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Abstract

We investigate the large sample behavior of a p-value based procedure for estimating
the threshold level at which a regression function takes off from its baseline value, a
problem arising in dose-response studies, engineering and other related fields. We study
the procedure under the so called “dose-response” setting, where several responses can
be obtained at each covariate-level. The estimator is constructed via fitting a “stump”
function to approximate p-values that test for deviation of the regression function from
its baseline level. The smoothness of the regression function in the vicinity of the thresh-
old determines the optimal rate of convergence: a “cusp” of order k at the threshold
yields an optimal rate of N−1/(2k+1), where N is the total budget. The asymptotic
distribution of the normalized estimator is shown to be the minimizer of a generalized
compound Poisson process. A limited simulation study is used to illustrate the method
and an application to data from a complex queuing system presented.

Keywords: Baseline value, change point, least squares, nonparametric estimation,
stump function, weighted Poisson process.

1 Introduction

In diverse applications, the following canonical model generates the available data:

Y = µ(X) + ε, (1)

where µ is a function on [0, 1] such that

µ(x)

{
= τ for x ≤ d0

> τ for x > d0;
(2)

here τ ∈ R, d0 ∈ (0, 1), and ε has mean zero with finite positive variance. The covariate X
may arise from a random or a fixed design and we assume that we have repeated measure-
ments on the regression function for each value of the covariate. The function µ need not
be monotone and the baseline value τ is not necessarily known.
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This model arises in a number of important contexts, especially dose-response studies,
where a number of dose-levels are selected by the experimenter and each dose administered
to a group of individuals. The postulated form of µ is a natural one in such experiments:
µ(x) provides information about reaction to dose-level x and is typically at the baseline value
up to a certain dose – the d0 in our model – and changes from there on. In pharmacological
contexts, this is typically referred to as the minimum effective dose (MED); see Chen and
Chang (2007) and Tamhane and Logan (2002) and the references therein. For applications
in toxicology, see e.g., Cox (1987), who uses parametrically specified threshold models, and
Mallik et al. (2011), who study a biological application depicting the physiological response
of cells from a leukemia rat cell line to different doses of a treatment. It is, therefore, of
great interest to identify the threshold d0 ∈ (0, 1), the point from where the function starts
deviating from its baseline value, and construct confidence intervals (CIs) for the same.

It is important to differentiate the above problem from the classical regression problem
where the canonical model would be the same as above but one would only observe a single
response for every value of the covariate. We refer to our problem as the ‘m,n’ setting
where m replicates are observed for each of the n levels of the covariate, and m is often
allowed to be of comparable order to n. An analytical treatment of regression models – the
‘1, n’ setting – typically proceeds by allowing n to go to ∞ whereas in the ‘m,n’ setting, it
is natural to explore the properties of estimators as both m and n grow and understand how
the interplay between the two affects their long term behavior. The domains of application
of the ‘m,n’ setting and the classical regression setting are also typically different with the
regression setting being more germane to observational data and the former to controlled
replicable experiments.

For the posited model (1), Mallik et al. (2011) recently proposed novel and computa-
tionally simple procedures for estimating d0, based on the discrepancy of p-values, in both
the classical regression and ‘m,n’ settings. They established consistency of their estimators
under mild conditions, and also studied their finite sample properties. However, the prob-
lem of constructing CIs for d0 was not addressed in that paper. In this work, we address
this inference question in the ‘m,n’ setting by deriving the asymptotic distribution of the
estimator, d̂m,n in Mallik et al. (2011) (as well as those of related estimators) as m,n grow
to infinity, and demonstrating how to use the quantiles of this distribution to set the limits
of the CI. It turns out that the asymptotic behavior of the estimators in the m,n setting is
fundamentally different from that in the classical regression setting, this latter case having
been recently investigated in Mallik et al. (2013). The estimates in the regression setting
converge to minimizers of processes with differentiable sample paths that can be written
as transforms of Gaussian processes while, as we will see below, those in the m,n setting
converge to the minimizers of piecewise-constant processes with jump discontinuities. Thus,
many of the tools that play a crucial role in Mallik et al. (2013) are inapplicable in the m,n
case (see Remark 6).

It should be noted that the problem of estimating d0 in different models has received
much attention in the statistics literature. If µ is assumed to have a jump discontinuity
at d0, then d0 corresponds to a usual change-point for µ. Such change-point models are
very well understood; see e.g., Hinkley (1970), Korostelëv (1987), Dümbgen (1991), Müller
(1992), Korostelëv and Tsybakov (1993), Loader (1996), Müller and Song (1997) and the
references therein. Our results, here, are developed for the harder problem that arises when
µ is continuous at d0. In particular, the smoother the regression function in a neighborhood
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of d0, the greater the challenge in estimating d0 precisely. We show that if d0 is a cusp
of µ of order k (i.e., the first k − 1 right derivatives of µ at d0 equal 0 but the k-th does
not, so that d0 is a change-point in the k-th derivative) and f is locally monotone in a
neighborhood of d0, then d̂m,n − d0 is of order N−1/(2k+1), where N = m × n is the total
budget and m is chosen in some optimal manner (to be specified later) in terms of n.

The limit distribution of N1/(2k+1)(d̂m,n − d0) is seen to be that of an appropriate
minimizer of a jump process drifting off to infinity, that can be viewed as a generalization of
a compound Poisson process. The derivation of the asymptotic distribution is complicated
owing to the fact that the sample paths of the limit process are piecewise constant, resulting
in non-unique minimizers. Hence, the more common continuous mapping arguments that
rely on the uniqueness of the extremum of limit processes (see e.g., Theorem 2.7 of Kim and
Pollard (1990)) – a phenomenon that shows up often with Gaussian limits and monotone
transforms thereof – do not apply, and careful modifications, which rely on the continuity
of the argmin functional in spaces of discontinuous functions, are required. In particular,
the least squares estimate of d0 (which is not unique) needs to be carefully picked. Another
important challenge lies in deriving the rate of convergence of the estimator, which requires
a considerable generalization of the standard rate theorems (see Theorem 4) in the modern
empirical processes literature (see e.g., Theorem 3.2.5 of van der Vaart and Wellner (1996)),
and the choice of a cleverly constructed dichotomous metric on R (see Lemma 1) to invoke
the generalization. The details are available in the proof of Theorem 1.

The knowledge of k is essential for constructing two-sided CIs based on these limiting
results. Although resampling approaches such as subsampling are shown to work (in Section
4.2) for our problem, they do not present a solution for the situation when k is unknown.
We do end up providing a partial answer and show that adaptive upper confidence bounds
can be constructed in the k-unknown case (Section 4.1).

The remainder of the paper is organized as follows. Section 2 provides a brief discus-
sion of the estimation procedure, its variants and extensions, and the core assumptions. The
rates of convergence and the asymptotic distributions are deduced in Section 3, assuming
a random design setting. Their implications to constructing CIs in practical applications,
along with some auxiliary results on subsampling and adaptivity, are discussed in Section
4. In Section 5, we discuss the large sample behavior of the estimator of d0 in a fixed design
setting. We study the finite sample coverage performance of the CIs through simulations in
Section 6 and discuss an application from a complex queuing system. The proofs of several
technical results are provided in the Appendix.

2 Problem formulation

For convenience, we formulate the problem and deduce the estimation method in a random
design setting. The extension to the fixed design setting is immediate. The expression
for the estimator of d0 is identical to that in the random design with the exception that
the covariate Xis would then just be fixed design points. More details on the fixed design
scheme are available in Section 5.

We assume the regression model (1) where the covariate X is sampled from a Lebesgue
density f , X and ε are independent, E(ε) = 0 and let σ2

0 := Var(ε) > 0. Consider data
{(Xi, Yij) : 1 ≤ j ≤ m, 1 ≤ i ≤ n}, where the Xis are i.i.d. random variables distributed
like X, {εij} are i.i.d. random variables distributed like ε, the vectors {Xi} and {εij} are
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independent, and

Yij = µ(Xi) + εij , 1 ≤ j ≤ m, and 1 ≤ i ≤ n. (3)

Here, N = m×n is the total budget and we assumem = m0n
β for some β > 0, to incorporate

the scenario that m can be ‘large’ relative to n, a feature of several dose-response studies.
Let Ȳi =

∑m
i=1 Yij/m and σ̂2 =

∑
i,j(Yij − Ȳi)2/(nm − n). We estimate d0 by con-

structing p-values for testing the null hypothesis H0,x : µ(x) = τ against the alternative
H1,x : µ(x) > τ at each dose Xi = x. The approximate p-values are

pm,n(Xi) = 1− Φ(
√
m(Ȳi − τ)/σ̂).

To the left of d0, the null hypothesis holds and these approximate p-values converge weakly
to a Uniform(0,1) distribution which has mean 1/2. However, to the right of d0, where the
alternative is true, the p-values converge in probability to 0. This dichotomous behavior of
the p-values suggests proposing

d̂m,n = sargmin
d∈[0,1]

 ∑
i:Xi≤d

{
pm,n(Xi)−

1

2

}2

+
∑
i:Xi>d

{pm,n(Xi)}2
 (4)

as an estimate of d0. Here, sargmin denotes the smallest argmin of the criterion function,
which does not have a unique minimum. In fact, d̂m,n corresponds to an order statistic of Xis

and the above criterion is minimized at any point between d̂m,n and the next order statistic.
Setting γ = 3/4 and letting Pn denote the empirical measure of (Xi, Ȳi), i = 1, . . . , n, the
expression in (4) can be simplified as d̂m,n = sargmind∈[0,1] Mm,n(d), where

Mm,n(d) ≡Mm,n(d, σ̂) = Pn
[{

Φ

(√
m(Ȳ − τ)

σ̂

)
− γ
}

1(X ≤ d)

]
. (5)

Remark 1. The above methods are based on a known τ . When τ is unknown, an esti-
mate can be plugged in its place (more about this in Section 3.5). Also, for any choice of
γ ∈ (1/2, 1) in (5) the estimator of d0 is consistent. The proof follows along the lines of
arguments in Mallik et al. (2011, pp. 898–900).

2.1 Variants

Our approach extends readily to the situation with heteroscedastic errors when X and ε
are no longer independent. In this situation, E(ε | X) = 0 and σ2

0(x) = Var(ε | X = x) is
a non-constant function. The {Xi}’s are still i.i.d. and given Xi, {εij}mj=1 are conditionally

i.i.d., each being distributed like ε conditional on X. If σ̂2 is a consistent estimate of
σ2

0(x) = Var(ε | X = x), x ∈ (0, 1), an estimator of d0 is given by

sargmin
d∈(0,1)

Pn
[{

Φ

(√
m(Ȳ − τ)

σ̂(X)

)
− γ
}

1(X ≤ d)

]
.

A natural candidate for σ̂ is given by σ̂2(Xi) :=
∑m

j=1 (Yij − Y i)
2/(m − 1). A variant of

the above estimator that completely avoids estimating the variance function can also be
constructed. Relying upon the simple fact that E[Φ(Z)] = 0.5 for a normally distributed Z
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with zero mean and arbitrary variance, it can be seen that the desired dichotomous behavior
is preserved even when we do not normalize by the estimate of the variance and hence, an
alternative estimator of d0 can be given by

d̃m,n = sargmin
d∈(0,1)

Pn
[{

Φ
(√
m(Ȳ − τ)

)
− γ
}

1(X ≤ d)
]
. (6)

2.2 Basic Assumptions

We study the limiting behavior of d̂m,n assuming that the errors are independent and
homoscedastic and consider a random design for the covariate distribution. The smoothness
of the function in the vicinity of d0 plays a crucial role in determining the rate of convergence.
For the random design setting we make the following assumptions.

1. The regression function µ has a cusp of order k, k being a known positive integer, at
d0, i.e., µ(l)(d0) = 0, 1 ≤ l ≤ k − 1 and µ(k)(d0+) > 0, where µ(l)(·) denotes the lth
derivative of µ. Also, the k-th derivative, µ(k)(x) is assumed to be continuous and
bounded for x ∈ (d0, d0 + ζ0] for some ζ0 > 0.

2. The errors ε possess a continuous positive density on a (finite or infinite) interval.

3. The design density f for the dose-response setting is assumed to be continuous and
positive on [0, 1].

Remark 2. Some words of explanation on why we address the asymptotics for a random
design, as opposed to fixed design, are in order. It turns out that there is no limit distribution
in this problem when the Xis are the grid-points of a non-random grid, say, the uniform grid
of size n, on the domain of the covariate. See Remark 5 for a more technical explanation
of this issue. Moreover, note that our data application for the (m,n) setup does come from
a random design.

3 Main Results

We state and prove results on the limiting behavior of the estimator d̂m,n discussed in
Section 2. Results on the variants of the procedure discussed in Section 2.1 follow similarly
and are stated without proofs in Section 3.3. The results in this section are developed for
γ ∈ (1/2, 1) (cf. Remark 1) and a known τ . It will be seen in Section 4.3 that τ can
be estimated at a sufficiently fast rate; consequently, even if τ is unknown, appropriate
estimates can be substituted in its place to construct the p-values that are instrumental
to the methods of this paper, without changing the limit distributions. Without loss of
generality, we take τ ≡ 0, as one can work with (Yij − τ)s ((Yi − τ)s) in place of Yijs (Yis).

3.1 Rate of convergence

As m = m0n
β, we consider the asymptotics in the dose-response model as n→∞. Let Pn

denote the measure induced by (Ȳ , X) and

Mm,n(d) = Mm,n(d, σ0) = Pn

[{
Φ

(√
mȲ

σ0

)
− γ
}

1(X ≤ d)

]
.
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The process Mm,n is the population equivalent of Mm,n defined in (5) and can be simplified
as follows. Let

Z1n =
1√
mσ0

m∑
j=1

ε1j (7)

and Z0 be a standard normal random variable independent of Z1ns. Then

E

[
Φ

(√
mȲ1

σ0

)∣∣∣∣X1 = x

]
= E

[
Φ

(√
mµ(x)

σ0
+ Z1n

)]
= E

[
E

[
1

(
Z0 <

√
mµ(x)

σ0
+ Z1n

)∣∣∣∣Z1n

]]
= P

[
Z0 − Z1n√

2
<

√
mµ(x)√

2σ0

]
= Φn

(√
mµ(x)√

2σ0

)
, (8)

where Φn denotes the distribution function of (Z0 − Z1n)/
√

2. Then, by integrating with
respect to the density of X, it can be shown that

Mm,n(d) =


(Φn(0)− γ)F (d), d ≤ d0,

(Φn(0)− γ)F (d0) +

∫ d

d0

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
f(x)dx, d > d0.

Let dm,n = sargmind∈(0,1)Mm,n(d). We first study the behavior of dm,n which satisfies

Φn

(√
mµ(dm,n)√

2σ0

)
= γ.

Let Φ−1
n be the left continuous inverse of Φn. By Assumptions 1 and 2, we get

µ(k)(ζn)

k!
(dm,n − d0)k =

√
2σ0Φ−1

n (γ)√
m

, (9)

where ζn is some point between d0 and dm,n. As n→∞, the right-hand side (RHS) of the
above display goes to zero. So, dm,n → d0. Also, Φn converges point wise to Φ and the
convergence holds for their inverse functions too. Hence,

dm,n = d0 +

[
k!
√

2σ0Φ−1(γ)

µ(k)(d0+)

]1/k

m−1/(2k) + o(m−1/(2k)). (10)

This shows that dm,n−d0 = O(m−1/(2k)) = O(n−β/(2k)). In a sense, d̂m,n, is estimating dm,n
instead of d0, and hence, its rate of convergence to d0 can be expected to be at most of order
n−β/(2k). Moreover, d̂m,n is one of the order statistics of Xis and hence, can only be close
to d0 up to an order 1/n. We next provide a formal statement of the rate of convergence of
d̂m,n.

Theorem 1. Let α = min (1, β/(2k)). Then,

nα(d̂m,n − d0) = m
− α

1+β

0 N
α

1+β (d̂m,n − d0) = OP (1).
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Remark 3. The function µ may not satisfy Assumption 1 for any k ∈ Z and can still take
off at d0, e.g., µ(1)(x) = exp(−1/(x− d0))1(x > d0) and µ(2)(x) = exp(−1/(x− d0)2)1(x >
d0) are two such infinitely differentiable functions with a singularity at d0. By calculations
almost identical to those for deriving (10), it can be shown that dm,n−d0 = O

(
(log(n))−1/i

)
when µ = µ(i), i = 1, 2. Hence, we do not expect a universal rate of convergence for d̂m,n
when µ is infinitely differentiable at d0 and adhere to Assumption 1.

The proof is given in Section A.1 of the Appendix. The optimal rate corresponds to
α = 1. In terms of the total budget, the best possible rate is achieved when β = 2k. In
that case, N1/(2k+1)(d̂m,n − d0) = OP (1). For, β < 2k, the rate of convergence is nβ/(2k) or
Nβ/{2k(1+β)}.

Remark 4. The rate N−/1(2k+1) is not surprising as it appears in inverse function esti-
mation: for example, if h is a smooth monotone function, the isotonic regression estimate
of x0 := h−1(θ0), where θ0 is a fixed point in the range of h, converges at rate S−1/(2k+1)

(S being sample size) under the assumption that f is (at least) k-times differentiable at
x0, f (k)(x0) 6= 0 and f (l)(x0) = 0 for 1 ≤ l < k, which is the exact analogue of the ‘cusp
assumption’ on d0 above. The same rate is obtained in the regression version of the problem
(where m is identically 1 and the number of sampled covariates equals the budget N) studied
in Mallik et al. (2013), and from the discussion on ‘Minimaxity’ in Section 8 of that paper,
is expected to be minimax in the regression setting. As our assumptions on the model are
the same as those in the regression setting, we expect this rate to be optimal in the m,n
setting as well, even though a formal proof appears difficult and is outside the scope of this
paper. For more details on the isotonic estimation of x0 that appears at the beginning of
this remark, see again Section 8 of Mallik et al. (2013).

3.2 Asymptotic Distribution

We now deduce the asymptotic distribution of d̂m,n for different choices of β, starting with

β = 2k. Note that n(d̂m,n − d0) = sargmint∈R V̂n(t) where

V̂n(t) = n {Mm,n (d0 + t/n, σ̂)−Mm,n(d0, σ̂)} . (11)

We deduce the limit of V̂n and then apply a special continuous mapping theorem to obtain
the asymptotic distribution of d̂m,n.

To state the limiting distribution, we introduce the following notation. Let
{ν+(t) : t ≥ 0} and {ν−(t) : t ≥ 0} be two independent homogeneous Poisson processes with
same intensity f(d0) but with RCLL (right continuous with left limits) and LCRL (left con-
tinuous with right limits) paths, respectively. Let {Si}i≥1 denote the arrival times for the
process ν+. Further, let {Zi}i≥1 and {Ui}i≥1 be independent sequences of i.i.d. N(0, 1)’s
and i.i.d. U(0, 1)’s respectively which are, moreover, independent of the processes ν+ and
ν−. Define V (t) as:

V (t) =



ν+(t)∑
j=1

(
Φ

(√
m0 µ

(k)(d0+)

k!σ0
Skj + Zj

)
− γ

)
, t ≥ 0,

ν−(−t)∑
j=1

(γ − Uj) , t < 0,

(12)
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where sum over a null set is taken to be zero. We will show that V̂n converges weakly to
V as processes in D(R), the space of càdlàg functions (right continuous having left limits)
on R equipped with the Skorokhod topology; see Lindvall (1973) for more details on D(R).
Moreover, the asymptotic distribution of d̂m,n will be characterized by a minimizer of the
process V . The limiting process V does not possess a unique minimizer as it stays at
any level it attains for an exponential amount of time. Hence, the usual argmin (argmax)
continuous mapping theorem (see for example Theorem 3.2.2 of van der Vaart and Wellner
(1996)) does not suffice for deducing the limiting distribution; we also need to show the
convergence of the involved jump processes (Lan et al., 2009, pp. 1760–1762).

For convenience, we state a consequence of Lemmas 3.1, 3.2 and 3.3 from Lan et al.
(2009) which provides a version of the argmin (argmax) continuous mapping theorem re-
quired in our setting. Let S denote the class of piecewise constant functions in D(R) that
are continuous at every integer point, assume the value 0 at 0, and possess finitely many
jumps on every compact interval [−C,C], where C > 0 is an integer. Note that S is a closed
subset of D(R). Also, define the pure jump process, g̃, (of jump size 1) corresponding to the
function g ∈ D(R), as the piecewise constant right continuous function with left limits, such
that for any s > 0, g̃(s) counts the number of jumps of the function g in the interval [0, s],
while for s < 0, g̃(s) counts the number of jumps in the set (s, 0). We have the following
result.

Theorem 2. Let Vn, n ≥ 0, be processes in D(R) such that Vn ∈ S, with probability 1.
Also, let Jn, n ≥ 0, denote the corresponding jump processes and (ξsn, ξ

l
n), n ≥ 0, be the

smallest and largest minimizers for Vn. Suppose that:

(i) (Vn, Jn) converges weakly to (V0, J0) as processes in D[−C,C] ×D[−C,C], for each
positive integer C.

(ii) No two flat stretches of V0(t), t ∈ [−C,C], have the same height a.s., for each positive
integer C.

(iii)
{

(ξsn, ξ
l
n), n ≥ 0

}
is OP (1).

Then (ξsn, ξ
l
n)

d→ (ξs0, ξ
l
0), where

d→ denotes convergence in distribution.

Note that V̂n ∈ S with probability 1. For t ∈ R, let the function sgn(t) denote the
sign of t. Also, let Jn denote the jump process corresponding to V̂n(t). Then,

Jn(t) = sgn(t)
n∑
i=1

[
1

(
Xi ≤ d0 +

t

n

)
− 1 (Xi ≤ d0)

]
.

Further, let J be the jump process associated with V (t), i.e., J(t) = ν+(t)1(t ≥ 0) +
ν−(−t)1(t < 0). We have the following result.

Theorem 3. Let β = 2k and V̂n and V be as defined in (11) and (12) respectively. Then,
the conditions (i), (ii) and (iii) of Theorem 2 are satisfied for Vn = V̂n and V0 = V with
Jn and J being the corresponding jump processes. As a consequence,

n(d̂m,n − d0)
d→ sargmin

t∈R
V (t).
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The proof involves establishing finite dimensional convergence using characteristic
functions and justifying a moment condition (see Billingsley (1968, pp. 128)) to prove
asymptotic tightness. It is available in Section A.2.

Remark 5. The counts
∑

i≤n 1(Xi ∈ (d0, d0 + t/n]) account for the Poisson process that
arises in the limit. If the Xis were drawn from a fixed uniform design, these counts would
not converge. Hence, a fixed design setup does not yield a limiting distribution for the
underlying processes, and consequently for d̂m,n, in the dose-response setting. This fact was
also observed in the change point setting of Lan et al. (2009, pp. 1766).

The limiting random variable sargmint∈R V (t) is continuous by virtue of the fact that
the probability of a jump at a particular point for a Poisson process is zero. Its distribution
depends upon the parameters m0, µ(k)(d0+), σ0, f(d0) and γ. It is clear from the expression
for V (see (12)) that a larger m0, a larger µ(k)(d0+) or a smaller σ0 will skew the limiting
distribution more to the left. For the sake of completeness, we state the asymptotics for
other choices of β. When β > 2k, the derivation of the limiting distribution is similar to
that of Theorem 3 and is outlined in Section A.3 of the Appendix.

Proposition 1. Let β > 2k. Also, let
{
ν+

1 (t) : t ≥ 0
}

and
{
ν−1 (t) : t ≥ 0

}
be two indepen-

dent homogeneous Poisson processes with same intensity f(d0) but with RCLL and LCRL
paths respectively. Let

{
Ūi
}
i≥1

be a sequence of i.i.d. U(0, 1)s which is independent of

{ν+
1 , ν

−
1 }. Define V̄ (t) as:

V̄ (t) =


(1− γ)ν+

1 (t), t ≥ 0,
ν−1 (−t)∑
j=1

(
γ − Ūj

)
, t < 0,

where sum over a null set is taken to be zero. Then, n(d̂m,n − d0)
d→ sargmint∈R V̄ (t) =

sargmint≤0 V̄ (t) .

The case β < 2k yields a markedly different result from the above two scenarios: we
do not get a non-degenerate limiting distribution any longer as the normalized estimator
converges to a constant. The proof is given in Section A.4 of the Appendix.

Proposition 2. Choose β < 2k. Let

Ĥn(t) = nβ/(2k)

{
Mm,n

(
d0 +

t

nβ/(2k)
, σ̂

)
−Mm,n(d0, σ̂)

}
and

c(t) =


(

1
2 − γ

)
f(d0)t, t ≤ 0

f(d0)

∫ t

0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk

)
− γ

}
du, t > 0.

Then, for any L > 0,

sup
t∈[−L,L]

|Ĥn(t)− c(t)| P→ 0, (13)

and

nβ/(2k)(d̂m,n − d0)
P→ argmin

d∈R
{c(t)} =

(√
2 k! σ0 Φ−1(γ)
√
m0 µ(k)(d0+)

)1/k

.
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3.3 Limit distributions for variants of the procedure

The rates of convergence and asymptotic distributions can be obtained similarly for the
variants of the procedure that were discussed in Section 2.1. In what follows, we state the
limiting distributions, without proofs, for one of the variants.

For heteroscedastic errors, the non-normalized version of the procedure (p-values are
not normalized by the estimate of the variance), see (6), yields the following limiting dis-
tribution.

Proposition 3. Consider the dose-response setting as stated in Section 2 but with het-
eroscedastic errors, i.e., σ2

0(x) = Var(ε | X = x) need not be identically σ0 but is assumed
to be continuous and positive. Let

d̃m,n = sargmin
d∈(0,1)

Pn
[{

Φ
(√
m(Ȳ − τ)

)
− γ
}

1(X ≤ d)
]
,

with m = m0n
2k. Let {ν+(t) : t ≥ 0} and {ν−(t) : t ≥ 0} be two independent homoge-

neous Poisson processes with same intensity f(d0) but with RCLL and LCRL paths, re-

spectively. Let {Si}i≥1 denote the arrival times for the process ν+. Further, let
{
Z

(1)
i

}
i≥1

and
{
Z

(2)
i

}
i≥1

be independent sequences of i.i.d. N(0, σ2
0(d0))’s. Define Ṽ (t) as:

Ṽ (t) =



ν+(t)∑
j=1

{
Φ

(√
m0 µ

(k)(d0+)

k!
Skj + Z

(1)
j

)
− γ

}
, t ≥ 0,

ν−(−t)∑
j=1

{
γ − Φ(Z

(2)
j )
}
, t < 0,

Then, n(d̃m,n − d0)
d→ sargmint∈R Ṽ (t).

Remark 6. As noted in the Introduction, the limit distribution in the ‘m,n’ setting is
governed by the minimizer of a generalized compound Poisson process, in contrast to the
integral of a transformed Gaussian process that appears in the ‘1, n’ setting considered in
(Mallik et al., 2013, Theorem 2). The appearance of the transformed Gaussian process
is an outcome of the local spatial averaging of responses needed to construct the p-values
in the absence of multiple replications in the regression setting. In terms of total budget,
both settings admit the same best-possible rate of N1/(2k+1), under an appropriate trade-
off between m and n in the dose-response setting, and an appropriate choice of smoothing
bandwidth in the regression setting.

4 Construction of CIs

As the form of the limit distribution depends upon the allocation of the total budget N
between m and n and may involve k, the construction of CIs requires some care. Consider,
first, the case that k is assumed known. Writing m = m0 n

β, we can set β = 2k, the
optimal choice in terms of the total budget, to solve for m0, and then construct a CI for
d0 using the result in Theorem 3. This requires estimating nuisance parameters like f(d0),
σ0 and µ(k)(d0+), of which the last is the hardest to estimate. Note that we have already

10



estimated σ0 in order to construct d̂m,n, while the design density at d0 can be estimated

using f̂(d̂m,n), where f̂ is a standard kernel density estimate of f . As far as µ(k)(d0+) is
concerned, observe that

µ(x) = µ(k)(d0+)(x− d0)k/k! + o((x− d0)k)

for x > d0. An estimate of µ(k)(d0+) can, therefore, be obtained by fitting a local polynomial
to the right of d̂m,n that involves the k-th power of the covariate. Specifically, an estimate
of ξ0 ≡ µ(k)(d0+)/k! is:

ξ̂ = argmin
ξ

n∑
i=1

{Ȳi − ξ(Xi − d̂m,n)k}21(Xi ∈ (d̂m,n, d̂m,n + bn])

=

∑
Ȳi(Xi − d̂m,n)k1(Xi ∈ (d̂m,n, d̂m,n + bn])∑
(Xi − d̂m,n)2k1(Xi ∈ (d̂m,n, d̂m,n + bn])

,

where bn ↓ 0 and nb2k+1
n →∞. The condition nb2k+1

n →∞ is typical for estimating the k-th
derivative at a known fixed point; see e.g., Gasser and Müller (1984), Härdle and Gasser
(1985). The following lemma, whose proof is given in Section A.5 of the Appendix, justifies
the consistency of this estimate for the optimal choice of β, thereby providing a way to
construct CIs by imputing this estimate in the limiting distribution.

Proposition 4. Let β = 2k. Then ξ̂
P→ ξ0.

Remark 7. The estimate ξ̂ is effectively a kernel estimate with the smoothing kernel being
uniform on (0, 1]. Alternative consistent estimators of ξ can be obtained using other one
sided kernels. To fix ideas, we only use the above mentioned estimate in the paper.

4.1 Adaptive upper confidence bounds

Note that the above inference strategy is not adaptive to the order of smoothness, k, at
d0. While we have not been able to develop an adaptive method for two-sided CIs, we are
able to propose a strategy for one-sided honest CIs for d0 (which are also of consequence in
applications) that avoids knowledge of k. For example, if d0 represents the minimal effective
dose in a pharmacological setting, practitioners would be naturally interested in finding an
upper confidence bound for d0. The following result, whose proof follows along the same
lines as that of Proposition 1, is our starting point for building such CIs.

Proposition 5. Consider the dose-response setting with homoscedastic errors and nor-
malized p–values and define dm,n = sargmin0≤d≤d0 Mm,n(d), so that dm,n ≤ d̂m,n =
sargmin0≤d≤1 Mm,n(d). Then, for any β > 0,

n (dm,n − d0)⇒d sargmint≤0

ν−(t)∑
j=1

(γ − Uj) ,

where Uj’s and ν− are as in Theorem 3.

In fact the above result does not require m to grow as a power of n. The condition
min(m,n) → ∞ suffices. Note that the limit distribution above is concentrated on the
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negative axis (as it must, since dm,n ≤ d0) and does not depend upon k. Simulating its
quantiles requires just an estimate of f(d0). Let Kα be its α’th quantile. Then,

lim
n→∞

P (d0 ≤ dm,n −Kα/n) = 1− α .

Now, dm,n is obviously unknown, but dm,n ≤ d̂m,n which is known. It follows easily that:

lim inf
n→∞

P (d0 ≤ d̂m,n −Kα/n) ≥ 1− α .

An essentially honest level 1−α upper confidence bound for d0 is therefore given by [0, d̂m,n−
Kα/n]. For an asymptotic allocation where β > 2k, by Proposition 1, the limit distributions
of dm,n and d̂m,n coincide. Hence, these conservative upper confidence bounds are in a sense,
minimally conservative, as they are exact for the situation β > 2k.

4.2 Subsampling

As an alternative to using the limit distribution, subsampling can be used to construct CIs
for the case β ≥ 2k. Let qn be a sequence of integers such that qn/n → 0 and qn → ∞. A
subsample is constructed by selecting qn many Xis and ln = bqnm/nc response values at

each selected Xi. The subsamples are denoted by S1, . . .SNn , where Nn =
(
n
qn

) [(
m
ln

)]qn
. Let

d̂n,qn,j denote the estimate of d0 based on Sj , j = 1, . . . , Nn. Let Gn,β denote the distribution

of n(d̂m,n − d0). For β ≥ 2k, Gn,β converges weakly to a continuous limiting distribution,
say Gβ. The approximation to Gn,β, based on subsampling, is given by

Ln,q(x) = Ln,q(x, β) =
1

Nn

Nn∑
j=1

1
[
qn(d̂n,qn,j − d̂m,n) ≤ x

]
.

The following result justifies the use of subsampling in constructing CIs for d0.

Proposition 6. Let β ≥ 2k. If qn/n→ 0 and qn →∞ then:

(i) supx |Ln,q(x, β)−Gβ(x)| P→ 0.

(ii) P [cn,q,α/2 ≤ n(d̂m,n − d0) ≤ cn,q,1−α/2]→ 1− α, where cn,q,ξ = inf {x : Ln,q(x) ≥ ξ}.

The proof follows along the lines of that of Theorem 15.7.1 in Lehmann and Romano
(2005). The details are provided in Section A.6 of the Appendix. The usual bootstrap
methodology is not expected to be consistent.

4.3 The case of an unknown τ

While our results have been deduced under the assumption of a known τ , in real applications
τ is generally not known. In this situation, quite a few extensions are possible. If d0 can be
safely assumed to be larger than some η, then a simple averaging of the observations below
η would yield a

√
mn-consistent estimator of τ . If a proper choice of η is not available,

one can obtain an initial estimate of τ using the method proposed in Section 2.4 of Mallik
et al. (2011), compute d̂m,n and then average the responses from, say, [0, cd̂m,n], c ∈ (0, 1),
to obtain an estimate of τ , which will also be

√
mn-consistent. Note that this leads to an
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iterative procedure which we discuss in more detail in Section 6.1. Using a
√
mn-consistent

estimate of τ , say τ̂ , so that the Y is are centered around τ̂ in the p-values, it can be shown
that all the asymptotic results encountered earlier stay unchanged. A brief sketch of the
following result is given in Section A.7.

Proposition 7. Let d̂m,n now denote the smallest minimizer of

Mm,n(d, σ̂, τ̂) = Pn
[{

Φ

(√
m(Ȳ − τ̂)

σ̂

)
− γ
}

1(X ≤ d)

]
,

where
√
mn (τ̂ − τ) = Op(1). For m = m0n

β and α as defined in Theorem 1, we have

nα(d̂m,n − d0) = OP (1). Also, when β = 2k,

n(d̂m,n − d0)
d→ sargmin

t∈R
V (t),

where the process V is as defined in (12).

A similar extension of Proposition 5 is valid as well.

5 Fixed design setting

As mentioned in Section 2, the estimation procedure does not change when we move over
from the random design setting to the fixed design setting. For example, with a data
generating model of the form

Yij = µ

(
i

n

)
+ εij , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where εijs are independent and identically distributed with mean 0 and variance σ2
0, an

estimate for d0, based on non-normalized p-values, is given by

d̂FDm,n = sargmin
d∈(0,1)

Mm,n(d),

where

MFD
m,n(d) =

1

n

n∑
i=1

{
Φ
(√
mȲi

)
− γ
}

1

(
i

n
≤ d
)
.

Here, τ is assumed known and taken to be zero without any loss of generality. The following
result, whose proof is outlined in Section A.8 of the Appendix, shows that d̂FDm,n attains the
same rate of convergence as its counterpart in the random design setting.

Proposition 8. For m = m0n
β and α as defined in Theorem 1, we have

nα(d̂FDm,n − d0) = OP (1).

As mentioned in Remark 5, there is no limit distribution available in this setting as the
sums of the form

∑
i[1 (i/n ≤ d0 + t/n) − 1 (i/n ≤ d0)], t ∈ R, do not converge. However,

the asymptotic distributions obtained in the random design setup can be used for setting
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approximate CIs for d0 in such cases. Section 5.1.2 of Lan et al. (2007) investigated this
issue through simulations in the related setting of a change-point regression model where
the quantiles of the limit distribution (of the least squares estimate of the change-point) in
a uniform random design setting were used for constructing CIs for the change-point when
the data were generated from a uniform fixed design setting. The CIs obtained were seen
to have comparable lengths to those for data generated from the random setting but were
prone to over-coverage, and were therefore honest in the fixed design setting. A similar
phenomenon was observed in our problem.

One possible way to obtain limiting distributions in this fixed design setting is to
consider a slight variant of the model investigated in this paper, where at stage n, the true
population threshold corresponds to the design point just preceding d0. This gives us a
sequence of models changing with n where the population threshold at stage n converges
to d0 at a fast (1/n) rate. For such models, it can be shown that the threshold estimator
proposed in this paper attains the same rate and possesses a limit distribution that cor-
responds to the minimizer of a two-sided random walk with drift. However, due to space
constraints, we do not go into the details.

6 Data analysis

6.1 Simulations

We consider the underlying regression function as µ(x) = [2(x − 0.5)]1(x > 0.5), x ∈ [0, 1].
This function is at its baseline value 0 up to d0 = 0.5 and then rises to 1. The errors are
assumed to be normally distributed with mean 0 and standard deviation σ0 = 0.1. We work
with γ = 3/4 as extreme values of γ (close to 0.5 or 1) tend to cause instabilities. We study
the coverage performance of the approximate CIs obtained from the limiting distributions
with the nuisance parameters estimated.

We generate samples for different choices of m and n, under µ. The covariate X
is sampled from U(0, 1). For estimation, the factor m0 is chosen so that the allocation
between m and n is optimum. We assume τ to be unknown and get its initial estimate
through the p-value based approach proposed in Mallik et al. (2011, equation (5)). An
iterative scheme is then implemented where we use this initial estimator of τ to compute
d̂m,n, re-estimate τ by averaging the responses for which X lies in [0, 0.9d̂m,n] and proceed
thus. On average, the estimates stabilize within 5 iterations. Firstly, we compare the
distribution of n(d̂m,n − d0) for m = n = 500 data points over 5000 replications with the
deduced asymptotic distribution. The Q-Q plot, shown in the left panel of Figure 6.1, reveals
considerable agreement between the two distributions. In Table 1 we provide the estimated
coverage probabilities of the CIs over 5000 replications for the model µ constructed by
imputing estimates of the nuisance parameters (as discussed in Section 4) in the limiting
distribution. The limiting process V was generated over a compact set incorporating the
fact that d0 ∈ (0, 1) and consequently n(d̂m,n − d0) ∈ [n(d̂m,n − 1), nd̂m,n]. The smoothing
bandwidth for estimating µ(k)(d0+) was chosen to be 5(n/ log n)−1/(2k+1). The coverage
performance is not very sensitive to the choice of this bandwidth as long as it is reasonably
wide. The approximate CIs exhibit over-coverage for small samples but have close to the
desired nominal coverage level as the sample size increases. As discussed in Section 4.1,
upper confidence bounds can be constructed without the knowledge of k. We provide
coverage probabilities and average lengths of the CIs [0, d̂m,n−Kα/n], for α = 0.05 and 0.10
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Figure 1: Q-Q plot under µ when m = n = 500 over 5000 replications (left plot), and the
plot of all the response for the data from the queuing system (right plot).

m n
90% CI 95% CI

T E T E

5 5 0.966 (0.704) 0.860 (0.637) 0.973 (0.764) 0.940 (0.696)
10 10 0.941 (0.454) 0.944 (0.473) 0.970 (0.553) 0.970 (0.568)
15 10 0.924 (0.451) 0.939 (0.472) 0.966 (0.552) 0.966 (0.564)
10 15 0.914 (0.322) 0.935 (0.338) 0.961 (0.408) 0.961 (0.428)
15 15 0.913 (0.320) 0.931 (0.345) 0.959 (0.406) 0.961 (0.435)
20 20 0.910 (0.243) 0.913 (0.254) 0.955 (0.312) 0.960 (0.326)
25 25 0.908 (0.195) 0.910 (0.202) 0.951 (0.252) 0.959 (0.259)
30 30 0.903 (0.163) 0.893 (0.167) 0.951 (0.211) 0.953 (0.215)
50 50 0.901 (0.100) 0.900 (0.100) 0.950 (0.128) 0.951 (0.130)

Table 1: Coverage probabilities and lengths of two-sided CIs (in parentheses) using the true
parameters (T) and the estimated parameters (E) for different sample sizes.

in Table 2. The only parameter to estimate for computing the quantile Kα is f(d0) which,
as mentioned earlier, is computed by evaluating a kernel estimate of f at the point d̂m,n.
As expected, the CIs are conservative but are close to the desired confidence level for large
m and n, with their average length converging towards 0.5 (length of the interval [0, d0]).

6.2 Complex queuing system

We consider a complex queuing system comprising multiple classes of customers waiting at
infinite capacity queues and a set of processing resources modulated by an external stochas-
tic process. The system employs a resource allocation (scheduling) policy that decides at
every time slot which customer class to serve, given the state of the modulating rate process
and the backlog of the various queues. In Bambos and Michailidis (2004), a low complexity
policy was introduced and its maximum throughput properties established. This canonical
system captures the essential features of data/voice transmissions in a wireless network,
in multi-product manufacturing systems, and in call centers (for more details see Bambos
and Michailidis (2004)). An important quantity of interest to the system’s operator is the
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m n
90% CI 95% CI

T E T E

5 5 0.951 (0.834) 0.956 (0.865) 0.970 (0.927) 0.971 (0.930)
10 10 0.955 (0.747) 0.978 (0.753) 0.990 (0.851) 0.993 (0.857)
15 10 0.962 (0.747) 0.978 (0.750) 0.990 (0.849) 0.992 (0.855)
10 15 0.933 (0.665) 0.955 (0.672) 0.972 (0.748) 0.991 (0.754)
15 15 0.921 (0.657) 0.959 (0.669) 0.966 (0.741) 0.990 (0.751)
20 20 0.920 (0.618) 0.943 (0.627) 0.962 (0.680) 0.986 (0.690)
25 25 0.921 (0.594) 0.934 (0.598) 0.960 (0.644) 0.972 (0.649)
30 30 0.915 (0.579) 0.935 (0.584) 0.960 (0.620) 0.971 (0.626)
50 50 0.913 (0.548) 0.933 (0.551) 0.958 (0.573) 0.970 (0.576)

Table 2: Coverage probabilities and lengths of one-sided adaptive CIs (in parentheses) using
the true parameters (T) and the estimated parameters (E) for different sample sizes.

average delay of jobs (over all classes), which constitutes a key performance metric of the
quality of service offered by the system. The average delay of the jobs in a two-class system
as a function of its loading under the optimal policy, for a small set of loadings is shown in
the right panel of Figure 6.1. These responses were obtained through simulation, since for
such complex systems analytic calculations of delays are intractable. More specifically, ten
replicates of the response (average delay) were obtained based on 5,000 events per class by
simulating the system under consideration and after accounting for a burn-in period of 2,000
per class in order to ensure that it reached its stationary regime. The means per loading,
Ȳis, are shown in the left panel of Figure 6.2. The system operator is interested in identi-
fying the loading beyond which the average delay starts increasing from its initial baseline
value. Starting with an initial estimate of τ , using the approach of Mallik et al. (2011),
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Figure 2: Plot of the average responses Ȳi (left panel) and the estimated p-values (right
panel) for the data from the queuing system.

the iterative approach discussed in the previous sub-section yields the final estimates to be
d̂m,n = 0.1165 and τ̂ = 2.5230, assuming homoscedastic errors. The estimated p-values are
plotted in the right panel of Figure 6.2 which illustrates the dichotomy in the behavior of
the p-values – they are uniformly distributed to the left of d̂m,n, and close to zero beyond
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d̂m,n. Taking k to be 1, and using the methodology described in the previous sub-section,
the 90% and 95% CIs for the threshold turn out to be [0.1051, 0.1276] and [0.1031, 0.1301],
respectively. Also, the adaptive upper 90% and 95% confidence bound for the threshold
turn out to be 0.1348 and 0.1371, respectively. From the system’s operator point of view
the average delay of jobs exhibits a markedly increasing trend beyond a loading of 13%.
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A Appendix

We first state a result which is useful in deriving the rate of convergence of our estimators.
In the sequel, we use the notations ‘ .’ and ‘ &’ to imply that the corresponding inequalities
hold up to some positive constant multiple, and E∗ to denote the outer expectation with
respect to the concerned probability measure.

Theorem 4. Let {Mn(d, σ), n ≥ 1} be stochastic processes and {Mn(d, σ), n ≥ 1} be
deterministic functions, indexed by d ∈ Θ and σ ∈ Σ. Let dn ∈ Θ, σ0 ∈ Σ and κ > 0 be
arbitrary, and d 7→ ρn(d, dn) be an arbitrary map from Θ to [0,∞). Let d̂n be a point of
minimum of Mn(d, σ̂n), where σ̂n is random. For each ε > 0, suppose that the following
hold:

(a) There exists a sequence of sets Un,ε in Σ which contain σ0 and P [σ̂n /∈ Un,ε] < ε.

(b) For all sufficiently large n, 0 < δ < κ, and d such that ρn(d, dn) < κ,

Mn(d, σ0)−Mn(dn, σ0) & ρ2
n(d, dn),

E∗ sup
ρn(d,dn)<δ
σ∈Un,ε

|(Mn(d, σ)−Mn(d, σ0))− (Mn(dn, σ)−Mn(dn, σ0))| ≤ Cε
φn(δ)√

n
,

for a constant Cε > 0 and functions φn (not depending on ε) such that δ 7→ φn(δ)/δα

is decreasing for some α < 2.

Suppose that rn satisfies

r2
n φn

(
1

rn

)
.
√
n,

and ρn(d̂n, dn) converges to zero in probability; then rn ρn(d̂n, dn) = OP (1).

This theorem puts together the results in Theorem 3.2.5 in van der Vaart and Wellner
(1996) and Theorem 5.2 in Banerjee and McKeague (2007).

17



A.1 Proof of Theorem 1

The following lemma gives the explicit distance function ρn that is used in proving Theorem
1.

Lemma 1. Fix η > 0. Let the map d 7→ ρ2
n(d, dm,n) from (0, 1) to [0,∞) be

K1

[
|d− d0| 1 (d < d0) +

∣∣∣d− dm,n − η

m1/(2k)

∣∣∣ 1(d > dm,n +
η

m1/(2k)

)]
, (14)

for some K1 > 0. Then K1 and κ > 0 can be chosen such that for sufficiently large n and
ρn(d, dm,n) < κ, we have

Mm,n(d)−Mm,n(dm,n) ≥ ρ2
n(d, dm,n).

Using this lemma, we first give a proof of Theorem 1. Note that
√
mn(σ̂−σ0) = OP (1).

So, given ε > 0, there exists Lε > 0 such that P [
√
mn|σ̂ − σ0| ≤ Lε] > 1 − ε. Let

Un,ε = [σ1, σ2] = [σ0 − Lε/
√
mn, σ0 + Lε/

√
mn] and let Gn denote the empirical process,

i.e., Gn =
√
n(Pn−Pn). For κ as in Lemma 1, 0 ≤ δ < κ, and ρn as defined in (14), consider

the expression

E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(d, σ0))− (Mm,n(dm,n, σ)−Mm,n(dm,n, σ0))|

≤ E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(dm,n, σ))− (Mm,n(d, σ)−Mm,n(dm,n, σ))|

+ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(dm,n, σ))− (Mm,n(d, σ0)−Mm,n(dm,n, σ0))|

≤ E∗ sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Gn [(Φ

(√
mȲ

σ

)
− γ
)

(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣
+
√
n sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Pn [{Φ

(√
mȲ

σ

)
− Φ

(√
mȲ

σ0

)}
(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣ .
The first term in the above display involves an empirical process acting on

a class of functions, say F . This class F is a product of two VC classes,
{(Φ (

√
m ·/σ)− γ) : σ ∈ Un,ε} and {1(· ≤ d) − 1(· ≤ dm,n) : |d − dm,n| < δ2/K1 +

Am−1/2k}, each with VC-index at most 3. Also, an envelope for this class is given by
G(x) = 1

[
x ∈ (dm,n − δ2/K1 −Am−1/(2k), dm,n + δ2/K1 +Am−1/(2k))

]
with (PnG

2)1/2 .√
2(δ2/K1 +Am−1/(2k)). Hence, the uniform entropy integral for F is bounded by a con-

stant which only depends upon the VC-indices, i.e., the quantity

J(1,F) = sup
Q

∫ 1

0

√
1 + logNC(ε‖G‖Q,2,F , L2(Q))dε

is bounded, where NC(·) denotes the covering number; see Theorems 9.3 and 9.15 of Kosorok
(2008) for more details. Using Theorem 2.14.1 of van der Vaart and Wellner (1996), we
have

E∗ sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Gn

[(
Φ

(√
mȲ

σ

)
− γ
)

(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣
18



≤ J(1,F)(PnG
2)1/2 .

√
2(δ2/K1 +Am−1/(2k)).

Note that for σ ∈ Un,ε = [σ1, σ2], we have∣∣∣∣Φ(√mȲσ
)
− Φ

(√
mȲ

σ0

)∣∣∣∣ ≤ ∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣ .
Hence, by using the fact that Φ is Lipschitz of order 1, for sufficiently large n, we get

√
n sup
|d−dm,n|<δ2/K1+Am−1/2k

σ∈Un,ε

∣∣∣∣Pn [{Φ

(√
mȲ

σ

)
− Φ

(√
mȲ

σ0

)}
(1(X ≤ d)− 1(X ≤ dm,n))

]∣∣∣∣
≤
√
nPn

[∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣ |G(X)|
]

≤
√
n

[
Pn

∣∣∣∣Φ(√mȲσ1

)
− Φ

(√
mȲ

σ2

)∣∣∣∣2
] 1

2

(PnG
2)

1
2

.
√
nm

σ2 − σ1

σ2σ1
(EȲ 2)1/2

√
2(δ2/K1 +Am−1/(2k))

.
4Lε
σ2

0

(EȲ 2)1/2
√

2(δ2/K1 +Am−1/(2k)).

As E(Ȳ 2) = (1/m)E{µ(X)}2 + σ2
0 is bounded, we have

E∗ sup
ρn(d,dm,n)<δ

σ∈Un,ε

√
n|(Mm,n(d, σ)−Mm,n(d, σ0))− (Mm,n(dm,n, σ)−Mm,n(dm,n, σ0))|

≤ Cεφn(δ), (15)

for some Cε > 0 and φn(δ) =
√
δ2 +m−1/(2k). Also, ρ2

n(d, dm,n) ≤ K1(|d − d0| + |d0 −
dm,n − ηm−1/(2k)|)→ 0, if |d− d0| → 0. So, ρn(d̂m,n, dm,n) converges in probability to zero

by consistency of d̂m,n. Then by Theorem 4, the rate of convergence, say rn, satisfies

r2
nφ

(
1

rn

)
.
√
n ⇒ r2

n + r4
nm
−1/(2k) ≤ n

⇒ r2
n . n ∧

√
n1+β/(2k). (16)

With α = min (1, β/(2k)) = min (1, 1/2 + β/(4k), β/(2k)), r2
n = nα satisfies (16).

As m−1/(2k) . n−α, we also have nα(dm,n + ηm−1/(2k) − d0) = O(1). So,

nαρ2
n(d̂m,n, dm,n) = OP (1) ⇒ nα(d̂m,n − d0) = OP (1). As m0n

1+β = N , we get the
result. �

Proof of Lemma 1. Let ε > 0 be chosen such that µ is increasing on (d0, d0 + ε). Let
f0 = infd:|d−d0|<ε f(d) > 0. For d ∈ (d0 − ε, d0 + ε),

Mm,n(d)−Mm,n(dm,n) ≥ 1(d < d0)f0 [(Φn(0)− γ) (d− d0) +Mm,n(d0)−Mm,n(dm,n)]

+ 1(d ≥ d0)f0

∫ d

dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx

≥ 1(d < d0)f0 [|Φn(0)− γ| |d− d0|]

+ 1(d ≥ d0)f0

∫ d

dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx.
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Recall that from (10),

dm,n = d0 +

[
k!
√

2σ0Φ−1(γ)

µ(k)(d0+)

]1/k

m−1/(2k) + o(m−1/(2k)). (17)

Hence, for sufficiently large n, dm,n + ηm−1/(2k) < d0 + ε. For such large n’s and d ∈
(dm,n + ηm−1/(2k), d0 + ε), we have:

Mm,n(d)−Mm,n(dm,n) ≥ f0

∫ d

dm,n

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx

≥ f0

∫ d

dm,n+ηm−1/(2k)

[
Φn

(√
mµ(x)√

2σ0

)
− γ
]
dx

≥ f0 (d− (dm,n + ηm−1/(2k)))

[
Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− γ
]
. (18)

Next, we show that [Φn

(√
mµ(dm,n + ηm−1/(2k))/(

√
2σ0)

)
−γ] is bounded away from zero.

By Pólya’s theorem, Φn converge uniformly to Φ. So, for sufficiently large n,

Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− γ

= Φn

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− Φn

(√
mµ(dm,n)√

2σ0

)

>
1

2

[
Φ

(√
mµ(dm,n + ηm−1/(2k))√

2σ0

)
− Φ

(√
mµ(dm,n)√

2σ0

)]
.

As Φ
(√
mµ(dm,n)/(

√
2σ0)

)
converges to γ ∈ (0, 1),

√
mµ(dm,n) is O(1). Hence, it suffices

to show that the difference
√
m{µ(dm,n+ηm−1/(2k))−µ(dm,n)} is bounded away from zero.

With ζ̃n being some point between d0 and dm,n + ηm−1/(2k) and ζn as defined in (9), we
have

√
m{µ(dm,n + ηm−1/(2k))− µ(dm,n)}

=

√
m

k!
{µ(k)(ζ̃n)(dm,n + ηm−1/(2k) − d0)k − µ(k)(ζn)(dm,n − d0)k}

>

√
mµ(k)(ζ̃n)

k!
[(dm,n + ηm−1/(2k) − d0)k − (dm,n − d0)k]

+

√
m

k!
[µ(k)(ζ̃n)− µ(k)(ζn)](dm,n − d0)k

>
µ(k)(d0+)ηk

k!
+ o(1).

Hence, we can choose a positive constant K0 such that[
Φn

(√
mµ(dm,n + ηm−1/(2k))/(

√
2σ0)

)
− γ
]
> K0

for all sufficiently large n and thus, from (18) we get

Mm,n(d)−Mm,n(dm,n) ≥ f0K0 (d− (dm,n + ηm−1/(2k))) (19)
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for d ∈ (dm,n + ηm−1/(2k), d0 + ε). Also, |Φn(0)− γ| > (1/2) |1/2− γ|, for large n. Choose
K1 = 1

2f0 min [K0, |γ − 1/2|] in (14). Then,

[ρn(d, dm,n) < κ] = [d0, dm,n + ηm−1/(2k)] ∪ [d < d0, |d− d0| < κ2/K1]

∪[d > dm,n + ηm−1/(2k), |d− dm,n − ηm−1/(2k)| < κ2/K1]

⊂ [|d− dm,n| < κ2/K1 +Am−1/(2k)].

Here, A is a fixed constant chosen such that A > max(η,m−1/(2k)(dm,n − d0)), for all
sufficiently large n; this follows from (10). Let κ be chosen such that κ2/K1+2Am−1/(2k) < ε
for all sufficiently large n. As |d0 − dm,n| < Am−1/(2k), this gives [ρn(d, dm,n) < κ] ⊂
(d0 − ε, d0 + ε). Thus, for large n and d such that [ρn(d, dm,n) < κ], using the definition of
ρn and relations (17) and (19), we have the desired result.

A.2 Proof of Theorem 3

In order to deduce the limit of the process V̂n (see (11)), we first prove a lemma that allows
us to work with σ0 instead of σ̂.

Lemma 2. Let Vn(t) = n{Mm,n (d0 + t/n, σ0)−Mm,n(d0, σ0)}. Then, for any L > 0,

sup
t∈[−L,L]

|V̂n(t)− Vn(t)| P→ 0,

where
P→ denotes convergence in probability.

Proof. For all t ∈ [−L,L], we have

|V̂n(t)− Vn(t)|

=

∣∣∣∣∣
n∑
i=1

{
Φ

(√
mȲi
σ̂

)
− Φ

(√
mȲi
σ0

)}(
1

(
Xi ≤ d0 +

t

n

)
− 1 (Xi ≤ d0)

)∣∣∣∣∣
≤ sup

y∈R

∣∣∣∣Φ(√myσ̂
)
− Φ

(√
my

σ0

)∣∣∣∣ n∑
i=1

1

(
Xi ∈

[
d0 −

L

n
, d0 +

L

n

])

≤ sup
u∈R

∣∣∣∣Φ (u)− Φ

(
σ̂

σ0
u

)∣∣∣∣ n∑
i=1

1

(
Xi ∈

[
d0 −

L

n
, d0 +

L

n

])
.

Also, σ 7→ supu∈R |Φ (u)− Φ (uσ/σ0)| can be shown to be continuous; in fact, a closed
form expression can be obtained by taking derivatives. It can be seen that for a ∈ (0,∞),

sup
u∈R
|Φ (u)− Φ (au)| =

{
0, a = 1,∣∣∣Φ(√2 log a

a2−1

)
− Φ

(
a
√

2 log a
a2−1

)∣∣∣ , a 6= 1.

This can be shown to be continuous at 1 by elementary calculations. Thus the first term
in the bound for |V̂n(t) − Vn(t)| converges in probability to 0. Moreover, the remaining
term is a Binomial random variable (Bin(n, F (d0 +L/n)− F (d0 −L/n))) which converges
weakly to the Poisson distribution with parameter 2Lf(d0). Thus by Slutsky’s theorem,
we obtain the desired result. �
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We now continue with the proof of Theorem 3. We first prove that (V̂n, Jn) converges
weakly to (V, J) as processes in D[−C,C] × D[−C,C], for each positive integer C. By
Lemma 2, it suffices to show that (Vn, Jn) converges weakly to (V, J).

To justify the finite dimensional convergence of (Vn, Jn) to (V, J), first on [0,∞),
let 0 = t0 ≤ t1 < t2 < . . . < tl. By Cramér-Wold device, it suffices to show that the
characteristic function of

(Vn(t1), Jn(t1), Vn(t2)− Vn(t1), Jn(t2)− Jn(t1), . . . , Vn(tl)− Vn(tl−1), Jn(tl)− Jn(tl−1))

converges to that of

(V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1), . . . , V (tl)− V (tl−1), J(tl)− J(tl−1)) .

We illustrate this derivation for l = 2, the extension to larger ls following in a straightfor-
ward manner. For (ci, di) ∈ R2, i = 1, 2, consider the expression

E [exp [ı (c1Vn(t1) + d1Jn(t1) + {c2(Vn(t2)− Vn(t1)) + d2(Jn(t2)− Jn(t1))})]] . (20)

As t0 = 0, note that

c1Vn(t1) + d1Jn(t1) + c2(Vn(t2)− Vn(t1)) + d2(Jn(t2)− Jn(t1))

=
n∑
j=1

2∑
i=1

{
ciΦ

(√
mȲj
σ0

)
− ciγ + di

}
1

(
Xj ∈

(
d0 +

ti−1

n
, d0 +

ti
n

])
.

The above summands are independent for different js and hence, (20) equals[
E

[
exp

[
ı

2∑
i=1

{
ciΦ

(√
mȲ1

σ0

)
− ciγ + di

}
1

(
X1 ∈

(
d0 +

ti−1

n
, d0 +

ti
n

])]]]n
.

Let Z1n be as defined in (7) and Z ∼ N(0, 1). Taking iterated expectations (by first
conditioning on X1), the above display equals (1 + ξn/n)n, where

ξn = n

2∑
i=1

∫ d0+ti/n

d0+ti−1/n

[
E

[
exp

(
ı

{
ciΦ

(√
mµ(x)

σ0
+ Z1n

)
− ciγ + di

})]
− 1

]
f(x)dx

=

2∑
i=1

∫ ti

ti−1

[[
E

(
ci exp

(
ıs

{
Φ

(√
m0 µ

(k)(d0+)

k!σ0
uk + o(1) + Z1n

)
− ciγ + di

}))
− 1

]
×f
(
d0 +

u

n

)]
du.

The o(1) term appearing in the above expression does not depend on u as
sup(d0,d0+ζ0) |µ(k)(x)| < ∞ by Assumption 1. As Z1n + o(1) converges weakly to Z and
exp(ı·) is bounded, ξn converges to f(d0)ξ0 where

ξ0 =

2∑
i=1

∫ ti

ti−1

[
E

(
exp

(
ıs

{
Φ

(√
m0 µ

(k)(d0+)

k!σ0
uk + Z

)
− γ

}))
− 1

]
du.

So, the expression in (20) converges to exp (f(d0)ξ0). This is precisely the characteristic
function of (V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1)) evaluated at (c1, d1, c2, d2). To see
this, first note that (V (t1), J(t1)) and (V (t2)− V (t1), J(t2)− J(t1)) are independent by
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virtue of the fact that the arrival times of events occurring over disjoint sets are independent
for a Poisson process. Further, let Wj be i.i.d. U(0, t), for j ≥ 1, which are independent of
{Zj}j≥1 and ν+. Using the order statistic characterization of the arrival times of a Poisson
process,

E
[
exp (ı {c1V (t1) + d1J(t1)}) |ν+(t1)

]
(21)

= E

exp

ν+(t)∑
j=1

ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0
Skj + Zj

)
− c1γ + d1

)∣∣∣∣∣∣ ν+(t1)


= E

exp

ν+(t)∑
j=1

ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0
W k
j + Zj

)
− c1γ + d1

)∣∣∣∣∣∣ ν+(t1)


=

[
E exp

(
ı

(
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0
W k

1 + Z1

)
− c1γ + d1

))]ν+(t1))

=

[
g(c1, d1, 0, t1) + t1

t1

]ν+(t1)

,

where for 0 ≤ s < t,

g(c1, d1, s, t) =

∫ t

s

[
E

(
exp

(
ı

{
c1Φ

(√
m0 µ

(k)(d0+)

k!σ0
uk + Z

)
− c1γ + d1

}))
− 1

]
du.

Note that the relation in (21) holds even when ν+(t) is 0. Thus,

E [exp (ı {c1V (t1) + d1J(t1)})] = exp(f(d0)g(c1, d1, 0, t1)).

Similarly, it can be deduced that

E [exp (ı {c2(V (t2)− V (t1)) + d2(J(t2)− J(t1))})] = exp(f(d0)g(c2, d2, t1, t2)).

Using the independence between (V (t1), J(t1)) and (V (t2)− V (t1), J(t2)− J(t1)),
we get that the limit of (20) is indeed the characteristic function of
(V (t1), J(t1), V (t2)− V (t1), J(t2)− J(t1)) . Hence, finite dimensional convergence of
(Vn, Jn) to (V, J) on [0,∞] follows from Lévy continuity theorem. The finite dimensional
convergence on the entire domain can be deduced analogously.

Next, we complete the proof of weak convergence of (Vn, Jn) to (V, J) by showing
asymptotic tightness. For t1 < t < t2 and sufficiently large n,

E[|Jn(t)− Jn(t1)||Jn(t2)− Jn(t)|]

= E

 n∑
i=1

n∑
j=1

1

(
Xi ∈

(
d0 +

t1
n
, d0 +

t

n

])
1

(
Xj ∈

(
d0 +

t

n
, d0 +

t2
n

])
= n(n− 1)E

[(
X1 ∈

(
d0 +

t1
n
, d0 +

t

n

])
1

(
X2 ∈

(
d0 +

t

n
, d0 +

t2
n

])]
≤ 2 ‖f‖2∞ (t− t1)(t2 − t) ≤ 2 ‖f‖2∞ (t2 − t1)2,

where ‖f‖∞ < ∞ by Assumption 2. The above relation shows that the condition stated
for tightness in Theorem 15.6 of Billingsley (1968, pp. 128) is satisfied and hence, the
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process Jn is asymptotically tight. As |Vn(t)− Vn(t1)| ≤ |Jn(t)− Jn(t1)|, the process Vn is
asymptotically tight. As both the marginal processes are tight, (Vn, Jn) is tight and hence,
condition (i) of Theorem 2 is satisfied.

Moreover, no two flat stretches of V (t), t ∈ [−C,C], have the same
height (w.p. 1). To see this, let AC denote this event and define Ri =∑i

j=1

(
Φ
(√

m0 µ
(k)(d0+)/(k!σ0)Skj + Zj

)
− γ
)

when i > 0, and Ri =
∑−i

j=1 (γ − Uj)
when i < 0, and R0 = 0. For non-negative integers n1 and n2, n1 + n2 > 0, we have
P [Ri = Rl|ν+(C) = n1, ν

−(C) = n2] = 0 for n1 ≥ i > l ≥ −n2. This is because given
ν+(C) = n1 and ν−(C) = n2, the arrival times for Sjs are the order statistics from U(0, C)
and thus Ri −Rl is a continuous random variable. Now,

P [AC |ν+(C) = n1, ν
−(C) = n2]

= 1− P

 ⋃
n1≥i>l≥−n2

[Ri = Rl]

∣∣∣∣∣∣ ν+(C) = n1, ν
−(C) = n2

 = 1.

Also, P [AC |ν+(C) = 0, ν−(C) = 0] = 1. Hence,

P [AC ] = E[P [AC |ν+(C), ν−(C)]] = 1.

Further, let ĥl = n(d̂m,n − d0) and ĥu denote the smallest and largest minimizers

of V̂n(t), respectively. Using Theorem 1, (ĥl, ĥu) is OP (1). Also, let hl and hu denote
the smallest and largest minimizers for V (t). As V (0) = 0 and V (t) → ∞ as |t| → ∞
w.p. 1, we get (hl, hu) = OP (1). To see that V (t) → ∞ as |t| → ∞ a.s., note that∑n

j=1(γ − Uj)/n → γ − 1
2 > 0 and ν−(−t) → ∞, a.s. So, we get V (t) → ∞ as t → ∞ a.s.

Also, choose ε > 0 and ηε > 0 such that γ + ε < 1 and EΦ[ηε + Z1] = Φ[ηε/
√

2] = γ + ε.
Then by the SLLN,

∑n
j=1(Φ[ηε + Zj ]− γ)/n → ε a.s. As Sj → ∞ and ν+(t) → ∞ a.s.,

we get lim inft→∞{V (t)/ν+(t)} ≥ ε a.s. Thus V (t) → ∞ as |t| → ∞ w.p. 1. Hence, by
applying Theorem 2 we get the desired result. �

A.3 Proof of Proposition 1

The proof of Proposition 1 follows along the same lines as that of Theorem 3. Here, we
briefly justify the form of the limiting distribution. By calculations analogous to those used
for simplifying (20), it can be shown that for t > 0, E(exp(ıcVn(t))) =

(
1 + ξ̄n/n

)n
, where

ξ̄n =

∫ t

0

[{
E

(
exp

(
ıc

{
Φ

(√
mµ(d0 + u/n)

σ0
+ Z1n

)
− γ
}))

− 1

}
×f
(
d0 +

u

n

)]
du

→ f(d0)

∫ t

0
[exp (ıc {1− γ})− 1] du = f(d0){exp(ıc(1− γ))− 1}t.

The above convergence uses the fact
√
mµ(d0 + u/n)/σ0 → ∞ for u > 0, which can be

justified through a k-th order Taylor expansion of µ around d0. The limit here is precisely
the characteristic function of V̄ (t). Hence, the one-dimensional marginals of Vn converge to
that of V̄ on the positive half line. The remainder of the proof is almost identical to that
for Theorem 3.
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A.4 Proof of Proposition 2

For proving Proposition 2, we first prove the following lemma to justify imputing σ0 in place
of σ̂ in the local processes.

Lemma 3. Consider the case when β < 2k. Let Hn(t) =
nβ/(2k)

{
Mm,n

(
d0 + t/nβ/(2k), σ0

)
−Mm,n(d0, σ0)

}
. Then, for any L > 0,

sup
t∈[−L,L]

|Ĥn(t)−Hn(t)| P→ 0.

Proof. For t ∈ [−L,L],

|Ĥn(t)−Hn(t)|

= nβ/(2k)−1

∣∣∣∣∣
n∑
i=1

{
Φ

(√
mȲi
σ̂

)
− Φ

(√
mȲi
σ0

)}(
1

(
Xi ≤ d0 +

t

nβ/(2k)

)
− 1 (Xi ≤ d0)

)∣∣∣∣∣
≤ nβ/(2k)−1 sup

y∈R

∣∣∣∣Φ(√myσ̂
)
− Φ

(√
my

σ0

)∣∣∣∣ n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])

≤ sup
u∈R

∣∣∣∣Φ (u)− Φ

(
σ̂

σ0
u

)∣∣∣∣
{
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])}
.

As in the proof of Lemma 2, the first term goes in probability to zero. As for the second
term,

V ar

[
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]

= n2(β/(2k)−1)n V ar

[
1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]
= n2(β/(2k)−1)n O(n−

β
k ) = O(n−1)→ 0,

and

E

[
nβ/(2k)−1

n∑
i=1

1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]

= n(β/(2k)−1)n E

[
1

(
Xi ∈

[
d0 −

L

nβ/(2k)
, d0 +

L

nβ/(2k)

])]
= n(β/(2k)−1)n O(n−β/(2k)) = O(1).

Thus the second term is O(1) + oP (1). Hence, we get the result. �

We use a version of the Arzela-Ascoli theorem in several proofs and thus we state it
below for convenience.

Theorem 5 (Arzela-Ascoli). Let fn be a sequence of continuous functions defined on a
compact set [a, b] such that fn converge pointwise to f and for any δn ↓ 0 sup|x−y|<δn |fn(x)−
fn(y)| converges to 0. Then supx∈[a,b] |fn(x)− f(x)| converges to zero.
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We now continue with the proof of Proposition 2. Using Lemma 3, for proving (13),
it would suffice to show that

sup
t∈[−L,L]

|Hn(t)− c(t)| P→ 0. (22)

Let

cn(t) = E{Hn(t)} = nβ/(2k)

∫ d0+tn−β/(2k)

d0

E

[{
Φ

(√
mȲ

σ0

)
− γ
}∣∣∣∣X = x

]
f(x)dx.

For x < 0 and given X = x, Φ
(√

mȲ
σ0

)
d→ U(0, 1). Hence, by the dominated convergence

theorem (DCT), cn(t)→
(

1
2 − γ

)
f(d0)t, for t ≤ 0. For t > 0, we have:

cn(t) = nβ/(2k)

∫ d0+tn−β/(2k)

d0

E

[{
Φ

(√
mȲ

σ0

)
− γ
}∣∣∣∣X = x

]
f(x)dx

= nβ/(2k)

∫ d0+tn−β/(2k)

d0

{
Φ

(√
mµ(x)√

2σ0

)
− γ
}
f(x)dx

=

∫ t

0

{
Φ

(√
mµ(d0 + u/nβ/(2k))√

2σ0

)
− γ

}
f
(
d0 +

u

nβ/(2k)

)
du

=

∫ t

0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk + o(1)

)
− γ

}
f
(
d0 +

u

nβ/(2k)

)
du

→ f(d0)

∫ t

0

{
Φ

(√
m0 µ

(k)(d0+)√
2k!σ0

uk

)
− γ

}
du, by DCT.

Hence, cn(t) → c(t). In fact, this convergence is uniform on any compact set. To see
this, note that |cn(t) − cn(s)| ≤ ‖f‖∞|t − s|. So, cns are equicontinuous and thus by
Arzela-Ascoli, the convergence is uniform on [−L,L] for every L > 0. Further, let H̃n(t) =
n1/2−β/(4k)(Hn(t)− cn(t)). Then, for t1 < t < t2,

E|H̃n(t)− H̃n(t1)|2|H̃n(t2)− H̃n(t)|2 = E |H̃n(t)− H̃n(t1)|2 E |H̃n(t2)− H̃n(t)|2

= V ar

[
nβ/(4k)

{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t1

nβ/(2k)
, d0 +

t

nβ/(2k)

])]
×

V ar

[
nβ/(4k)

{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t

nβ/(2k)
, d0 +

t2

nβ/(2k)

])]
≤ nβ/(2k)E

[{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t1

nβ/(2k)
, d0 +

t

nβ/(2k)

])]2

×

nβ/(2k)E

[{
Φ

(√
mȲ

σ0

)
− γ
}

1

(
X1 ∈

(
d0 +

t

nβ/(2k)
, d0 +

t2

nβ/(2k)

])]2

≤ ‖f‖2∞ (t− t1)(t2 − t) ≤ ‖f‖2∞ (t2 − t1)2.

So, by Theorem 15.6 in Billingsley (1968), pp. 128, H̃ is tight in D(R). As β < 2k,

(Hn(t)− cn(t))
d→ 0 and hence Hn(t)

d→ c(t) as processes in D(R). As the limiting process
in degenerate and x(·) 7→ supt∈[−L,L] |x(t)| is continuous, we get (22).

Moreover the limit process, c(t), is continuous and has a unique minimum. Also,
nβ/(2k)(d̂m,n − d0) is OP (1). Thus, by the argmin continuous mapping, we obtain the
desired result. �
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A.5 Proof of Proposition 4

We first show that
1

nh2k+1
n

g1(d̂m,n, hn) =
f(d0)

2k + 1
+ oP (1),

where

g1(d, h) =
n∑
i=1

(Xi − d)2k1(Xi ∈ (d, d+ h]).

Note that h
−(2k+1)
n (d̂m,n − d0) = oP (1). Fix δ > 0. Then P [|d̂m,n − d0| < δ h2k+1

n ]→ 1. On

the set [|d̂m,n − d0| < δ h2k+1
n ],

g1(d0 − δh2k+1
n , hn + 2δh2k+1

n ) ≥ g1(d̂m,n, hn) ≥ g1(d0 + δh2k+1
n , hn − 2δh2k+1

n ). (23)

So, it suffices to show that the above two bounds converge in probability to f(d0)/(2k+1).
Note that

E

[
1

nh2k+1
n

g1(d0 + δh2k+1
n , hn − 2δh2k+1

n )

]
=

n

nh2k+1
n

∫ d0+hn−δh2k+1
n

d0+δh2k+1
n

(x− d0 − δh2k+1
n )2kf(x) dx

=
1

h2k+1
n

∫ 1−δh2kn

0
(uhn)2kf(d0 + δh2k+1

n + uhn)hndu

= f(d0)

∫ 1

0
u2kdu+ o(1) =

f(d0)

2k + 1
+ o(1),

and

V ar

[
1

nh2k+1
n

g1(d0 + δh2k+1
n , hn − 2δh2k+1

n )

]
=

n

(nh2k+1
n )2

V ar
[
(X1 − d0 − δh2k+1

n )2k1(X1 ∈ (d0 + δh2k+1
n , d0 − δh2k+1

n + hn])
]

≤ n

(nh2k+1
n )2

E
[
(X1 − d0 − δh2k+1

n )4k1(X1 ∈ (d0 + δh2k+1
n , d0 − δh2k+1

n + hn])
]

≤ n

(nh2k+1
n )2

(hn − 2δh2k+1
n )4k+1(f(d0) + o(1)) =

O(1)

nhn
→ 0.

Thus, 1
nh2k+1

n
g1(d0 + δh2k+1

n , hn − 2δh2k+1
n ) = f(d0)

2k+1 + oP (1). The treatment of the upper

bound in (23) is similar. Next, let g2(d, h) =
∑
Ȳi(Xi − d)k1(Xi ∈ (d, d+ h]). As the k-th

derivative of µ is bounded in (d0, d0 + ζ) for sufficiently small ζ, we have

E

[
1

nh2k+1
n

g2(d0, hn)

]
=

n

nh2k+1
n

∫ d0+hn

d0

µ(x)(x− d0)kf(x)dx

=
1

h2k+1
n

∫ 1

0
µ(d0 + uhn)(uhn)kf(d0 + δh2k+1

n + uhn)hndu

=
1

h2k+1
n

∫ 1

0
(ξ(uhn)k + o((uhn)k))(uhn)kf(d0 + δh2k+1

n + uhn)hndu

= ξ
f(d0)

2k + 1
+ o(1),by DCT.
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Also, by similar calculations,

V ar

[
1

nh2k+1
n

g2(d0, hn)

]
≤ n

(nh2k+1
n )2

E
[
Ȳ1(X1 − d0)k1(X1 ∈ (d0, d0 + hn])

]2

=
n

(nh2k+1
n )2

E
[{
µ2(X1) + σ2

0/(m0n
2k)
}

(X1 − d0)2k1(X1 ∈ (d0, d0 + hn])
]

≤ O(1)

nhn
+

nσ2
0

c(nh2k+1
n )2n2k

O(h2k+1
n )→ 0.

So, 1
nh2k+1

n
g2(d0, hn) = ξ f(d0)

2k+1 + oP (1). To conclude the final result, we need to show that

1

nh2k+1
n

{
g2(d̂m,n, hn)− g2(d0, hn)

}
= oP (1).

Let M0 = supd∈(d0,d0+ζ) µ(d), which is finite for sufficiently small ζ. On the set [|d̂m,n−d0| <
δh2k+1

n ], and for large n,∣∣∣g2(d̂m,n, hn)− g2(d0, hn)
∣∣∣

≤ sup
|d−d0|<δh2k+1

n

∣∣∣∣ 1

nh2k+1
n

{g2(d, hn)− g2(d0, hn)}
∣∣∣∣

≤ sup
|d−d0|<δh2k+1

n

n∑
i=1

[
|Ȳi|(Xi − d)k − (Xi − d0)k|1(Xi ∈ (d0, d0 + hn] ∩ (d, d+ hn])

+ |Ȳi|(Xi − d ∧ d0)k1(Xi ∈ (d0, d0 + hn]∆(d, d+ hn])
]

≤ sup
|d−d0|<δh2k+1

n

n∑
i=1

[
|Ȳi|k(Xi − d0 + δh2k+1

n )k−1|d− d0|1(Xi ∈ (d0, d0 + hn])

+ |Ȳi|(Xi − d0 − δh2k+1
n )k{1(|Xi − d0| ≤ δh2k+1

n ) + 1(|Xi − d0 − hn| ≤ δh2k+1
n )}

]
= O(h3k

n )

n∑
i=1

|Ȳi|1(Xi ∈ (d0, d0 + hn])

+ O(hkn)

n∑
i=1

|Ȳi|{1(|Xi − d0| ≤ δh2k+1
n ) + 1(|Xi − d0 − hn| ≤ δh2k+1

n )}

≤ O(h3k
n )

n∑
i=1

(M0 + |ε̄i|)1(Xi ∈ (d0, d0 + hn])

+ O(hkn)

n∑
i=1

(M0 + |ε̄i|){1(|Xi − d0| ≤ δh2k+1
n ) + 1(|Xi − d0 − hn| ≤ δh2k+1

n )}

≤ O(h3k
n )OP (nhn) +O(hkn)OP (nh2k+1

n ) = oP (nh2k+1
n ).

The last inequality follows from the fact that 1
nhn

∑n
i=1(M0 + |ε̄i|)1(Xi ∈ (d0, d0 + hn])

P→
M0f(d0), which can be justified by computing the limiting means and variances. This
completes the proof. �
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A.6 Proof of Proposition 6

For ε > 0 and x ∈ R, let

Un(x) = Un(x, β) =
1

Nn

Nn∑
j=1

1
[
qn(d̂n,qn,j − d0) ≤ x

]
and En = [qn|d̂n − d0| ≤ ε]. As qn/n→ 0 and n(d̂n − d0) = OP (1), P (En)→ 1. Moreover,
on the set En,

Un(x− ε) ≤ Ln,q(x) ≤ Un(x+ ε).

Hence, to show pointwise convergence (in probability) of Ln,q(·, β) to Gβ(·), it suf-

fices to show that Un(x, β)
P→ Gβ(x). Note that E [Un(x)] = Gn,β(x) → Gβ(x).

So, it suffices to show that V ar(Un(x)) → 0. To this end, let sn = bn/qnc. For
j = 0, . . . , (sn − 1), let Rn,qn,j be the statistic d̂qn computed from the data set
(Xqnj+1, Y(qnj+1) 1, . . . , Y(qnj+1) ln ; . . . ;Xqnj+qn , Y(qnj+qn) 1, . . . , Y(qnj+qn) ln) and

Ūn(x) =
1

sn

sn∑
j=1

1 [qn(Rn,qn,j − d0) ≤ x] .

Ūn(x) has the same expectation as Un(x), but its summands are independent. Also each
summand lies between 0 and 1, and hence has a variance bounded above by 1/4. Let
X(i)s denote the ordered Xis and Y[i](j)s be their ordered concomitants, i.e.,Y[i](j)s are the
replications at X(i)s and Y[i](j) ≤ Y[i](j+1), j = 1, . . . (m− 1). It can be seen that

Un(x) = E
[
Ūn(x)|X(i), Y[i](j), 1 ≤ i ≤ n, 1 ≤ j ≤ m

]
.

So, by the Rao-Blackwell theorem, V ar(Un(x)) ≤ V ar(Ūn(x)) ≤ 1/(4sn) → 0 as sn =

bn/qnc → ∞ and thus Un(x, β)
P→ Gβ(x) for x ∈ R. The uniform convergence in probability

and (ii) follow from arguments for Theorem 15.7.1 in Lehmann and Romano (2005), given
the pointwise convergence shown above. �

A.7 Proof of Proposition 7

We first justify that the rate of convergence of d̂m,n remains unchanged when we impute a√
mn-consistent estimator of τ . Recall that

Mm,n(d, σ, τ̃) = Pn
[{

Φ

(√
m(Ȳ − τ̃)

σ

)
− γ
}

1(X ≤ d)

]
.

As in the proof of Theorem 1, we need to bound the expression

E∗ sup
ρn(d,dm,n)<δ

(σ,τ̃)∈Vn,ε

√
n|{Mm,n(d, σ, τ̃)−Mm,n(d, σ0, τ)}−{Mm,n(dm,n, σ, τ̃)−Mm,n(dm,n, σ0, τ)}|,

where Mm,n(d, σ, τ̃) = E[Mm,n(d, σ, τ̃)], and Vn,ε = [σ0 − Lε/
√
mn, σ0 + Lε/

√
mn] × [τ −

Lε/
√
mn, τ + Lε/

√
mn] is a set with Lε chosen in such a way that P [(σ̂, τ̃) ∈ Vn,ε] > 1− ε,
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for ε > 0. Following the proof of Theorem 1, the above display can be bounded by

E∗ sup
ρn(d,dm,n)<δ

(σ,τ̃)∈Vn,ε

∣∣∣∣Gn [{Φ

(√
m(Ȳ − τ̃)

σ

)
− γ
}
{1(X ≤ d)− 1(X ≤ dm,n)}

]∣∣∣∣
+
√
n sup

ρn(d,dm,n)<δ√
mn|σ−σ0|<Lε

∣∣∣∣Pn [{Φ

(√
m(Ȳ − τ)

σ

)
− Φ

(√
m(Ȳ − τ)

σ0

)}
{1(X ≤ d)− 1(X ≤ dm,n)}

]∣∣∣∣
+
√
n sup
ρn(d,dm,n)<δ

(σ,τ̄)∈Vn,ε

∣∣∣∣Pn [{Φ

(√
m(Ȳ − τ̃)

σ

)
− Φ

(√
m(Ȳ − τ)

σ

)}
{1(X ≤ d)− 1(X ≤ dm,n)}

]∣∣∣∣ .
The first term involves empirical process acting on a class of functions with VC-index

at most 3 while the second term appears in the proof of Theorem 1. These two terms
can be dealt in the same manner as in that proof. For the third term, note that
|Φ
(√
m(Ȳ − τ̃)/σ

)
− Φ

(√
m(Ȳ − τ)/σ

)
| ≤ supu |Φ (u+

√
m(τ − τ̃)/σ) − Φ (u) | which

equals |Φ (
√
m(τ − τ̃)/2σ) − Φ (−

√
m(τ − τ̃)/2σ) |. As Φ is Lipschitz of order 1, this is

further bounded above by
√
m|τ − τ̃ |/σ. Hence, for sufficiently large n, the third term in

the above display is bounded by

2(Lε/σ0) sup
ρn(d,dm,n)<δ

Pn|1(X ≤ d)− 1(X ≤ dm,n)|.

Hence, this term has the same order as φn(·) appearing in (15), in the proof of Theorem 1.
The rest of the argument is identical to the proof for the known τ case and thus, we end
up with the same rate of convergence.

To justify that the limiting distributions also stay the same, note that n(d̂m,n− d0) is
a minimizer of the process n{Mn(d0 + t/n, σ̂, τ̂) −Mn(d0, σ̂, τ)}, t ∈ R. But by arguments
analogous to the proof of Lemma 2, the difference supt∈[−L,L] n|Mn(d0 +t/n, σ̂, τ̂)−Mn(d0 +
t/n, σ̂, τ)| is

√
m(τ̂ − τ)/σ̂×OP (1), which goes in probability to zero for any L > 0. Hence,

the limiting distribution is not affected as long as we have a
√
mn-consistent estimate of τ .

�

A.8 Proof of Proposition 8

For notational convenience, we denote MFD
m,n(d) by MFD

n (d) (as m is a function of n). Let
Φn be as defined in Section 3.1 and

MFD
n (d) = E

[
MFD
n (d)

]
=

1

n

n∑
i=1

{
Φn

(√
m µ(i/n)√

1 + σ2
0

)
− γ

}
1 (i/n ≤ d) .

The expression on the right side follows from calculations almost identical to (8). Let
dFDn = sargmind∈[0,1]M

FD
n (d). To prove Proposition 8, we use Theorem 3.2.5 of van der

Vaart and Wellner (1996) (see also Theorem 3.4.1) which requires coming up with a non-
negative map d 7→ ρn(d, dFDn ) such that

MFD
n (d)−MFD

n (dFDn ) & ρ2
n(d, dFDn ).

Then a bound on the modulus of continuity with respect to ρn is needed, i.e.,

E

[
√
n sup
ρn(d,dFDn )<δ

|(MFD
n −MFD

n )(d)− (MFD
n −MFD

n )(dFDn )|

]
. φn(δ),
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where the map δ 7→ φn(δ)/δα is decreasing for some α < 2. The rate of convergence is then
governed by the behavior of φn. We start with the following choice for ρn.

Lemma 4. Let η > 0. Let d 7→ ρn(d, dFDn ) be a map from (0, 1) to [0,∞) such that

ρ2
n(d, dFDn ) = (1/n) {| bndc − bnd0c |1(d ≤ d0)

+ | bndc −
⌊
n(dFDn + ηm−1/(2k))

⌋
|1(d > dFDn + ηm−1/(2k))

}
.

Then η and κ > 0 can be chosen such that for sufficiently large n and ρn(d, dFDn ) < κ, we
have

Mn(d)−Mn(dFDn ) & ρ2
n(d, dFDn ).

Also, (dFDn − d0) = O(m−1/(2k)).

We first provide the proof of Proposition 8 using Lemma 4. Using the above lemma,
there exists A < ∞ such that for sufficiently large n and any δ > 0, {ρn(d, dFDn ) < δ} ⊂
{|d− dFDn | < A(δ2 + n−α)}. Consider the case d > dFDn and let

U(i, d) =

{
Φ
(√
mȲi

)
− Φn

(√
mµ(i/n)√
1 + σ2

0

)}
1
(
dFDn < i/n ≤ d

)
.

Note that E {U(i, d)} = 0 and for 1 ≤ i 6= j ≤ n, U(i, d) and U(j, d) are independent. Also,
S(i, d) := (MFD

n −MFD
n )(d)− (MFD

n −MFD
n )(dFDn ) = (1/n)

∑
i U(i, d), a normalized sum

of (bndc −
⌊
ndFDn

⌋
) non-zero independent terms, is a martingale in d, d ≥ dFDn , with right

continuous paths. As |U(·, d)| ≤ 1, E{U2(·, d)} is at most 1. Using Doob’s inequality, we
get

E

[
sup

0≤d−dFDn <A(δ2+n−α)

√
n|S(i, d)|

]
≤
√
n
{
ES2(i, dFDn +A(δ2 + n−α))

}1/2

=
1√
n

∑
i≤n

E{U2(i, dFDn +A(δ2 + n−α))}

1/2

. (δ2 + n−α)1/2.

A similar bound can be established for the case d ≤ dFDn . Hence, we get

E

[
√
n sup
ρn(d,dFDn )<δ

|(MFD
n −MFD

n )(d)− (MFD
n −MFD

n )(dFDn )|

]
. φn(δ),

where φn(δ) = (δ2 + n−α)1/2. The function φn(·) and ρn(·, dFDn ) satisfy the conditions of
Theorem 3.2.5 of van der Vaart and Wellner (1996). Hence, the rate of convergence, say rn,
satisfies

r2
nφn

(
1

rn

)
.
√
n ⇒ (r2

n + r4
nn
−α) . n.

Note that r2
n = nα satisfies the above relation and therefore nαρ2

n(d̂n, d
FD
n ) is OP (1). Con-

sequently, we get nα(d̂n − d0) = OP (1). �
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Proof of Lemma 4. Since µ(x) = 0 for x ≤ d0, note that dFDn > d0 for sufficiently
large n. As Φn(0) converges to 1/2, it can be seen that for large n and d ≤ d0,

Mn(d)−Mn(dFDn ) ≥ Mn(d)−Mn(d0)

=
n∑
i=1

{γ − Φn(0)}1
(
d <

i

n
≤ d0

)
≥ 1

2

(
γ − 1

2

)
{bndc − bnd0c} /n. (24)

Next, we show that

Φn

(√
mµ(dFDn + η/nα)√

1 + σ2
0

)
− γ > K0, (25)

for sufficiently large n and some K0 > 0. It can be shown that dFDn converges to d0. Hence,
dFDn is not a boundary point of the interval [1/n, 1] for large n; it corresponds to a local
minimum of Mn, i.e,

Φn

(√
mµ(dFDn )/

√
1 + σ2

0

)
≤ γ < Φn

(√
mµ(dFDn + 1/n)/

√
1 + σ2

0

)
.

Thus, Φn(
√
mµ(dFDn )/

√
1 + σ2

0) converges to γ and consequently,
√
mµ(dFDn )/

√
1 + σ2

0 and
m−1/(2k)(dn − d0) are O(1). Thus, it suffices to show that

√
m(µ(dFDn + η/νn) − µ(dFDn ))

is bounded away from zero to justify (25). This can be shown in an identical manner as in
the proof of Lemma 1.

Choose κ > 0 such that µ is non-decreasing in (d0, d0 + κ). For sufficiently large n,
dFDn + ηm−1/(2k) + 1/n < d0 + κ and hence,

Mn(d)−Mn(dFDn ) ≥ Mn(d)−Mn(d0 + ηm−1/(2k))

≥
∑

d0+ηm−1/(2k)≤i/n≤d

{
Φn

(√
mµ(i/n)/

√
1 + σ2

0

)
− γ
}

≥ K0(bndc −
⌊
n(dFDn + ηm−1/(2k))

⌋
)/n. (26)

Using (24) and (26), we get the result. �
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