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Abstract: In this paper we consider the problem of constructing confidence intervals

in the presence of nuisance parameters. We discuss a generalization of the unified

method of Feldman and Cousins (1998) with nuisance parameters. We demonstrate

our method with several examples that arise frequently in High Energy Physics

and Astronomy. We also discuss the hybrid resampling method of Chuang and Lai

(1998, 2000), and implement it in some of the problems.
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1. Introduction

Confidence regions consisting of parameter values with high relative likeli-

hood have a long tradition in Statistics and have generated a large literature,

much of which emphasizes asymptotic calculations. See Reid (2003) for a re-

cent survey article and Reid and Fraser (2003) for a relevant application. In an

influential paper, Feldman and Cousins (1998) showed how to implement con-

struction with exact coverage probabilities in problems, with moderate sample

sizes and boundary effects, like a positive normal mean or a Poisson rate that

is known to exceed a background value, that are of interest in High Energy

Physics. They called the construction the unified method because it makes a

natural transition from a one-sided confidence bound to a two-sided confidence

interval. This method has since attracted wide interest among high energy physi-

cists, see Mandelkern (2002). Only problems without nuisance parameters were

considered in Feldman and Cousins (1998). Here we retain the interest in prob-

lems with boundary effects and moderate sample sizes, but focus on problems

with nuisance parameters in addition to the parameter of primary interest.

To describe the unified method and understand the issues, suppose that

a data vector X has a probability density (or mass function, in the discrete

case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.

For example, if a mass θ is measured with normally distributed error with an

unknown standard deviation, then θ is of primary interest and the standard
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deviation of the measurement is a nuisance. Let L denote the likelihood function,

i.e., L(θ, η|x) = fθ,η(x); further, let η̂θ = η̂θ(x) be the value of η that maximizes

L(θ, η|x) for a fixed θ; let θ̂ = θ̂(x) and η̂ = η̂(x) be the values of θ and η that

maximize L(θ, η|x) over all allowable values; and let

Λθ(x) =
L(θ, η̂θ(x)|x)

L(θ̂(x), η̂(x)|x)
. (1.1)

Then unified confidence intervals consist of θ for which Λθ(x) ≥ cθ, where cθ is a

value whose computation is discussed below.

For a desired level of coverage 1−α, a literal (and correct) interpretation of

“confidence” requires that Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α for all θ and η, where Pθ,η

denotes probability computed under the assumption that the parameter values

are θ and η. Equivalently it requires minη Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α for each θ.

Thus, cθ should be the largest value of c for which

min
η

Pθ,η

[

Λθ(X) ≥ c
]

≥ 1 − α. (1.2)

For a fixed x, the confidence interval is then C(x) = {θ : Λθ(x) ≥ cθ}, and its

coverage probability

Pθ,η

[

θ ∈ C(X)
]

= Pθ,η

[

Λθ(X) ≥ cθ

]

≥ 1 − α, (1.3)

by construction. Being likelihood based, unified confidence intervals are gen-

erally reliable, even optimal, in large samples, but not necessarily so in small

samples, and unified confidence intervals have been criticized in that context –

e.g., Roe and Woodroofe (1999, 2000).

In some simple cases, it is possible to compute cθ analytically. This is il-

lustrated in Sections 2 and 3. In other cases, one can in principle proceed by

numerical calculation. This requires computing Pθ,η[Λθ(X) ≥ c] over a grid of

(θ, η, c) values, either by Monte-Carlo or numerical integration, and then find-

ing the cθ by inspection, replacing the minimum in (1.2) by the minimum over

the grid. This is feasible if η is known or absent, and was done by Feldman

and Cousins in two important examples. But if η is present and unknown, then

numerical calculations become unwieldy, especially if η is a vector.

One way to circumvent the unwieldy numerical problems when η is present,

is to use the chi-squared approximation to the distribution of Λθ, as in

Rolke, López and Conrad (2005), or a chi-squared approximation supplemented

by a Bartlett correction. Another is to use the hybrid resampling method of

Chuang and Lai (1998, 2000). We generate random variable X∗ from Pθ,η̂θ
and

let c+
θ = c+

θ (x) be the largest values of c for which Pθ,η̂θ
[Λθ(X

∗) ≥ c] ≥ 1 − α.
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Then the hybrid confidence intervals consist of θ for which Λθ(x) ≥ c+
θ . This

requires computation over a grid of θ values, but not over η for fixed θ. Unfor-

tunately, (1.3) cannot be asserted for the hybrid intervals, but Chuang and Lai

argue both theoretically and by example that it should be approximately true. In

some cases the calculations can be done by numerical integration, but they can

always be done by simulation. For a given x, generate independent X∗
1 , . . . ,X∗

N

(pseudo) random numbers from the density fθ,η̂θ
; compute Λθ(X

∗
k) from (1.1)

with x replaced by X∗
k ; and let c∗θ be the largest value of c for which

#{k ≤ N : Λθ(X
∗
k ) ≥ c}

N
≥ 1 − α. (1.4)

Here the left side of (1.4) provides a Monte Carlo Estimate for Pθ,η̂θ
[Λθ(X

∗) ≥ c],

and c∗θ provides an estimate of c+
θ .

The hybrid method resembles Efron’s bootstrap resampling method, but dif-

fers in one important respect: computing (1.2) for fixed θ, θ and η are replaced

by θ and η̂θ, as opposed to θ̂ and η̂. This is the origin of the term “hybrid”.

Evidence that the hybrid method is reliable – that is, that (1.3) is approximately

true comes from two sources, asymptotic approximations and simulations. These

are reported in Chuang and Lai (1998, 2000), and include some dramatic suc-

cesses. Here the method is applied to three examples of interest to astronomers

and physicists. The hybrid method has (independently) been suggested in the

physics literature by Feldman (2000).

Section 2 describes the analytic computation of cθ based on (1.2) for a normal

model with mean θ ≥ 0 and unknown variance σ2 (σ2 is the nuisance parameter).

In Section 3 we work out the details of the method when the parameter of interest

is the angle between the mean vector of a bivariate normal population. This

example has applications in Astronomy. The third example we look at is a version

of the “signal plus noise” problem that arises often in High Energy Physics.

We observe N ∼ Poisson(b + θ) and independently M ∼ Poisson(γb), where γ

is a known constant; here θ is the signal rate (the parameter of interest) and

b is the background rate (a nuisance parameter). The aim is to construct a

1 − α confidence interval for θ. We are not able to analytically compute cθ

for this example. The details are provided in Section 4. An extension of this

problem is treated in Section 5 with an application to Astronomy. With every

“event” we also observe a random variable with distribution depending on the

type of “event” (signal event or background event). We use the EM algorithm to

maximize the likelihood of this mixture model. We construct a 1− α confidence

interval for θ using the hybrid resampling method. This generalization also arises

in High Energy Physics. As will become clear in Section 2, there can be a large
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difference between the literal interpretation of confidence and the hybrid method

approximation. It would be interesting to understand this difference in more

detail.

2. The Normal Case

Suppose that X = (Y,W ), where Y and W are independent, Y is normally

distributed with mean θ ≥ 0 and variance σ2, and W/σ2 has a chi-squared

distribution with r degrees of freedom. For example, if data originally consists

of a sample Yi = θ + ǫi, i = 1, . . . , n, where ǫi’s are independent and identically

distributed N(0, σ2), then one can let Y = Ȳ and W = (n−1)V 2/n where Ȳ and

V 2 denote the sample mean and variance of Y1, . . . , Yn. The unknown parameters

here are θ ≥ 0 and σ2 > 0. Thus, the likelihood function is

L(θ, σ2|y,w) =
1√

2r+1πΓ(r/2)

w
1
2
r−1

σr+1
exp

{

− 1

2σ2
[(y − θ)2 + w]

}

.

For a given θ, L is maximized by

σ̂2
θ =

1

r + 1

[

w + (y − θ)2
]

;

L is maximized with respect to θ and σ2 jointly by θ̂ = max[0, y] = y+, say, and

σ̂2 =
1

r + 1

[

w + (y−)2
]

,

where y− = −min[0, y]. After some simple algebra,

log[Λθ] = −1

2
(r + 1) log(

σ̂2
θ

σ̂2
) = −1

2
(r + 1) log

[

W + (Y − θ)2

W + (Y−)2

]

.

Let

U =
W

σ2
and Z =

Y − θ

σ
.

Then U and Z are independent random variables for which U ∼ χ2
r, Z ∼

Normal(0, 1), and

log[Λθ] = −1

2
(r + 1) log

[

U + Z2

U + [(Z + θ/σ)−]2

]

.

This is an increasing function of σ for each θ > 0. So, since the joint distribution

of U and Z does not depend on parameters,

min
σ>0

Pθ,σ

[

Λθ ≥ c
]

= lim
σ→0

Pθ,σ

[

Λθ ≥ c
]

= P

[

−1

2
(r + 1) log

(

1 +
T 2

r

)

≥ log(c)

]

,
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where T = Z/
√

U/r has t-distribution with r degrees of freedom. Thus the

desired c is

c = exp
{

− 1

2
(r + 1) log

[

1 +
t2
r,1− 1

2
α

r

]

}

,

where tr,1−α/2 is the 1−α/2 percentile of the latter distribution and is indepen-

dent of θ. To find the confidence intervals, one must solve the inequality Λθ ≥ c

for θ. Letting s2 = W/r, this may be written

1 + (y − θ)2/(rs2)

1 + y2
−/(rs2)

≤ 1 +
t2
r,1− 1

2
α

r
,

or

[y − bs]+ ≤ θ ≤ y + bs, (2.1)

where

b =

√

√

√

√

√t2
r,1− 1

2
α

+
y2
−

s2



1 +
t2
r,1− 1

2
α

r



. (2.2)

Thus, if y > 0, the unified intervals are just the usual t-intervals, truncated to

non-negative values, and if y > bs they are symmetric about y. This differs from

the case of known σ, where the intervals are (slightly) asymmetric, even for large

y. There is a more dramatic difference with the case of known σ for y < 0.

Observe that for y < 0,

y + bs ≥ s

√

√

√

√

√

y2

s2



1 +
t2
r,1− 1

2
α

r



− |y|
s

= |y|











√

1 +
t2
r,1− 1

2
α

r
− 1











.

So the upper confidence limit approaches +∞ as y → −∞, unlike the case of

known σ where it approaches 0. Mandelkern (2002) found the latter behavior

non-intuitive. If we let r → ∞ and s2 → σ2, then we do not recover the intervals

of Feldman and Cousins with known σ2. Rather, we get the interval (2.1) with

the t-percentile replaced by the corresponding normal percentile.

Observe that the confidence limits for θ may be written as [y/s − b]+ ≤
θ/s ≤ y/s + b. Figure 2.1 shows these upper and lower confidence limits for

θ/s as a function of y/s for r = 10 and α = 0.10. For a specific exam-

ple, suppose that r = 10, s = 1, y = −0.30 and α = 0.10. Then b =
√

(1.812)2 + (0.3)2{1 + (1.812)2/10} = 1.84, and the interval is 0 ≤ θ ≤ 1.54.

The hybrid method yields 0 ≤ θ ≤ 1.14 in this example. The details are omitted

here, but an example using the hybrid method is included in Section 4.
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Figure 2.1. Confidence limits for θ/s as a function of y/s when r = 10 and

α = 0.1. Observe that the upper limit starts to increase as y decreases for

y < 0.

3. Angles

In Astronomy, “proper motion” refers to the angular velocity of an object in

the plane perpendicular to the line of sight. An object’s proper motion is given by

X = (X1,X2), where X1 and X2 are orthogonal components and are measured

independently. In certain applications astronomers are more concerned with the

direction than the magnitude of the proper motion vector. An example is the

motion of a satellite galaxy whose stellar orbits may be disrupted by the tidal

influence exerted by a larger parent system. Due to outward streaming of its

stars, a disrupting satellite will elongate spatially and exhibit a radial velocity

gradient along the direction of elongation. N-body simulations indicate that

the orientations of both the elongation and velocity gradient correlate with the

direction of the satellite’s proper motion vector (e.g., Oh, Lin and Aarseth (1995)

and Piatek and Pryor (1995)). Constraining the direction of the satellite’s proper

motion can therefore help determine whether or not a satellite is undergoing

disruption, which in turn places constraints on applicable dynamical models.

Suppose X1 and X2 are normally distributed random variables with unknown

means µ1 and µ2 and known variance σ2. Write µ1 and µ2 in polar coordinates

as µ1 = ρ cos(θ) and µ2 = ρ sin(θ), where −π < θ ≤ π. We consider confidence

intervals for θ when ρ is the nuisance parameter.

In this example, the likelihood function

L(θ, ρ|x) =
1

2πσ2
exp

{

− 1

2σ2

[

(x1 − ρ cos(θ))2 + (x2 − ρ sin(θ))2
]

}
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is maximized for a fixed θ by ρ̂θ = max[0, x1 cos(θ)+x2 sin(θ)], and uncondition-

ally by ρ̂ and θ̂ where x1 = ρ̂ cos(θ̂) and x2 = ρ̂ sin(θ̂). Then L(θ̂, ρ̂|x) = 1/(2πσ2),

and

Λθ = exp
[

− 1

2σ2
(ρ̂2 − ρ̂2

θ)
]

.

Let Z1 =
[

cos(θ)X1 +sin(θ)X2−ρ
]

/σ and Z2 =
[

sin(θ)X1− cos(θ)X2

]

/σ. Then

Z1 and Z2 are independent normal variables each with mean 0 and unit variance,

and

Λθ = exp
{

− 1

2
[(Z1 + ρ)2− + Z2

2 ]
}

,

where (recall) z− = −min[0, z], after some simple algebra. Thus, Λθ is an in-

creasing function of ρ for fixed Z1, Z2, and θ. So, since the joint distribution of

Z1 and Z1 does not depend on parameters

min
ρ

Pθ,ρ

[

Λθ ≥ c
]

= lim
ρ→0

Pθ,ρ

[

Λθ ≥ c
]

.

Letting b = −2 log(c), this is just

P
[

Z2
1,− + Z2

2 ≤ b
]

= P
[

Z1 ≤ 0, Z2
1 + Z2

2 ≤ b
]

+ P
[

Z1 > 0, Z2
2 ≤ b

]

=
1

2
P [χ2

1 ≤ b] +
1

2
P [χ2

2 ≤ b].

So c = e−b/2, where b solves P [χ2
1 ≤ b]/2 + P [χ2

2 ≤ b]/2 = 1 − α. For example,

when α = 0.90, b = 3.808.

Unified confidence intervals for θ then consist of those θ for which ρ̂2 − ρ̂2
θ ≤

bσ2, or equivalently ρ̂2
θ ≥ ρ̂2 − bσ2. Thus, if ρ̂2 ≤ bσ2, the interval consists

of all values −π < θ ≤ π. On one hand, this simply reflects the (obvious)

fact that if ρ̂ is small there is no reliable information for estimating θ, but it

also admits the following amusing paraphrase: one is 100(1 − α)% confident of

something that is certain. If ρ̂2 > bσ2, the intervals consist of those θ for which

ρ̂ cos(θ − θ̂) ≥
√

ρ̂2 − bσ2; that is,

θ̂ − arccos

(
√

1 − bσ2

ρ̂2

)

≤ θ ≤ θ̂ + arccos

(
√

1 − bσ2

ρ̂2

)

,

where arccos(y) is the unique ω for which 0 ≤ ω ≤ π and cos(ω) = y, and

addition is understood modulo π. Thus, there is a discontinuity in the length

of the intervals as ρ̂ passes through bσ2: it decreases from 2π to something less

than π.

Piatek et al. (2002) measured the Galactic rest-frame proper motion of the

Fornax galaxy to be (X1,X2) = (32, 33) with σ = 13 (units are in milli-arcseconds

per century). Dinescu, Keeney, Majewski and Girard (2004) made a similar
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measurement but observed (X1,X2) = (−13, 34) with σ = 16. We use our

method to construct a 90% confidence interval for the direction θ in the two

cases. The intervals obtained are (0.2219, 1.4119) for the Piatek et al. angle

and (0.9051, 2.9669) for the Dinescu et al. angle (where θ is measured in radi-

ans). Note that the Piatek et al. measurement places a tighter constraint on the

proper motion direction, and that there is some overlap with the Dinescu et al.

result.

4. Counts with Background

Suppose that X = (N,M) where N and M are independent, M has the

Poisson distribution with mean γb, and N has the Poisson distribution with mean

b + θ. It is useful to write N = B + S where B and S are independent Poisson

random variables with means b and θ, representing the number of background

and signal events. Here b and θ are unknown; γ is assumed known, and large

values of γ are of interest. In this case, the likelihood function and score functions

are

L(θ, b|n,m) = fθ,b(n,m) =
(γb)m

m!
e−γb × (θ + b)n

n!
e−(θ+b),

∂ log(L)

∂θ
=

n

b + θ
− 1,

∂ log(L)

∂b
=

m

b
+

n

θ + b
− (γ + 1).

Consider b̂θ for a fixed θ. If m = 0, then L is maximized when b = [n/(γ +

1) − θ]+; if m > 0 it is maximized at the (positive) solution to ∂ log(L)/∂b = 0,

i.e.,

b̂θ =
[(m + n) − (γ + 1)θ] +

√

[(γ + 1)θ − (m + n)]2 + 4(γ + 1)mθ

2(γ + 1)
; (4.1)

fortuitously, (4.1) also gives the correct answer when m = 0. The unconstrained

maximum likelihood estimators are then θ̂ and b̂ = b̂θ̂, where θ̂ maximizes the

profile likelihood function L(θ, b̂θ|n,m). Considering the cases n ≤ m/γ and

n > m/γ separately, shows that θ̂ =
(

n − m/γ
)

+
, b̂ = (m + n − θ̂)/(γ + 1), and

Λθ(n,m) = (
b̂θ

b̂
)m(

θ + b̂θ

θ̂ + b̂
)n exp

[

(n + m) − (γ + 1)b̂θ − θ
]

,

after some simple algebra.

We have been unable to find the minimizing value in (1.2) and so will use the

Hybrid Resampling Method. This is best illustrated by an example. Figure 4.2
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Figure 4.2. Plot of Λθ (smooth line) and cθ (jagged line) against θ when
γ = 6, m = 23, n = 0 and α = 0.10.

below shows Λθ and cθ when γ = 6,m = 23, n = 0, and α = 0.10. This

is patterned after the original KARMEN report Eitel and Zeitnitz (1998), but

with a larger value of b̂ and more variability in b̂. The c∗θ was computed by Monte

Carlo on the grid θ = 0, 0.01, 0.02, . . . , 2.50 using N = 10, 000 in (1.4). The right

end-point of the interval is 0.82.

By construction, the hybrid-unified method always delivers a non-degenerate

subinterval of [0,∞), even when n = 0, and thus it avoids the types of problems

reported in Rolke, López and Conrad (2005). It does not avoid the problems

inherent in the use of the unified method without nuisance parameters, however

– for example, dependence of the interval on b̂ when n = 0. We believe that

the interval [0, 2.31] is a more reasonable statement of the uncertainty in this

example. Briefly, [0, 2.31] would be the uniformly most accurate 90% confidence

interval if S = 0 were observed, if N = 0, then B = S = 0.

5. The Star Contamination Problem

In studying external (to the Milky Way) galaxies, one can measure only two

of the three (those orthogonal to the line of sight) components of stellar po-

sition, and one (along the line of sight, from red shift of spectral features) of

the three components of stellar velocity. Because the line of sight necessarily

originates within the Milky Way, velocity samples for distant galaxies frequently

suffer from contamination by foreground Milky Way stars. It is important to

accurately identify and remove sample contamination. The most common pro-

cedure for membership determination involves fitting a normal distribution to

the marginal velocity distribution of all observed stars, then iteratively rejecting
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Figure 5.3. Left: Heliocentric radial velocities (RV) vs. angular distance
from the Sextans center. Dotted, short-dashed, and long-dashed lines mark

boundaries of 276, 294 and 303 member samples, respectively. Right: His-

togram of the radial velocity of the stars.

outliers beyond a specified (∼ 3σ) threshold. However, this is of limited utility

when the velocity distributions of target galaxy and contaminant stars overlap.

Also, the trimming of outliers from an imposed distribution introduces a degree

of circularity to the analysis, as it is the target galaxy’s velocity distribution that

is under investigation. We consider results from a velocity survey of the Sex-

tans dwarf spheroidal galaxy (see Walker et al. (2006)). The unfiltered marginal

velocity distribution of the 528 observed stars displays evidence of significant con-

tamination by Milky Way foreground stars (see Figure 5.3). For the i’th star we

consider the measurements (X1i,X2i, U3i, σi), where (X1i,X2i) is the projected

position of the star, U3i is the observed line-of-sight velocity, and σi is the error

associated with the measurement of U3i. In this section we develop a method

of addressing sample contamination that incorporates a model of the contami-

nant distribution. We would like to estimate the number of “signal” (Sextans)

stars and construct a 1 − α confidence interval. Our algorithm also outputs, for

each observed star, an estimate of the probability that the star belongs to the

contaminant population. These probability estimates can be used as weights in

subsequent analyses.

5.1. The statistical model

We assign parametric distributions to the positions and velocities of the stars;

the parametric models are derived from the underlying physics in most cases.

The EM algorithm is then employed to find MLE’s estimates of the unknown

parameters. The method is described in the context of available data, but can
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be generalized to incorporate membership constraints provided by additional

data (such as multi-color photometry data).

Suppose N ∼ Poi(b + θ) is the number of stars observed using the telescope

in a given amount of time. In our case we have N = 528. Here θ denotes

the rate for observing a signal star, i.e., a Sextans star. We assume that the

foreground rate is b. We are interested in constructing a 1 − α CI for θ. The

actual line of sight velocity for the i’th star will be denoted by V3i. We assume

that U3i = V3i + ǫi, where ǫi ∼ N(0, σ2
i ) and the ǫi’s are assumed independent.

Let Yi be the indicator of a foreground star, i.e., Yi = 1 if the i’th star is a

foreground star, and Yi = 0 otherwise. Of course, we do not observe Yi. We need

to make assumptions on the form of the joint density of Wi = (X1i,X2i, U3i).

For the foreground stars (i.e., Yi = 1) it might be reasonable to assume that

the position (X1i,X2i) and velocity U3i are independent. Then the joint density

of Wi simplifies to hb(w) = f (b)(x1, x2)g
(b)(u3), where we take the position of the

star as uniformly distributed in the field of view, i.e., f (b)(x1, x2) = 1/(πM2),

where M is the radius of field of view (in our data set it is 35 arc min). Note

that U3i ∼ g(b)(·), where g(b) is a completely known density obtained from the

Besanćon Milky Way model (Robin et al. (2003)), that specifies spatial and ve-

locity distributions of Milky Way stars along a given line of sight. The density

estimate g(b)(·) was constructed using kernel density estimation techniques.

For the Sextans stars, there is a well-known model in Astronomy for the

distribution of the projected position of stars. The model assumes f (s)(x1, x2) =

K(h)e−s/h, 0 ≤ s2 = x2
1 + x2

2 ≤ M2, where K(h)−1 = 2πh2{1 − (M/h)e−M/h −
e−M/h} is the normalizing constant (M is the radius of field of view). The

distribution of U3i given the position is assumed to be normal with mean µ and

variance σ2 + σ2
i , and its density is denoted by g(s)(·). Thus, the joint density of

Wi given that it is a signal star is hs,i(w) = f (s)(x1, x2)g
(s)(u3).

5.2. CI for θ: the number of “signal” stars

The likelihood for the observed data is

L(θ, η) = e−(b+θ) (b + θ)N

N !

N
∏

i=1

(

bhb(Wi) + θhs,i(Wi)

b + θ

)

, (5.1)

which is a essentially a mixture density problem. A simple application of the

EM algorithm (details are provided in the appendix) yields the MLE’s in this

scenario. The hybrid resampling method can be used to construct a confidence

region for θ.

The likelihood ratio statistic is defined as in (1.1), and can be computed

for each θ. The hybrid resampling method was employed to find the c+
θ as
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described in the Introduction. Varying θ, we get a confidence interval for θ. In

our example, the 90% confidence interval turns out to be (260.3, 318.4). Note

that if b was known, and with θ̂ ≈ 290 (the maximum likelihood estimate of

θ), a 90% CI using frequentist method (obtained by intersecting uniformly most

accurate 95% confidence lower and upper bounds) would be (261.7, 318.4). This

shows that the hybrid method works almost as well as the optimal frequentist

confidence region, even when b is unknown.

A. Appendix

We outline the implementation of the EM-algorithm, described in the last

section, to find the the unconstrained maximum of the observed (incomplete)

data. The constrained maximization is very similar (in fact, a bit simpler).

Recall that Yi is the indicator of a foreground star, i = 1, . . . , N . Note that the

Yi’s are i.i.d. Bernoulli b/(b + θ). Let Z = (X1,X2,U,Y, N) be the complete

data matrix. The likelihood for the complete data can be written as

L̃(θ, η|Z) = e−(b+θ) (b + θ)N

N !

{

N
∏

i=1

(
b

b + θ
)Yi(

θ

b + θ
)1−Yihb(Wi)

Yihs,i(Wi)
1−Yi

}

.

The log-likelihood (up to a constant term) can be written as

l̃(θ, η|Z) = −(b + θ) +

N
∑

i=1

{Yi log(bhb(Wi)) + (1 − Yi) log(θhs,i(Wi))} .

Letting θn and ηn denote the parameter values obtained in the n’th step of

the iteration, the E-step in the unconstrained maximization process evaluates

Eθ̂n,η̂n

(

l̃(η|Z)|W
)

as

N
∑

i=1

Pθ̂n,η̂n
(Yi = 1|W) log[bhb(Wi)]

+

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W) log[θhs,i(Wi)] − (b + θ), (A.1)

where Pθ̂n,η̂n
(Yi = 1|W) = [b̂nhb(Wi)]/[b̂nhb(Wi) + θ̂nhs,i(Wi)] is the probability

of a foreground star given the data under the current estimates of θ and η, i.e.,

θn and ηn. The M-step maximizes (A.1), which leads to the following estimating

equations:

1

b

N
∑

i=1

Pθ̂n,η̂n
(Yi = 1|W) − 1 = 0,
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1

θ

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W) − 1 = 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

1

σ2 + σ2
i

(U3i − µ)

}

= 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

(U3i − µ)2

2(σ2 + σ2
i )

2
− 1

2(σ2 + σ2
i )

}

= 0.

The first two equations can be solved easily to give b̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi =

1|W) and θ̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi = 0|W). The last two equations can be slightly

modified to give the following (closed form) estimates of µ and σ2:

µ̂n+1 =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

U3i

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

and σ̂2
(n+1) =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

(1+σ2
i /σ̂2

(n)
)2

(U3i − µ̂n+1)
2

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

,

where σ̂2
(n) is the n’th step estimate of σ2. These estimates (η̂n) stabilize after a

few iterations yielding the MLE’s of η with the incomplete data. An interesting

feature of this solution is that at the end of the algorithm we get estimated

probabilities that the i’th star is a signal star, namely, Pθ̂n,η̂n
(Yi = 1|W).
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