rfloor-\left\lfloor n\left(d_{n}+\eta / \nu_{n}\right)\right\rfloor\right| 1\left(d>d_{n}+\eta / \nu_{n}\right)\right\}
\end{aligned}
$$

for some $K_{1}>0$. Then K_{1} and $\kappa>0$ can be chosen such that for sufficiently large n and $\rho_{n}\left(d, d_{n}\right)<\kappa$, we have

$$
M_{n}(d)-M_{n}\left(d_{n}\right) \geq \rho_{n}^{2}\left(d, d_{n}\right)
$$

We first provide the proof of Theorem 1 using Lemma 1. By the above Lemma, there exists $A<\infty$ such that for sufficiently large n and any $\delta>0,\left\{\rho_{n}\left(d, d_{n}\right)<\right.$ $\delta\} \subset\left\{\left|d-d_{n}\right|<\delta^{2} / K_{1}+A / \nu_{n}+2 / n\right\}$. Let $d>d_{n}$ and

$$
\begin{aligned}
U(i, d)= & \left\{\Phi\left(\sqrt{n h_{n}}(\hat{\mu}(i / n))\right)-\Phi_{i, n}\left(\frac{\sqrt{n h_{n}}(\bar{\mu}(i / n))}{\sqrt{1+\Sigma_{n}^{2}(i / n)}}\right)\right\} \\
& \times 1\left(d_{n}<\frac{i}{n} \leq d\right)
\end{aligned}
$$

where $\hat{\mu}$ is defined in (3.1). By (3.2), $E\{U(i, d)\}=0$. Also, for $1 \leq i, j \leq n$, $U(i, d)$ and $U(j, d)$ are independent whenever $|i-j| \geq 2 L_{0} n h_{n}$. Let $j_{1}^{i}=i$ and $j_{l}^{i}=j_{l-1}^{i}+\left\lceil 2 L_{0} n h_{n}\right\rceil$. Then,

$$
S(i, d):=\frac{1}{n} \sum_{l: j_{l}^{i} \leq n} U\left(j_{l}^{i}, d\right)
$$

a sum of at most $\left\lceil\left(d-d_{n}\right) /\left(2 L_{0} h_{n}\right)\right\rceil$ non-zero independent terms, is a martingale in $d, d \geq d_{n}$, with right continuous paths. As $|U(\cdot, d)| \leq 1, E\left\{U^{2}(\cdot, d)\right\}$ is at most 1. Using Doob's inequality, we get

$$
\begin{aligned}
& E\left[\sup _{\substack{ \\
\left|d-d_{n}\right|<\delta^{2} / K_{1}+A / \nu_{n}+2 / n \\
d \geq d_{n}}}|S(i, d)|\right] \\
\leq & \left\{E S^{2}\left(i, d_{n}+\delta^{2} / K_{1}+A / \nu_{n}+2 / n\right)\right\}^{1 / 2} \\
= & \frac{1}{n}\left[\sum_{l: j_{l}^{i} \leq n} E\left\{U^{2}\left(j_{l}^{i}, d_{n}+\delta^{2} / K_{1}+A / \nu_{n}+2 / n\right)\right\}\right]^{1 / 2} \\
\leq & \frac{1}{L_{0} n h_{n}^{1 / 2}}\left(\delta^{2} / K_{1}+A / \nu_{n}+2 / n\right)^{1 / 2}
\end{aligned}
$$

As $\left(\mathbb{M}_{n}-M_{n}\right)(d)-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}\right)=\sum_{i=1}^{\left\lceil 2 L_{0} n h_{n}\right\rceil-1} S(i, d)$, for sufficiently large n,

$$
\begin{align*}
& E\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta, d>d_{n}}\left|\left(\mathbb{M}_{n}-M_{n}\right)(d)-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}\right)\right|\right] \\
\leq & E\left[\sqrt{n} \sup _{\left|d-d_{n}\right|<\delta^{2} / K_{1}+A / \nu_{n}+2 / n}^{d \geq d_{n}}\right. \\
\leq & \left.\left|\left(\mathbb{M}_{n}-M_{n}\right)(d)-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}\right)\right|\right] \tag{A.3}\\
\leq & \sqrt{n}\left(2 L_{0} n h_{n}\right) \frac{1}{L_{0} n h_{n}^{1 / 2}}\left(\delta^{2} / K_{1}+A / \nu_{n}+2 / n\right)^{1 / 2} \lesssim \phi_{n}(\delta)
\end{align*}
$$

where $\phi_{n}(\delta)=\sqrt{n h_{n}}\left(\delta^{2}+\nu_{n}^{-1}+n^{-1}\right)^{1 / 2}$. This bound can also be shown to hold when $d \leq d_{n}$. Also, $\phi_{n}(\cdot)$ and $\rho_{n}\left(\cdot, d_{n}\right)$ satisfy the conditions of Theorem 3.2.5
of van der Vaart and Wellner (1996). Hence, the rate of convergence, say r_{n}, satisfies

$$
r_{n}^{2} \phi_{n}\left(\frac{1}{r_{n}}\right) \lesssim \sqrt{n} \Rightarrow n h_{n}\left(r_{n}^{2}+r_{n}^{4} / \nu_{n}+r_{n}^{4} / n\right) \lesssim n
$$

Note that $r_{n}^{2}=\nu_{n}$ satisfies the above relation and therefore $\nu_{n} \rho_{n}^{2}\left(\hat{d}_{n}, d_{n}\right)$ is $O_{p}(1)$. Consequently, we get $\nu_{n}\left(\hat{d}_{n}-d_{0}\right)=O_{p}(1)$.
Proof of Lemma 5. Since $\bar{\mu}(x)=0$ for $x<d_{0}-L_{0} h_{n}$, note that $d_{n}>d_{0}-L_{0} h_{n}$ for sufficiently large n. As $\Phi_{i, n}(0)$ converges to $1 / 2$ uniformly in i, it can be seen that for large n and $d \leq d_{0}-L_{0} h_{n}$,

$$
\begin{align*}
M_{n}(d)-M_{n}\left(d_{n}\right) & \geq M_{n}(d)-M_{n}\left(d_{0}-L_{0} h_{n}\right) \\
& =\sum_{i=1}^{n}\left\{\gamma-\Phi_{i, n}(0)\right\} 1\left(d<\frac{i}{n} \leq d_{0}-L_{0} h_{n}\right) \\
& \geq \frac{1}{2}\left(\gamma-\frac{1}{2}\right)\left\{\lfloor n d\rfloor-\left\lfloor n\left(d_{0}-L_{0} h_{n}\right)\right\rfloor\right\} / n \tag{A.4}
\end{align*}
$$

Next, we show that

$$
\begin{equation*}
\tilde{\Phi}_{n}\left(\frac{\sqrt{n h_{n}} \bar{\mu}\left(d_{n}+\eta / \nu_{n}\right)}{\sqrt{1+\tilde{\Sigma}_{n}^{2}}}\right)-\gamma>K_{0} \tag{A.5}
\end{equation*}
$$

for sufficiently large n and some $K_{0}>0$. Using (3.3), note that $\tilde{\Phi}_{n}\left(\sqrt{n h_{n}} \bar{\mu}\left(d_{n}\right) /\right.$ $\sqrt{\left.1+\tilde{\Sigma}_{n}^{2}\left(d_{n}\right)\right)}$ converges to γ and consequently, $\sqrt{n h_{n}} \bar{\mu}\left(d_{n}\right) / \sqrt{1+\tilde{\Sigma}_{n}^{2}\left(d_{n}\right)}$ is $O(1)$. As $\Sigma_{n}^{2}\left(d_{n}\right)$ is also $O(1)$, it suffices to show that $\sqrt{n h_{n}}\left(\bar{\mu}\left(d_{n}+\eta / \nu_{n}\right)-\bar{\mu}\left(d_{n}\right)\right)$ is bounded away from zero. To show this, note that by Lemma 4,

$$
\begin{aligned}
& \sqrt{n h_{n}}\left(\bar{\mu}\left(d_{n}+\eta / \nu_{n}\right)-\bar{\mu}\left(d_{n}\right)\right) \\
& \quad=\int_{-L_{0}}^{L_{0}} \sqrt{n h_{n}}\left\{\mu\left(d_{n}+\eta / \nu_{n}+u h_{n}\right)-\mu\left(d_{n}+u h_{n}\right)\right\} K(u) d u+o(1)
\end{aligned}
$$

Choose $\kappa>0$ such that μ is non-decreasing in $\left(d_{0}, d_{0}+3 \kappa\right)$. For sufficiently large $n, d_{n}+\eta / \nu_{n}+L_{0} h_{n}<d_{0}+3 \kappa$, and hence, the integrand in the above display is non-negative. With L_{1} such that $K_{\text {min }}=\inf \left\{K(x): x \in\left[-L_{1}, L_{1}\right]\right\}>0$, the above display is bounded from below by

$$
2 L_{1} K_{\min } \sqrt{n h_{n}}\left(\mu\left(d_{n}+\eta / \nu_{n}-L_{1} h_{n}\right)-\mu\left(d_{n}+L_{0} h_{n}\right)\right)
$$

As $\eta>2 L_{0}$, note that $d_{n}+\eta / \nu_{n}-L_{1} h_{n}>d_{n}+L_{0} h_{n}>d_{0}$. With $\zeta_{n}^{(1)}$ and $\zeta_{n}^{(2)}$ being some points in $\left(d_{0}, d_{n}+\eta / \nu_{n}-L_{1} h_{n}\right)$ and $\left(d_{0}, d_{n}+L_{0} h_{n}\right)$ respectively, we have

$$
\begin{aligned}
& \sqrt{n h_{n}}\left\{\mu\left(d_{n}+\eta / \nu_{n}-L_{0} h_{n}\right)-\mu\left(d_{n}+L_{0} h_{n}\right)\right\} \\
& \quad=\frac{\sqrt{n h_{n}}}{k!}\left\{\mu^{(k)}\left(\zeta_{n}^{(1)}\right)\left(d_{n}+\eta / \nu_{n}-L_{1} h_{n}-d_{0}\right)^{k}-\mu^{(k)}\left(\zeta_{n}^{(2)}\right)\left(d_{n}+L_{0} h_{n}-d_{0}\right)^{k}\right\}
\end{aligned}
$$

$$
\begin{aligned}
> & \frac{\sqrt{n h_{n}} \mu^{(k)}\left(\zeta_{n}^{(1)}\right)}{k!}\left[\left(d_{n}+\eta / \nu_{n}-L_{1} h_{n}-d_{0}\right)^{k}-\left(d_{n}+L_{0} h_{n}-d_{0}\right)^{k}\right] \\
& +\frac{\sqrt{n h_{n}}}{k!}\left[\mu^{(k)}\left(\zeta_{n}^{(1)}\right)-\mu^{(k)}\left(\zeta_{n}^{(2)}\right)\right]\left(d_{n}+L_{0} h_{n}-d_{0}\right)^{k} \\
> & \sqrt{n h_{n}}\left[\frac{\left\{\mu^{(k)}\left(d_{0}+\right)+o(1)\right\}\left(\eta / \nu_{n}-2 L_{0} h_{n}\right)^{k}}{k!}+o(1)\left(d_{n}-d_{0}+L_{0} h_{n}\right)^{k}\right] .
\end{aligned}
$$

Using Lemma $1,\left(d_{n}-d_{0}\right)$ is $O\left(1 / \nu_{n}\right)$ and hence, the above display is further bounded from below by

$$
\frac{\sqrt{n h_{n}}}{\nu_{n}^{k}}\left[\frac{\mu^{(k)}\left(d_{0}+\right)}{k!}\left(\eta-2 L_{0}\right)^{k}+o(1)\right]
$$

As $\sqrt{n h_{n}} / \nu_{n}^{k} \geq 1$, (A.5) holds.
Further, as the kernel $K(u)$ is non-increasing in $|u|, \bar{\mu}$ is non-decreasing in $\left(d_{0}, d_{0}+2 \kappa\right)$. For $d \in\left(d_{n}+\eta / \nu_{n}, d_{0}+2 \kappa\right)$,

$$
\begin{align*}
M_{n}(d)-M_{n}\left(d_{n}\right) & \geq M_{n}(d)-M_{n}\left(d_{0}+\eta / \nu_{n}\right) \\
& \geq \sum_{d_{0}+\eta / \nu_{n} \leq i / n \leq d}\left\{\Phi_{i, n}\left(\sqrt{n h_{n}} \bar{\mu}(i / n) / \sqrt{1+\Sigma_{n}^{2}(i / n)}\right)-\gamma\right\} \\
& \geq K_{0}\left(\lfloor n d\rfloor-\left\lfloor n\left(d_{n}+\eta / \nu_{n}\right)\right\rfloor\right) / n \tag{A.6}
\end{align*}
$$

Using Lemma 1, there exists $A_{0}<\infty$ such that for sufficiently large $n, \nu_{n} \mid d_{0}-$ $d_{n} \mid \leq A_{0}$, and hence $\left\{\rho_{n}\left(d, d_{n}\right)<\kappa\right\} \subset\left\{\left|d-d_{0}\right|<\kappa^{2} / K_{1}+A / \nu_{n}+2 / n\right\} \subset\{\mid d-$ $\left.d_{0} \mid<2 \kappa\right\}$, where $A=2 \max \left(\eta, L_{0}, A_{0}\right)$. Letting $K_{1}=(1 / 2) \min \left(\gamma-1 / 2, K_{0}\right)$ and using (A.4) and (A.6), we get the desired result.

A.2. Proof of Lemma 2

In order to prove Lemma 2, we first justify a few auxiliary results required to prove the tightness of W_{n}. Recall that

$$
W_{n}(t)=\sqrt{n h_{n}} \hat{\mu}\left(d_{0}+t h_{n}\right)
$$

Let $\bar{\epsilon}_{n}(\cdot)$ be such that $\bar{\epsilon}_{n}(t)=W_{n}(t)-\sqrt{n h_{n}} \bar{\mu}\left(d_{0}+t h_{n}\right)$, i.e.,

$$
\begin{equation*}
\bar{\epsilon}_{n}(t)=\frac{1}{\sqrt{n h_{n}}} \sum_{i=1}^{n} \epsilon_{i} K\left(\frac{d_{0}-i / n}{h_{n}}+t\right) . \tag{A.7}
\end{equation*}
$$

Lemma 6. The processes $\sqrt{n h_{n}} \bar{\epsilon}_{n}\left(d_{0}+t h_{n}\right)$, $t \in \mathbb{R}$, are asymptotically tight in $C(\mathbb{R})$.

Proof. As the kernel K is Lipschitz of order $\alpha>1 / 2$, there exists a constant $C_{0}>0$, such that $|K(t)-K(s)| \leq C_{0}|t-s|^{\alpha}$. Fix $T>0$. For $s, t \in[-T, T]$, we
have

$$
\begin{aligned}
E & {\left[\bar{\epsilon}_{n}(t)-\bar{\epsilon}_{n}(s)\right]^{2} } \\
& =\frac{1}{n h_{n}} \sum_{i=1}^{n} \sigma_{0}^{2}\left|K\left(\frac{d_{0}-i / n}{h_{n}}+t\right)-K\left(\frac{d_{0}-i / n}{h_{n}}+s\right)\right|^{2} \\
& =\frac{1}{n h_{n}} \sum_{i=1}^{n} \sigma_{0}^{2}\left|K\left(\frac{d_{0}-i / n}{h_{n}}+t\right)-K\left(\frac{d_{0}-i / n}{h_{n}}+s\right)\right|^{2} \\
& =\frac{1}{n h_{n}} \sum_{\left|d_{0}-i / n\right|<\left(L_{0}+T\right) h_{n}} \sigma_{0}^{2}\left|K\left(\frac{d_{0}-i / n}{h_{n}}+t\right)-K\left(\frac{d_{0}-i / n}{h_{n}}+s\right)\right|^{2} \\
& \leq 4\left(L_{0}+T+1\right) \sigma_{0}^{2} C_{0}^{2}|t-s|^{2 \alpha} .
\end{aligned}
$$

Since $\alpha>1 / 2$, the result is a consequence of Theorem 12.3 of Billingsley (1968, pp. 95).

We use a version of the Arzela-Ascoli theorem to prove the next result and thus we state it below for convenience.

Theorem 5 (Arzela-Ascoli). Let f_{n} be a sequence of continuous functions defined on a compact set $[a, b]$ such that f_{n} converge pointwise to f and for any $\delta_{n} \downarrow 0 \sup _{|x-y|<\delta_{n}}\left|f_{n}(x)-f_{n}(y)\right|$ converges to 0 . Then $\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$ converges to zero.
Lemma 7. The sequence of functions $\sqrt{n h_{n}} \bar{\mu}\left(d_{0}+t h_{n}\right)$ converges to $m(t)$, uniformly over compact sets in \mathbb{R}.

Proof. The pointwise convergence is evident from Lemma 2. To justify the uniform convergence, let $\bar{z}_{n}(x, t)=\left(1 / h_{n}\right) \mu(x) K\left(\left(d_{0}-x\right) / h_{n}+t\right)$. By arguments similar to those for Lemma $4,\left|\bar{z}_{n}(x, t)-\bar{z}_{n}(y, t)\right| \lesssim 1 / h_{n}^{1+\alpha}|x-y|^{\alpha}$ and consequently, for $t \in[-T, T]$,

$$
\begin{aligned}
& \left|\bar{\mu}\left(d_{0}+t h_{n}\right)-\int \bar{z}_{n}(x, t) d x\right| \\
& \quad \leq O\left(\frac{1}{n h_{n}}\right)+\sum_{\substack{1 \leq i \leq n \\
\left|d_{n}-i / n\right| \leq\left(L_{0}+T\right) h_{n}}} \frac{|i / n-x|^{\alpha}}{h_{n}^{1+\alpha}} d x=O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right)
\end{aligned}
$$

As the above bound does not depend on t and $\alpha>1 / 2$, for $s, t \in[-T, T]$, and $\delta>0$,

$$
\begin{aligned}
& \sup _{|t-s|<\delta}\left|\sqrt{n h_{n}} \bar{\mu}\left(d_{0}+t h_{n}\right)-\sqrt{n h_{n}} \bar{\mu}\left(d_{0}+s h_{n}\right)\right| \\
& \quad=\sup _{|t-s|<\delta}\left|\sqrt{n h_{n}} \int_{-\infty}^{\infty}\left\{\bar{z}_{n}(x, t)-\bar{z}_{n}(x, s)\right\} d x\right|+o(1) \\
& \quad \leq \sqrt{n h_{n}} \int_{-\infty}^{\infty} \mu\left(d_{0}+u h_{n}\right)|K(t-u)-K(s-u)| d u+o(1)
\end{aligned}
$$

$$
\leq \sqrt{n h_{n}} \int_{0}^{L_{0}+T} \frac{\mu^{(k)}\left(\zeta_{u}\right)}{k!}\left(u h_{n}\right)^{k}|K(t-u)-K(s-u)| d u+o(1)
$$

where ζ_{u} is some intermediate point between d_{0} and $d_{0}+u h_{n}$. The k-th derivative of μ is bounded on $\left(d_{0}, d_{0}+\left(L_{0}+T\right) h_{n}\right)$ for sufficiently large n and $h_{n}^{k} \sqrt{n h_{n}}$ equals $h_{0}^{k+1 / 2}$. As K is uniformly continuous, the above display goes to zero as $\delta \rightarrow 0$ by DCT. Hence, by the Arzela-Ascoli theorem we get the desired result.

We now continue with the proof of Lemma 2 . For $\left(a_{i}, t_{i}\right) \in \mathbb{R}^{2}, i=1, \ldots l$, we have

$$
\sum_{i, j} a_{i} a_{j} \operatorname{Cov}\left(W\left(t_{i}\right), W\left(t_{j}\right)\right)=\int\left\{\sum_{i} a_{i} K\left(t_{i}+u\right)\right\}^{2} d u \geq 0
$$

Hence, the defined covariance function is non-negative definite and by Kolmogorov consistency, the Gaussian process W exists.

Let $r(h)=\left\{\int K(h+u) K(u) d u\right\} / \bar{K}^{2}$ denote the correlation function of W. For W to have a continuous modification, by Hunt's theorem (e.g., see Cramér and Leadbetter (1967, pp. 169-171)), it suffices to show that $r(h)$ is $1-O\left((\log (h))^{-\delta}\right)$ for some $\delta>3$ as $h \rightarrow 0$. Note that the kernel K is Lipschitz continuous of order α and hence, we have

$$
\begin{aligned}
\left|(1-r(h))(\log (h))^{\delta}\right| & =\left|\frac{h^{\alpha}(\log (h))^{\delta}}{\int K^{2}(u) d u}\left(\int_{-L_{0}}^{L_{0}} \frac{(K(u)-K(h+u))}{h^{\alpha}} K(u) d u\right)\right| \\
& \lesssim \frac{1}{\int K^{2}(u) d u}\left|h^{\alpha}(\log (h))^{\delta}\right| \rightarrow 0
\end{aligned}
$$

Thus, W has a continuous modification. Next, we justify weak convergence of the process W_{n} to W.

As a consequence of Lemmas 6 and 7 , the process W_{n} is asymptotically tight. To justify finite dimensional convergence, it suffices to show that:

$$
\begin{equation*}
\binom{W_{n}\left(t_{1}\right)}{W_{n}\left(t_{2}\right)} \xrightarrow{d}\binom{W\left(t_{1}\right)}{W\left(t_{2}\right)} \tag{A.8}
\end{equation*}
$$

where $t_{1}, t_{2} \in \mathbb{R}$. Let $x_{j}=d_{0}+t_{j} h_{n}, j=1$ and 2 . Then,

$$
\begin{aligned}
\bar{\mu}\left(x_{j}\right) & =\sqrt{n h_{n}}\left\{\int_{0}^{1} \frac{1}{h_{n}} \mu(x) K\left(\frac{x_{j}-x}{h_{n}}\right) d x+O\left(\frac{1}{\left(n h_{n}\right)^{\alpha}}\right)\right\} \\
& =\sqrt{n h_{n}} \int_{\left(d_{0}-1\right) / h_{n}+t_{j}}^{d_{0} / h_{n}+t_{j}} \mu\left(d_{0}+\left(t_{j}-v\right) h_{n}\right) K(v) d v+o(1) \\
& =\sqrt{n h_{n}} \int_{\left(d_{0}-1\right) / h_{n}+t_{j}}^{t_{j}} \frac{\mu^{(k)}\left(d_{0}^{+}\right)}{k!}\left(\left(t_{j}-v\right)^{k} h_{n}^{k}+o\left(h_{n}^{k}\right)\right) K(v) d v+o(1) \\
& =h_{0}^{k+1 / 2} \frac{\mu^{(k)}\left(d_{0}+\right)}{k!}\left(\int_{-\infty}^{t_{j}}\left(t_{j}-v\right)^{k} K(v) d v+o(1)\right)+o(1) \\
& =m\left(t_{j}\right)+o(1) .
\end{aligned}
$$

The last step follows from DCT as the k-th derivative of μ is bounded in a right neighborhood of d_{0} and $\int|v|^{k} K(v) d v<\infty$. Moreover,

$$
\begin{aligned}
E\left[\bar{\epsilon}_{n}\left(x_{j}\right)\right] & =0 \\
\operatorname{Var}\left[\bar{\epsilon}_{n}\left(x_{j}\right)\right] & =\Sigma_{n}^{2}\left(x_{j}\right) \rightarrow \sigma_{0}^{2} \bar{K}^{2},
\end{aligned}
$$

and, by a change of variable,

$$
\begin{aligned}
& \operatorname{Cov}\left[\bar{\epsilon}_{n}\left(x_{1}\right), \bar{\epsilon}_{n}\left(x_{2}\right)\right] \\
& =\operatorname{Cov}\left[\frac{1}{\sqrt{n h_{n}}} \frac{\sum \epsilon_{i} K\left(\left(x_{1}-i / n\right) / h_{n}\right)}{\Sigma_{n}\left(x_{1}\right)}, \frac{1}{\sqrt{n h_{n}}} \frac{\sum \epsilon_{i} K\left(\left(x_{2}-i / n\right) / h_{n}\right)}{\Sigma_{n}\left(x_{2}\right)}\right] \\
& \quad \rightarrow \sigma_{0}^{2} \int K\left(t_{1}+u\right) K\left(t_{2}+u\right) d u .
\end{aligned}
$$

Also,

$$
\frac{\max _{i} K^{2}\left(\left(x_{j}-i / n\right) / h_{n}\right)}{\sum K^{2}\left(\left(x_{j}-i / n\right) / h_{n}\right)} \leq \frac{\|K\|_{\infty}^{2}}{n h_{n}\left(\bar{K}^{2}+o(1)\right)} \rightarrow 0
$$

Hence, the Lindeberg-Feller condition is satisfied for $\bar{\epsilon}_{n}\left(x_{j}\right) \mathrm{s}$ and by the CramérWold device, (A.8) holds. This justifies the finite dimensional convergence and hence, we have the result.

A.3. Proof of Theorem 3

In order to prove Theorem 3, an ergodic theorem and Borell's inequality are found useful, which are stated below for convenience. For the proofs of the two results, see, for example, Cramér and Leadbetter (1967, pp. 147), and (Adler and Taylor, 2007, pp. 49-53), respectively. Also, we use Theorem 3 from Ferger (2004) which we state below as well.

Theorem 6. Consider a real continuous second order stationary process $\xi(t)$ with mean 0 and correlation function $R(t)$. If

$$
\frac{1}{T} \int_{0}^{T} R(t) d t=O\left(\frac{1}{T^{a}}\right)
$$

for any $a>0$, then ξ satisfies the law of large numbers, i.e., $T^{-1} \int_{0}^{T} \xi(t) d t$ converges a.s. to zero as $T \rightarrow \infty$.

Theorem 7 (Borell's inequality). Let ξ be a centered Gaussian process, a.s. bounded on a set I. Then $E\left\{\sup _{u \in I} \xi(u)\right\}<\infty$ and for all $x>0$,

$$
P\left\{\sup _{u \in I} \xi(u)-E\left(\sup _{u \in I} \xi(u)\right)>x\right\} \leq \exp \left(\frac{-x^{2}}{2 \sigma_{I}^{2}}\right)
$$

where $\sigma_{I}^{2}=\sup _{u \in I} \operatorname{Var}\{\xi(u)\}$.

Theorem 8 (Ferger (2004)). Let $\mathbb{V}_{n}, n \geq 0$, be stochastic processes in $D(\mathbb{R})$, defined on a common probability space (Ω, \mathcal{A}, P). Let ξ_{n} be a Borel-measurable minimizer of \mathbb{V}_{n}. Suppose that:
(i) \mathbb{V}_{n} converges weakly to \mathbb{V}_{0} in $D[-C, C]$ for each $C>0$.
(ii) The trajectories of \mathbb{V}_{0} almost surely possess a smallest and a largest minimizer ξ_{0}^{s} and ξ_{0}^{l} respectively, which are Borel measurable.
(iii) The sequence ξ_{n} is uniformly tight.

Then for every $x \in \mathbb{X}$,

$$
P\left[\xi_{0}^{l}<x\right] \leq \liminf _{n \rightarrow \infty} P_{*}\left[\xi_{n}<x\right] \leq \limsup _{n \rightarrow \infty} P^{*}\left[\xi_{n} \leq x\right] \leq P\left[\xi_{0}^{s} \leq x\right]
$$

Here, $\mathbb{X}=\left\{x \in \mathbb{R}: P\left[\mathbb{V}_{0}\right.\right.$ is continuous at $\left.\left.x\right]=1\right\}$.
We now continue with the proof of Theorem 3. Let

$$
W_{0}(t)=W(t)-m(t)
$$

This is a mean zero stationary process and thus, so is the process $D(t)=$ $\Phi\left(W_{0}(t)\right)-1 / 2$ with correlation function $R(t)$, say. As, K is supported on $\left[-L_{0}, L_{0}\right], W\left(t_{1}\right)$ and $W\left(t_{2}\right)$ are independent whenever $\left|t_{1}-t_{2}\right| \geq 2 L_{0}$ and hence $R(t)=0$ for $t>2 L_{0}$. So, $(1 / t) \int_{0}^{t} R(y) d y=O(1 / t)$ as $|t| \rightarrow \infty$ and therefore, by Theorem $6, Z_{1}(t)=(1 / t) \int_{0}^{t} D(y) d y \rightarrow 0$ a.s. as $|t| \rightarrow \infty$. For $t<0$, we write $Z(t)$ as

$$
Z(t)=t\left[Z_{1}(t)+(1 / 2-\gamma)+(1 / t) \int_{0}^{t}\left\{\Phi(W(t))-\Phi\left(W_{0}(t)\right)\right\} d y\right]
$$

When $t<-L_{0}, m(t)=0$, which gives $W(t)=W_{0}(t)$ and hence the third term in the above display goes to zero and $Z(t) \rightarrow \infty$ a.s. as $t \rightarrow-\infty$. For $t>0$, fix $M>0$ and j be a positive integer. Then

$$
\begin{aligned}
P\left[\inf _{t \in[j, j+1]} W(t)<M\right] & \leq P\left[\inf _{t \in[j, j+1]} W_{0}(t)+\inf _{t \in[j, j+1]} m(t)<M\right] \\
& =P\left[\sup _{t \in[j, j+1]}\left(-W_{0}(t)\right)>m(j)-M\right]
\end{aligned}
$$

as $\inf _{t \in[j, j+1]} m(t)=m(j)$. By Borell's inequality, the above probability is bounded by $\exp \left[\left\{-m(n)-L_{0}-E \sup _{t \in[j, j+1]}\left(-W_{0}(t)\right)\right\}^{2}\right]$, where by stationarity, $E \sup _{t \in[j, j+1]}\left(-W_{0}(t)\right)=E \sup _{t \in[0,1]}\left(-W_{0}(t)\right)$ which is finite, again due to Borell's inequality. Also, it can be seen that $m(j) \gtrsim\left(j-L_{0}\right)^{k}$ and hence $\sum_{j \geq 1} P\left[\sup _{t \in[j, j+1]}\left(-W_{0}(t)\right)>m(j)-M\right]<\infty$. Using Borel-Cantelli lemma, we get $P\left[\liminf _{t \rightarrow \infty} W(t)>M\right]=1$. As M can be made arbitrarily large, we get that $W(t)$ diverges to ∞ a.s. as $t \rightarrow \infty$ and consequently so does $Z(t)$.

Note that Z_{n} (defined in (3.5)) converges weakly to Z in $B_{l o c}(\mathbb{R})$ and consequently, in $D(\mathbb{R})$ as well. Moreover, Z has continuous sample paths with probability 1. As $Z(t) \rightarrow \infty$ when $|t| \rightarrow \infty, \xi_{0}^{s}$ and ξ_{0}^{l} are well defined and Borel
measurable. Further, recall that $h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)$, the smallest argmin of the process $Z_{n}(\cdot)$, is determined by the ordering of finitely many random variables and hence, is measurable. Also, by Theorem 1, it is $O_{p}(1)$. Hence, conditions (i), (ii) and (iii) of Theorem 8 are satisfied with $\mathbb{V}_{n}=Z_{n}$ and $\mathbb{V}_{0}=Z$, and thus,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} P\left[c_{\alpha / 2}^{s}<h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)<c_{1-\alpha / 2}^{l}\right] \geq & \liminf _{n \rightarrow \infty} P\left[h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right)<c_{1-\alpha / 2}^{l}\right] \\
& -\limsup _{n \rightarrow \infty} P\left[h_{n}^{-1}\left(\hat{d}_{n}-d_{0}\right) \leq c_{\alpha / 2}^{s}\right] \\
\geq & 1-\alpha
\end{aligned}
$$

Hence, we get the desired result.

A.4. Outline of the proof of Proposition 1

We assume the rate of convergence for the proof as it is a consequence of arguments similar to that for the proof of Proposition 3 (see Section A.6).

To see that Method 1 ends up yielding the given limiting distribution, recall that for $\tau=0$,

$$
\hat{d}_{n}^{1}=\underset{d \in[0,1]}{\operatorname{sargmin}} \frac{1}{n} \sum_{i=1}^{n}\left\{\Phi\left(\frac{\sqrt{n h_{n}} \hat{\mu}(i / n)}{\Sigma_{n}(i / n, \hat{\sigma})}\right)-\gamma\right\} 1\left(\frac{i}{n} \leq d\right) .
$$

Thus, the form of the limit distribution is dictated by the asymptotic behavior of the local process
$Z_{n}^{1}(t)=\frac{1}{n h_{n}} \sum_{i=1}^{n}\left\{\Phi\left(\frac{\sqrt{n h_{n}} \hat{\mu}(i / n)}{\Sigma_{n}(i / n, \hat{\sigma})}\right)-\gamma\right\}\left(1\left(\frac{i}{n} \leq d_{0}+t h_{n}\right)-1\left(\frac{i}{n} \leq d_{0}\right)\right)$.
Proceeding as we did in the proof of Theorem $2, Z_{n}^{1}$ can be split into $I_{n}^{1}(t)+$ $I I_{n}^{1}(t)$, where

$$
\begin{equation*}
I I_{n}^{1}(t)=h_{n}^{-1} \int_{d_{0}}^{d_{0}+t h_{n}}\left(\Phi\left(\frac{\sqrt{n h_{n}} \hat{\mu}(x)}{\Sigma_{n}(x, \hat{\sigma})}\right)-\gamma\right) d x \tag{A.9}
\end{equation*}
$$

and the contribution of $I_{n}^{1}(t)=Z_{n}^{1}(t)-I I_{n}^{1}(t)$ can be shown to converge to zero. By a change of variable, $I I_{n}^{1}$ can be written as

$$
I I_{n}^{1}(t)=\int_{0}^{t}\left[\Phi\left(\frac{W_{n}(y)}{\Sigma_{n}\left(d_{0}+y h_{n}, \hat{\sigma}\right)}\right)-\gamma\right] f\left(d_{0}+y h_{n}\right) d y
$$

where, W_{n} is as defined in (3.6). This term differs from its analogue for Method 2 (see (2.6)) through the normalizing factor $\Sigma_{n}\left(d_{0}+y h_{n}, \hat{\sigma}\right)$ which converges in probability to $\sigma_{0} \sqrt{K^{2}}$. The tightness of the ratio process $W_{n}(y) / \Sigma_{n}\left(d_{0}+y h_{n}, \hat{\sigma}\right)$ can be established through calculations similar to those in the proof of Lemma 2. Hence, by a Slutsky-type argument, we get that

$$
h_{n}^{-1}\left(\hat{d}_{n}^{1}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}} \int_{0}^{t}\left\{\Phi\left(\frac{W(y)}{\sigma_{0} \sqrt{K^{2}}}\right)-\gamma\right\} d y
$$

for $h_{n}=h_{0} n^{-1 /(2 k+1)}$. Note that the process on the right side of the above display is precisely Z_{1}. This completes the proof.

A.5. Outline of the proof of Proposition 2

Here, we provide a brief outline of the proof to convince the reader about the form of the limiting distribution. Note that this is dictated by the asymptotic behavior of the local process

$$
\tilde{Z}_{n}(t)=\mathbb{P}_{n}\left[\left\{\Phi\left(\sqrt{n h_{n}} \tilde{\mu}(X)\right)-\gamma\right\}\left(1\left(X \leq d_{0}+t h_{n}\right)-1\left(X \leq d_{0}\right)\right)\right]
$$

that arises out of the criterion in (2.7) (with $\tau=0$). As in the proof of Theorem 2, \tilde{Z}_{n} can be split into $\tilde{I}_{n}(t)+\tilde{I} I_{n}(t)$, where

$$
\begin{equation*}
\tilde{I} I_{n}(t)=h_{n}^{-1} \int_{d_{0}}^{d_{0}+t h_{n}}\left(\Phi\left(\sqrt{n h_{n}} \tilde{\mu}(x)\right)-\gamma\right) f(x) d x \tag{A.10}
\end{equation*}
$$

and the contribution of $\tilde{I}_{n}(t)=\tilde{Z}_{n}(t)-\tilde{I}_{n}(t)$ can be shown to go to zero. By a change of variable, $\tilde{I} I_{n}$ can be written as

$$
\tilde{I I}_{n}(t)=\int_{0}^{t}\left[\Phi\left(\tilde{W}_{n}(y)\right)-\gamma\right] f\left(d_{0}+y h_{n}\right) d y
$$

where $\tilde{W}_{n}(y)=\sqrt{n h_{n}} \tilde{\mu}\left(d_{0}+y h_{n}\right)$. The process \tilde{W}_{n} can be shown to converge weakly to the process \tilde{W} by an imitation of the arguments in the proof of Lemma 2. Also, $f\left(d_{0}+y h_{n}\right)$ converges to $f\left(d_{0}\right)>0$. Consequently

$$
h_{n}^{-1}\left(\tilde{d}_{n}-d_{0}\right) \xrightarrow{d} \underset{t \in \mathbb{R}}{\operatorname{argmin}}\left\{f\left(d_{0}\right) \tilde{Z}(t)\right\}=\underset{t \in \mathbb{R}}{\operatorname{argmin}}\{\tilde{Z}(t)\} .
$$

A.6. Proof of Proposition 3

Recall that

$$
\mathbb{M}_{n}(d, \tilde{\tau})=\frac{1}{n} \sum_{i=1}^{n}\left[\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\tilde{\tau}\right)\right)-\gamma\right] 1\left(\frac{i}{n} \leq d\right)
$$

and $M_{n}(d, \tilde{\tau})=E\left[\mathbb{M}_{n}(d, \tilde{\tau})\right]$. We make the dependence on the parameter τ explicit for the analysis. Here $M_{n}(d, \hat{\tau})$ is interpreted as $M_{n}(d, \tilde{\tau})$ computed at $\tilde{\tau}=\hat{\tau}$. Now, we extend the proof of Theorem 1 to show that the rate of convergence remains the same.

Rate of convergence. As $\sqrt{n}(\hat{\tau}-\tau)=O_{p}(1)$, for any $\epsilon>0$, there exists $V_{\epsilon / 2}>0$ such that $P\left[\sqrt{n}|\hat{\tau}-\tau|<V_{\epsilon / 2}\right]>1-\epsilon$. To show that the rate of convergence does not change, we need to derive a bound on

$$
E\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta}\left|\left(\mathbb{M}_{n}(d, \hat{\tau})-\mathbb{M}_{n}(d, \hat{\tau})\right)-\left(M_{n}\left(d_{n}, \tau\right)-M_{n}\left(d_{n}, \tau\right)\right)\right|\right]
$$

having the same order as $\phi_{n}(\delta)$ (see (A.2) and (A.3)). A slight relaxation is possible. For each $\epsilon>0$, it suffices to find a bound of the form

$$
\begin{equation*}
E\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta}\left|\left(\mathbb{M}_{n}-M_{n}\right)(d, \hat{\tau})-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}, \tau\right)\right| 1\left(\Omega_{\epsilon}\right)\right] \leq C_{\epsilon} \phi_{n}(\delta) \tag{A.11}
\end{equation*}
$$

where $P\left[\Omega_{\epsilon}\right]>1-\epsilon$ and $C_{\epsilon}>0$; see Banerjee and McKeague (2007, Theorem 5.2). For $\Omega_{\epsilon}=\left[\hat{\tau} \in\left[\tau-V_{\epsilon / 2} / \sqrt{n}, \tau+V_{\epsilon / 2} / \sqrt{n}\right]\right]$, the left side of the above display can be bounded by

$$
\begin{aligned}
E & {\left[\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta,|\tilde{\tau}-\tau|<V_{\epsilon / 2} / \sqrt{n}}\left|\left(\mathbb{M}_{n}-M_{n}\right)(d, \tilde{\tau})-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}, \tau\right)\right|\right] } \\
& \leq E\left[\begin{array}{l}
\left.\sqrt{n} \sup _{\rho_{n}\left(d, d_{n}\right)<\delta}\left|\left(\mathbb{M}_{n}-M_{n}\right)(d, \tau)-\left(\mathbb{M}_{n}-M_{n}\right)\left(d_{n}, \tau\right)\right|\right] \\
\\
\end{array}+E\left[\begin{array}{l}
\left.\sqrt{n} \sup _{\substack{\rho_{n}\left(d, d_{n}\right)<\delta,|\tilde{\tau}-\tau|<V_{\epsilon / 2} / \sqrt{n}}}\left|\left(\mathbb{M}_{n}(d, \tilde{\tau})-\mathbb{M}_{n}(d, \tau)\right)-\left(\mathbb{M}_{n}\left(d_{n}, \tilde{\tau}\right)-\mathbb{M}_{n}\left(d_{n}, \tau\right)\right)\right|\right] .
\end{array} .\right.\right.
\end{aligned}
$$

The first term on the right side is precisely the term dealt in the case of a known τ (see (A.2)). As for the second term, note that by the Lipschitz continuity of Φ,

$$
\begin{aligned}
& \left|\left(\mathbb{M}_{n}(d, \tilde{\tau})-\mathbb{M}_{n}(d, \tau)\right)-\left(\mathbb{M}_{n}\left(d_{n}, \tilde{\tau}\right)-\mathbb{M}_{n}\left(d_{n}, \tau\right)\right)\right| \\
& \quad \leq \frac{1}{n} \sum_{i=1}^{n}\left\{\left|\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\tilde{\tau}\right)\right)-\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\tau\right)\right)\right|\right. \\
& \left.\quad \times\left|1\left(\frac{i}{n} \leq d\right)-1\left(\frac{i}{n} \leq d_{n}\right)\right|\right\} \\
& \quad \lesssim \sqrt{n h_{n}}|\tilde{\tau}-\tau| \frac{\left|\lceil n d\rceil-\left\lceil n d_{n}\right\rceil\right|}{n} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& E\left[\sqrt{n} \sup _{\substack{\rho_{n}\left(d, d_{n}\right)<\delta,|\tilde{\tau}-\tau|<V_{\epsilon / 2} / \sqrt{n}}}\left|\left(\mathbb{M}_{n}(d, \tilde{\tau})-\mathbb{M}_{n}(d, \tau)\right)-\left(\mathbb{M}_{n}\left(d_{n}, \tilde{\tau}\right)-\mathbb{M}_{n}\left(d_{n}, \tau\right)\right)\right|\right] \\
& \lesssim \sqrt{n} \frac{\sqrt{n h_{n}} V_{\epsilon / 2}}{\sqrt{n}}\left(\delta^{2}+2 / n\right) \lesssim V_{\epsilon / 2} \phi_{n}(\delta),
\end{aligned}
$$

for $\delta<1$ and large n. Hence, the expression in (A.11) has the same bound $\phi_{n}(\cdot)$ (up to a different constant) and thus, we get the same rate of convergence.

Limit distribution. Recall from (3.5) that

$$
Z_{n}(t)=Z_{n}(t, \tau)=h_{n}^{-1}\left[\mathbb{M}_{n}\left(d_{0}+t h_{n}, \tau\right)-\mathbb{M}_{n}\left(d_{0}, \tau\right)\right]
$$

To show that the limiting distribution of \hat{d}_{n} remains the same, it suffices to show that

$$
\begin{equation*}
\sup _{t \in[-T, T]}\left|Z_{n}(t, \hat{\tau})-Z_{n}(t, \tau)\right| \tag{A.12}
\end{equation*}
$$

converges in probability to zero, for any $T>0$. Again by the Lipschitz continuity of Φ,

$$
\begin{aligned}
& \left|Z_{n}(t, \hat{\tau})-Z_{n}(t, \tau)\right| \\
& =\frac{1}{n h_{n}} \left\lvert\, \sum_{i=1}^{n}\left\{\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\hat{\tau}\right)\right)-\Phi\left(\sqrt{n h_{n}}\left(\hat{\mu}\left(\frac{i}{n}\right)-\tau\right)\right)\right.\right. \\
& \left.\quad \times\left(1\left(\frac{i}{n} \leq d_{0}+t h_{n}\right)-1\left(\frac{i}{n} \leq d_{0}\right)\right)\right\} \mid \\
& \quad \lesssim \quad \frac{1}{n h_{n}}\left|\sum_{i=1}^{n} \sqrt{n h_{n}}\right| \hat{\tau}-\tau\left|\left(1\left(\frac{i}{n} \leq d_{0}+T h_{n}\right)-1\left(\frac{i}{n} \leq d_{0}\right)\right)\right| \\
& \quad \leq \quad h_{n} \frac{\left(T n h_{n}+2\right)}{n h_{n}} \sqrt{n}|\hat{\tau}-\tau| .
\end{aligned}
$$

As the above bound is uniform in $t \in[-T, T]$ and $\sqrt{n}(\hat{\tau}-\tau)$ is $O_{p}(1)$, the expression in (A.12) converges in probability to zero and hence, we get the desired result.

A.7. Proof of Proposition 4

Given what has been done earlier for proving results from Section 3.2, it suffices to show that the process $\bar{\epsilon}_{n}(t)$, defined in (A.7), converges weakly to a mean zero Gaussian process having the covariance function of \bar{W} in the setup of Section 6. As $W_{n}(t)=\sqrt{n h_{n}} \bar{\mu}\left(d_{0}+t h_{n}\right)+\bar{\epsilon}_{n}(t)$, Lemma 7 then justifies the weak convergence of W_{n} to \bar{W}. The statement and the proof of Lemma 2 relies on the i.i.d. assumption only through the convergence of W_{n} 's and the form of their limit. Hence, it would follow that the process Z_{n} (defined in (3.5)) converges to \bar{Z}. The result then follows from applying the argmin continuous mapping theorem as in proving Theorem 4.

We start by showing the covariance function of the process $\bar{\epsilon}_{n}$ converges to that of \bar{W}. For $t_{1}, t_{2} \in \mathbb{R}$, let $x_{j}=d_{0}+t_{j} h_{n}, j=1,2$. We have

$$
\operatorname{Cov}\left(\bar{\epsilon}_{n}\left(t_{1}\right), \bar{\epsilon}_{n}\left(t_{2}\right)\right)=\frac{\sigma_{0}^{2}}{n h_{n}} \sum_{l, j} \rho(l-j) K\left(\frac{x_{1}-l / n}{h_{n}}\right) K\left(\frac{x_{2}-j / n}{h_{n}}\right)
$$

As $\sigma_{0}^{2} \rho(l-j)=\int_{-\pi}^{\pi} \psi(u) \exp (\imath(l-j) u) d u$, the above expression reduces to

$$
\frac{1}{n h_{n}} \int_{-\pi}^{\pi} \psi(u) \hat{K}_{x_{1}}(u) \hat{K}_{x_{2}}(-u) d u
$$

where for $x, u \in \mathbb{R}, \hat{K}_{x}(u)=\sum_{j} K\left(h^{-1}\{x-j / n\}\right) e^{\imath j u}$. Under short range dependence, Assumption 1 of Robinson (1997) requires ψ to be an even nonnegative function which is continuous and positive at 0 . Using this assumption, it can be shown that the difference between the above display and

$$
\frac{\psi(0)}{n h_{n}} \int_{-\pi}^{\pi} \hat{K}_{x_{1}}(u) \hat{K}_{x_{2}}(-u) d u
$$

goes to zero by calculations almost identical to those in Robinson (1997, pp. 20612062). As $\int_{-\pi}^{\pi} \exp (\imath(l-j) u) d u=2 \pi \delta_{l j}$, with $\delta_{l j}$ being the Kronecker delta, the above expression equals

$$
\frac{2 \pi \psi(0)}{n h_{n}} \sum_{l, j} \delta_{l j} K\left(\frac{x_{1}-l / n}{h_{n}}\right) K\left(\frac{x_{2}-j / n}{h_{n}}\right)
$$

Following the arguments identical to that in the proof of Lemma 2, this expression can be shown to converge to the covariance function of \bar{W}. What remains now is the justification of the asymptotic normality of finite dimensional marginals of $\bar{\epsilon}_{n}$ and proving tightness.

Justifying asymptotic normality of the finite dimensional marginals of $\bar{\epsilon}_{n}$ requires showing the asymptotic normality of any finite linear combination of marginals of $\bar{\epsilon}_{n}$ and then applying the Cramér-Wold device. Given the convergence of the covariances, it suffices to prove that for $\left(c_{r}, t_{r}\right) \in \mathbb{R}, 1 \leq r \leq R \in \mathbb{N}$,

$$
\begin{equation*}
\frac{1}{\sqrt{v_{n}}} \sum_{r \leq R} c_{r} \bar{\epsilon}_{n}\left(t_{r}\right) \xrightarrow{d} N(0,1) \tag{A.13}
\end{equation*}
$$

where $v_{n}^{2}=\operatorname{Var}\left(\sum_{r \leq r} c_{r} \bar{\epsilon}_{n}\left(t_{r}\right)\right)$. The left hand side equals $\sum_{i} w_{i n} \epsilon_{i}$ where

$$
w_{i n}=\frac{1}{\sqrt{n h_{n}} v_{n}} \sum_{r \leq R} c_{r} K\left(\frac{d_{0}-i / n}{h_{n}}+t_{r}\right)
$$

As in (Robinson, 1997, Assumption 2), we assume ϵ_{i} 's to be a linear process with martingale innovations and square summable coefficients, i.e, there is a sequence of martingale differences $u_{j}, j \in \mathbb{Z}$ adapted to $\mathcal{F}_{j}=\sigma\left\{u_{k}: k \leq j\right\}$ with mean 0 and variance 1 , such that

$$
\begin{equation*}
\epsilon_{i}=\sum_{j=-\infty}^{\infty} \alpha_{j} u_{i-j}, \quad \sum_{j=-\infty}^{\infty} \alpha_{j}^{2}<\infty \tag{A.14}
\end{equation*}
$$

To show asymptotic normality, we justify conditions (2.3) and (2.6) from Robinson (1997). The condition (2.3) is just a normalization requirement which holds in our case as the variance of the left hand side of (A.13) is 1 . The condition (2.6) of Robinson (1997) is about justifying the existence of a positive-valued sequence a_{n} such that as $n \rightarrow \infty$,

$$
\begin{equation*}
\left(\sum_{i} w_{i n}^{2} \sum_{|j|>a_{n}} \alpha_{j}^{2}\right)^{1 / 2}+\max _{1 \leq i \leq n}\left|w_{i n}\right| \sum_{|j| \leq a_{n}}\left|\alpha_{j}\right| \rightarrow 0 \tag{A.15}
\end{equation*}
$$

For a_{n} such that $a_{n} \rightarrow \infty$ and $n h_{n} / a_{n} \rightarrow \infty, \sum_{|j|>a_{n}} \alpha_{j}^{2}=o(1)$, due to (A.14). Also, by Cauchy-Schwartz, $\sum_{|j| \leq a}\left|\alpha_{j}\right|=O\left(\sqrt{a_{n}}\right)$. By the compactness of the kernel and the fact that $v_{n}=O(1), \sum_{i} w_{i n}^{2}=O(1)$. As the kernel K is bounded, $\max _{1 \leq i \leq n}\left|w_{i n}\right|=O\left(1 / \sqrt{n h_{n}}\right)$. Hence, the left hand side of (A.15) is $o(1)+$ $O\left(\sqrt{a_{n} / n h_{n}}\right)$ which is $o(1)$. This shows convergence of the finite dimensional marginals.

For tightness, recall that for $t \in[-T, T]$

$$
\bar{\epsilon}_{n}(t)=\frac{1}{\sqrt{n h_{n}}} \sum_{i:\left|d_{0}-i / n\right| \leq\left(L_{0}+T\right) h_{n}} \epsilon_{i} K\left(\frac{d_{0}-i / n}{h_{n}}+t\right) .
$$

We have
$E\left[\bar{\epsilon}_{n}\left(t_{1}\right)-\bar{\epsilon}_{n}\left(t_{2}\right)\right]^{2}=\frac{1}{n h_{n}} \int_{-\pi}^{\pi} \psi(u)\left(\hat{K}_{x_{1}}(u)-\hat{K}_{x_{2}}(u)\right)\left(\hat{K}_{x_{1}}(-u)-\hat{K}_{x_{2}}(-u)\right) d u$.
As ψ is a bounded function, the above expression is bounded up to a constant, due to Cauchy-Schwartz, by

$$
\frac{1}{n h_{n}} \int_{-\pi}^{\pi}\left|\hat{K}_{x_{1}}(u)-\hat{K}_{x_{2}}(u)\right|^{2} d u
$$

As $\hat{K}_{x_{1}}(u)=\sum_{j} K\left(\left(x_{1}-j / n\right) / h_{n}\right) e^{\imath j u}$,

$$
\left|\hat{K}_{x_{1}}(u)-\hat{K}_{x_{2}}(u)\right|^{2} \lesssim n h_{n}\left|t_{1}-t_{2}\right|^{2 \alpha}
$$

due to Lipschitz continuity of K. Hence,

$$
E\left[\bar{\epsilon}_{n}\left(t_{1}\right)-\bar{\epsilon}_{n}\left(t_{2}\right)\right]^{2} \lesssim\left|t_{1}-t_{2}\right|^{2 \alpha}
$$

The tightness follows from Theorem 12.3 of Billingsley (1968, pp. 95).

References

Adler, R. J. and Taylor, J. E. (2007). Random fields and geometry. Springer Monographs in Mathematics. Springer, New York. MR2319516
Anevski, D. and Hössjer, O. (2006). A general asymptotic scheme for inference under order restrictions. Ann. Statist. 34 1874-1930. MR2283721
Banerjee, M. (2009). Inference in exponential family regression models under certain shape constraints using inversion based techniques. In Advances in multivariate statistical methods. Stat. Sci. Interdiscip. Res. 4 249-271. World Sci. Publ., Hackensack, NJ. MR2603933
Banerjee, M. and McKeague, I. W. (2007). Confidence sets for split points in decision trees. Ann. Statist. 35 543-574. MR2336859
Banerjee, M. and Wellner, J. A. (2005). Confidence intervals for current status data. Scand. J. Statist. 32 405-424. MR2204627

Bhattacharya, P. K. (1994). Some aspects of change-point analysis. In Change-point problems (South Hadley, MA, 1992). IMS Lecture Notes Monogr. Ser. 23 28-56. Inst. Math. Statist., Hayward, CA. MR1477912
Billingsley, P. (1968). Convergence of probability measures. John Wiley \& Sons Inc., New York. MR0233396
Brodsky, B. E. and Darkhovsky, B. S. (1993). Nonparametric methods in change-point problems. Mathematics and its Applications 243. Kluwer Academic Publishers Group, Dordrecht. MR1228205
Cheng, M.-Y. and Raimondo, M. (2008). Kernel methods for optimal change-points estimation in derivatives. J. Comput. Graph. Statist. 17 5675. MR2424795

Cramér, H. and Leadbetter, M. R. (1967). Stationary and related stochastic processes. Sample function properties and their applications. John Wiley \& Sons Inc., New York.
CsÖrgő, M. and HorvÁth, L. (1997). Limit theorems in change-point analysis. Wiley Series in Probability and Statistics. John Wiley \& Sons Ltd., Chichester. With a foreword by David Kendall. MR2743035
Csörgő, S. and Mielniczuk, J. (1995a). Close short-range dependent sums and regression estimation. Acta Sci. Math. (Szeged) 60 177-196. MR1348687
Csörgő, S. and Mielniczuk, J. (1995b). Nonparametric regression under long-range dependent normal errors. Ann. Statist. 23 1000-1014. MR1345211
Dümbgen, L. (1991). The asymptotic behavior of some nonparametric changepoint estimators. Ann. Statist. 19 1471-1495. MR1126333
Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124-152. MR1833961
Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density. Ann. Statist. 36 1758-1785. MR2435455
Ermakov, M. S. (1976). On the asymptotic behavior of statistical estimates for samples having a density with singularities. Theory Probab. Appl. 21 649651.

Ferger, D. (1999). On the uniqueness of maximizers of Markov-Gaussian processes. Statist. Probab. Lett. 45 71-77. MR1718353
Ferger, D. (2004). A continuous mapping theorem for the argmax-functional in the non-unique case. Statist. Neerlandica 58 83-96. MR2042258
Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633. MR0897854
Goldenshluger, A., Tsybakov, A. and Zeevi, A. (2006). Optimal changepoint estimation from indirect observations. Ann. Statist. 34 350-372. MR2275245
Goldenshluger, A., Juditsky, A., Tsybakov, A. B. and Zeevi, A. (2008). Change-point estimation from indirect observations. I. Minimax complexity. Ann. Inst. Henri Poincaré Probab. Stat. 44 787-818. MR2453845
Gut, A. and Steinebach, J. (2009). Truncated sequential change-point detection based on renewal counting processes. II. J. Statist. Plann. Inference 139 1921-1936. MR2497549

Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 521-528. MR1087842
Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. Biometrika 57 1-17. MR0273727
Horváth, L., Horváth, Z. and Hušková, M. (2008). Ratio tests for change point detection. In Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen. Inst. Math. Stat. Collect. 1 293-304. Inst. Math. Statist., Beachwood, OH. MR2462213
Hušková, M. (1998). Estimators in the location model with gradual changes. Comment. Math. Univ. Carolin. 39 147-157. MR1623002
Hušková, M., Kirch, C., Prášková, Z. and Steinebach, J. (2008). On the detection of changes in autoregressive time series. II. Resampling procedures. J. Statist. Plann. Inference 138 1697-1721. MR2400475

Jarušková, D. (1998). Change-point estimator in gradually changing sequences. Comment. Math. Univ. Carolin. 39 551-561. MR1666790
Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. MR1041391
Korostelëv, A. P. (1987). Minimax estimation of a discontinuous signal. Teor. Veroyatnost. i Primenen. 32 796-799. MR0927265
Korostelëv, A. P. and Tsybakov, A. B. (1993). Minimax theory of image reconstruction. Lecture Notes in Statistics 82. Springer-Verlag, New York. MR1226450
Lifshits, M. A. (1982). On the absolute continuity of the distributions of functionals of stochastic processes. Theory Probab. Appl. 27 600-607. MR0673927
Loader, C. R. (1996). Change point estimation using nonparametric regression. Ann. Statist. 24 1667-1678. MR1416655
Mallik, A., Sen, B., Banerjee, M. and Michailidis, G. (2011). Threshold estimation based on a p-value framework in dose-response and regression settings. Biometrika 98 887-900. MR2860331
MüLler, H.-G. (1992). Change-points in nonparametric regression analysis. Ann. Statist. 20 737-761. MR1165590
Müller, H.-G. and Song, K.-S. (1996). A set-indexed process in a two-region image. Stochastic Process. Appl. 62 87-101. MR1388764
Müller, H.-G. and Song, K.-S. (1997). Two-stage change-point estimators in smooth regression models. Statist. Probab. Lett. 34 323-335. MR1467437
Neumann, M. H. (1997). Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 503-521. MR1615339
Pflug, G. C. (1983). The limiting log-likelihood process for discontinuous density families. Z. Wahrsch. Verw. Gebiete 64 15-35. MR0710646
Robinson, P. M. (1997). Large-sample inference for nonparametric regression with dependent errors. Ann. Statist. 25 2054-2083. MR1474083
Schlesinger, M. E. and Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years. Nature 367 723-726.
Seijo, E. and Sen, B. (2011). Change-point in stochastic design regression and the bootstrap. Ann. Statist. 39 1580-1607. MR2850213

Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: the Grenander estimator. Ann. Statist. 38 1953-1977. MR2676880
Steland, A. (2010). A surveillance procedure for random walks based on local linear estimation. J. Nonparametr. Stat. 22 345-361. MR2662597
van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes: with applications to statistics. Springer Series in Statistics. Springer-Verlag, New York. MR1385671
Willett, R. M. and Nowak, R. D. (2007). Minimax optimal level set estimation. IEEE Trans. Image Process. 16 2965-2979. MR2472804
Wishart, J. (2009). Kink estimation with correlated noise. J. Korean Statist. Soc. 38 131-143. MR2649688
Wishart, J. and Kulik, R. (2010). Kink estimation in stochastic regression with dependent errors and predictors. Electron. J. Stat. 4 875-913. MR2721037
Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9 443-448. MR0606630
Wu, W. B., Woodroofe, M. and Mentz, G. (2001). Isotonic regression: another look at the changepoint problem. Biometrika 88 793-804. MR1859410 Zhao, O. and Woodroofe, M. (2012). Estimating a monontone trend. Statist. Sinica 22 359-378. MR2933180

[^0]: *Supported by NSF Grant DMS-1007751, NSA grant H98230-11-1-0166 and a Sokol Faculty Award, University of Michigan.
 ${ }^{\dagger}$ Supported by NSF Grants DMS-0906597 and AST-1107373.

