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Abstract 

The concept of Fractile Graphical Analysis (FGA) was introduced by Pras 

anta Chandra Mahalanobis (see Mahalanobis, 1960). It is one of the earli 

est nonparametric regression techniques to compare two regression functions 

for two bivariate populations (X,Y). This method is particularly useful 

for comparing two regression functions where the covariate (X) for the two 

populations are not necessarily on comparable scales. For instance, in econo 

metric studies, the prices of commodities and people's incomes observed at 

different time points may not be on comparable scales due to inflation. In 

this paper, we consider a smooth estimate of the fractile regression function 

and study its statistical properties. We prove the consistency and asymp 

totic normality of the estimated fractile regression function defined through 

general weight functions. We also investigate some procedures based on the 

idea of resampling to test the equality of the fractile regression functions for 

two different populations. These methods are applied to some real data sets 

obtained from the Reserve Bank of India, and this leads to some interesting 
and useful observations. In course of our investigation, we review many of 

Mahalanobis' original ideas relating to FGA vis a vis some of the key ideas 

used in nonparametric kernel regression. 

AMS (2000) subject classification. Primary 62G08; secondary 62G09, 62G10. 

Keywords and phrases. Fractile graphical analysis, fractile graphs, smooth 

estimates, weight functions, consistency and asymptotic normality, resam 

pling methods. 

1 Introduction: Fractile Graphs 

Prasanta Chandra Mahalanobis introduced Fractile Graphical Analysis 

(FGA) as a method to compare economic data related to different popu 

lations in India over time as well as to populations differing in respect of 

geographical regions or in other ways. Mahalanobis used this method to 
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study the economic condition of rural India on the basis of data collected 

on household consumption and expenditure over two different time periods: 
the 7th (October 1953 to March 1954) and the 9th (May to November 1955) 
rounds of the National Sample Survey of India. It is obviously of great im 

portance to policy makers of a country like India to understand the economic 

condition of the rural community. They would also like to ascertain whether 

their policies have been able to improve the economic condition of the rural 

population over a period of time. As a measure of the economic well-being 
of the rural community, one may consider the proportion of expenditure on 

food articles to the total expenditure incurred. It is expected that lower this 

proportion, the greater is the possibility of the rural community being better 

off. 

Let X be the total expenditure per capita per 30 days in a household 

and Y be the proportion of total expenditure on food articles per capita 

per 30 days in the household. Mahalanobis wanted to perform a regression 

analysis of Y on X and was interested in comparing the regression functions 

at two different time points. But due to inflation, the total expenditure (per 

capita per 30 days) for the two time points become incompatible and may 
cease to be comparable. Just comparing the regression functions for the two 

populations did not make much sense. So, he chose to compare the means of 

the F-variable in different fractile groups corresponding to the X-variable. 

This approach leads to a novel way of standardizing the covariate X so that 

comparison of the two regression functions over two different time periods 
can be done in a more meaningful way. More precisely, FGA does this 

required standardization by considering F(X) instead of X as the regressor, 

where F is the distribution function of X. 
While comparing two regression functions, it is sometimes more impor 

tant to understand the behaviour of the functions over a fractile interval 

of X and not on the entire range of J_", e.g., in the example cited at the 

beginning, we would be more concerned with the economic condition of the 

bottom 5% or 10% of the population. Such localized comparison of the re 

gression functions can also be done using FGA by restricting our attention 

only to the corresponding fractile intervals. 

Consider two bivariate populations (X\, Y\) and (X2, Y2). We would like 
to compare the usual regression functions #_ and g2 where 

9l(x) 
= 

E(Yl/Xl 
= x) and g2(x) 

= 
E(Y2/X2 

= 
x). 

When X\ and X2 are not in comparable scales or have their centers of 

distribution at different locations (for instance total household expenditure 

at different time points may differ significantly due to inflation), we would 
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consider the following functions (called fractile graph or fractile regression) 
to draw inference about the two populations: 

mi(t) 
= 

E(Yl/F1(Xl) 
= 

t) and m2(t) 
= 

E(Y2/F2(X2) 
= 

t), 

where F\ and F2 are the distribution functions of X\ and X2 respectively. 
We compare the two populations based on the behavior of the functions m\ 

and m2. FGA, therefore, differs from usual regression methods. In FGA, one 

is interested in the dependence of the response variable (Y?) on the fractiles 

(the quantiles) of the covariate (X\) rather than on the covariate itself. 

Suppose that X is a random variable with distribution function F. Let 

Z ? 
<?(X), where (j) is any strictly increasing function on R. Let Z have 

distribution function G. Then, F(x) 
= 

G((f>(x)) V x e R, and we have 

E(Y\F(X) 
= 

t) 
= 

E(Y\G(Z) 
= 

t). This shows that the fractile graphs re 
main invariant under any strictly increasing transformation of the covariate. 

In Section 2 we introduce' smooth estimates of fractile regression. In 

Section 3 we prove consistency and asymptotic normality of the estimated 

fractile graphs in a very general setup. In Section 4 we propose statistical 

methods based on resampling ideas for comparing two fractile graphs. We 

also discuss the multi-scale approach to curve estimation. In Section 5 we 

discuss the performance of the proposed testing procedures on real data as 

well as on simulated data. The proofs of the main results are provided in 

Section 6. 

2 Smooth Estimation of Fractile Regression 

Mahalanobis' original idea for estimating fractile graphs was as follows. 

Consider any bivariate population (X,Y). A random sample {(X?, Y?)}f=l 
is drawn from this population, and data points are ranked in the ascending 

order of X. The n units are divided into g groups (called fractile groups) each 

of equal size n' = 
(n/g). The mean of the y?variable in each fractile group is 

calculated and labeled as y[, y'2,..., y'g. g equidistant points 1,2,..., g on the 

x?axis are marked to represent the g fractile groups and the corresponding 
values of y[, y'2l..., y'g 

are plotted. Each pair of adjoining points y\ with 
y[+l 

for i = 
1,2,... ,g 

? 1 are joined by straight lines to get a polygonal curve 

called the fractile graph. Since the estimate consists of continuously joined 

straight line segments, the estimate is usually ,not smooth even though the 

population fractile regression function may be smooth in nature. 

Though our estimation procedure is partly on the lines suggested by 

Mahalanobis, it is intrinsically different from his approach both method 

ologically and conceptually. In fact, our method blends Mahalanobis' ideas 
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with more recent nonparametric kernel regression procedures; see e.g., M?ller 

(1988), Hardie (1990), Wand and Jones (1995), Fan and Gijbels (1996) and 
Simonoff (1996). We have used smooth kernel regression estimators to form 

the estimated fractile graphs whereas Mahalanobis took the ^-averages from 

each fractile group and constructed the estimated fractile graphs. 

Suppose that we have data {(Xi,Y?)}n=i from a bivariate population. 

Throughout this paper, we consider smooth estimates of the fractile graph 

fhn(') of the form 
n 

mn(t) = 
^YiWn^K), (1) 

i=\ 

where Wn?(t,hn) 
= 

Wn?(t,hn,Fn(Xi),Fn(X2),... ,Fn(Xn)), 1 < i < n, is a 

weight function associated with the kernel smoother. Here Fn is the empirical 
distribution function of {Xi} =1 (to avoid extreme values of Fn(x) we define 

Fn(x) 
= 

^y _CiLi l{Xi<x} f?r ?c R), and hn is the bandwidth based on a 

sample of size n. Note that as we are regressing Y on the quantiles of X, in 

a sense, we can pretend that our observations are 
{(F(Xi),Yi)}^=1, where 

F is the distribution function of X\. But as the distribution function F is 
not known, we work with the empirical distribution function Fn, and it is 

used in the weight functions for the fractile graph estimators. Some common 

choices for the weight functions available in kernel regression literature are 

described below. 

1. Nadaraya-Watson type weight function: 

tt(^p) 
Wn,i(t,M 

= 

T^K(tjjmy 
i = 

1,2, ...,n; where K is the kernel (can be the standard normal 

density function) and Fn is the empirical distribution function (see 
Nadaraya, 1964 and Watson, 1964). 

2. Priestley-Chao type weight function: Wn?(t,hn) 
= 

nJ^K^~F?x^\ 
i = 

1,2,..., n (see Priestly and Chao, 1972). 

3. Gasser-M?ller type weight function: Wn^)(t, hn) 
? 

ft* -j^K ( ^ J ds, 

?=l,2,...,n; where 0=t0 < 
^ 

< tx < 
^ 

< t2<... <nJ??<tn 
= 1 

(see M?ller, 1998). 
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4. Local linear type weight function: 

l?^^M-?l^M^n^-^i?f^^^) 
Wni(t,hn) = ?_\ n / 

71,1 n s2(t,hn)s0(t,hn) 
- 

si(t,/in)2 

i = l,2,...ln; where ?r(i,fcn) 
= 

?ELi(W-^(tP) 
for r = 0,1,2 (see Wand and Jones, 1995, Fan and Gijbels, 1996) . 

The choice of the bandwidth hn is of crucial importance for the above 

estimators. For choosing the optimal bandwidth for the kernel regression 

function, we can use any standard data-driven bandwidth selection proce 

dure applicable to kernel regression like the least squares cross validation (see 

Rice, 1984, Hardie, 1990, Wand and Jones, 1995, Fan and Gijbels, 1996) or 

direct plug-in method (see Wand and Jones, 1995). 
As an example of fractile graphs, we demonstrate our smooth estimates 

of fractile graphs along with Mahalanobis' fractile graphs in Figure 1. Here 

we have generated two samples, each of size 100, from the population y 
= 

1.0 + x + e where e ~ 
iV(0,0.09) and x ~ 

Exp(l) (the first sample is repre 
sented by dots while the other one is represented by asterisks). The covariate 

for the second sample is then squared. Note that the scatter plots of the 

two samples look very different due to the square transformation on the co 

variate for the second population. But after transforming the covariate (i.e., 

changing X? to Fn(Xi)) the scatter plots look quite similar. Thus Maha 

lanobis' fractile graphs and our smooth estimated fractile graphs are quite 

similar in nature. For our smooth estimated fractile graphs we have used 

the Nadaraya-Watson type weight function with standard normal kernel and 

least squares cross validated optimal bandwidths. The chosen bandwidths 

for the two populations are 0.027 and 0.022 respectively. As the bandwidths 

are quite small, the estimated smooth fractile graphs are wiggled in nature. 

Although we have used smooth kernel based estimators to estimate the 

fractile graphs, the setup discussed in the last section is very general. A large 
class of nonparametric regression estimators can be expressed in the form (1). 
In the next section we present asymptotic properties of the estimated fractile 

graphs that are valid in the general setup under appropriate conditions on 

the weight functions. We have used kernel smoothing in the data analytic 
section for its simplicity and computational ease. Asymptotics also become 

tractable as the weight functions can be easily computed. Later on, while 

comparing two fractile graphs, we adopt the multi-scale methodology where 

results are available for kernel type weight functions (see Chaudhuri and 

Marron, 2000). 
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Mahalanobis's fractile graphs for the two samples 
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Smooth fractile graphs for the two samples 

Figure 1. Scatter plots for the two samples (top left), Transformed covariate scatter 

plots (top right), Mahalanobis' fractile graphs with 10 fractile groups (bottom left) 
and smooth estimates of fractile graphs with bandwidths chosen by least squares 

cross-validation (bottom right). 

Another way to estimate the smooth fractile graphs could be by com 

puting the usual nonparametric estimator gn(x) of g(x) 
= 

E(Y\X 
= 

x) and 

evaluating this at x = 
G~l(t) where G~l(t) is the t?th sample quantile of 

X. We would then require a strictly increasing estimator of Gn (the usual 

empirical distribution function of X will not suffice) and that would have 

to be inverted to get the corresponding quantile. All this would make the 

estimation of fractile graphs much more computationally intensive. We do 

not discuss this approach in this paper. 

3 Asymptotic Properties of Smooth Fractile Regression 
Estimate 

Bhattacharya and M?ller (1993), Parthasarathy and Bhattacharya (1961), 
and Sethuraman (1961) studied in detail the asymptotic properties of Ma 

halanobis' original estimates of fractile graphs as the sample size grows but 
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the number of fractile groups are kept fixed. In the first part of this section, 
we prove the consistency of our smooth estimates of fractile graphs under 

mild regularity conditions (stated below). In the later part of the section, we 

prove the asymptotic normality of the smooth estimates of fractile graphs. 

Throughout this section we will assume that the covariate X ~ F where F 

is a continuous strictly increasing distribution function. We begin by stat 

ing some conditions that will be needed to establish consistency of kernel 

estimates of fractile regression. 

(Cl) The function m(-) is continuous V t G (0,1), and m(t) < M V t [0,1] 
for some M > 0. 

(Dl) The conditional variance function v(t) 
= Var (Y\F(X) 

= 
t) is bounded 

above by K0 > 0 (i.e., v(t) < K0 V t <E [0,1]). 

(Dl') There exists B > 0 such that |F| < B almost surely. 

(wi) Y:U^Ut,K) 
? 0. 

(W2) EILi^n,?(?,M-^i. 

(W3) Given any p > 0, 3 A > 0 and N G N such that 

n 

Y^\Wn?t,hn)\llt-Fn(Xi)iA] <PVn>N. 

(W4) There exists C > 0, such that ??=i |Wn?(t,/in)|<CVn>l. 

An interesting point to be observed here is that the sums appearing in con 

ditions (W1)-(W4) are not dependent on the observations X\,X2,... ,Xn, 
as the weights depend only on Fn(X?)'s and not on X^s. 

Theorem 3.1 Fix 0 < t < 1. Let us assume (Cl) and (W1)-(W4). 
Then, under assumption (Dl), the conditional MSE ofmn(t) given the Xi 's 
tend to 0 almost surely as n ?> oo. As a consequence, 

mn(?) 
?> 

m(t) as n ? oo. (2) 

Further, if (Dl) is strengthened to (Dl'), we have 

s 
{fhn(t) 

? 
m(t)}2dt 

? 0 as n -+ oo. (3) 
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Let us next consider following conditions: 

(Cl') ra(-) is twice continuously differentiable on the interval [0,1]. 

(Kl) The kernel function K(-) is symmetric about 0 with a bounded deriva 

tive, nonzero in a neighbourhood of 0, and it has compact support 

(i.e., K(x) 
= 0 V ?x| > Mo for some A_o > 0). The bandwidth se 

quence associated with the kernel smoother satisfies limn_>00 hn 
= 0 

and linin-^oo nhn 
= oo. 

(K2) The kernel function K(-) is symmetric about 0 with a bounded deriva 

tive, nonzero in a neighbourhood of 0, and it is supported on the entire 

real line. The bandwidth sequence associated with the kernel smoother 

satisfies limn_H>00 hn 
= 0 and limn_,oo nh? 

= oo. 

Corollary 3.2 Assume that either (Kl) or (K2) holds. Then, un 
der conditions (Cl) and (Dl), (2) holds for estimates based on Nadaraya 

Watson, Priestley-Chao, and Gasser-Muller type weight functions. If (Dl) 
is strengthened to (Dl'), (3) holds for estimates based on the same weight 

functions. On the other hand, under conditions (Cl'), (Dl) and either of 

(Kl) or (K2), we have (2) for estimates based on local linear type weight 
function. Further, if (Dl) is replaced by (Dl1), (3) holds for local linear 
estimates of fractile graphs. 

To prove the asymptotic normality of the estimated fractile graph we 

need slightly stronger assumptions. We state the following conditions which 

will be used to prove the next theorem. 

(Cl) The function m(-) is differentiable V t (0,1), and ro'(t) < KV t e 

[0,1] for some K > 0. 

(W2) There exists A > 0 such that ?ILi \Wn4(t,hn)\lf|t-Fw(*_)f A] 
= 0. 

(W3) -L-i??;*_ ,,. x ? 
oo as n -> oo. 

(WA) nh? 
? 0asn-4co. 
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Theorem 3.3 Fix 0 < t < 1. Let us assume (Cl) and (Wl) 
- 

(WA). 
Suppose that Y{ 

= 
g(X{) + e?, i = 

1,2,..., n; w/iere e? 1 X?, i = 
1,2,..., n, 

and E(c?) 
= 0 and Var(e?) = a2. Then, 

mn(t) 
- 

m(?) d 
-, ?? 

?V(0,1) as n ? oo. (4) 

Corollary 3.4 Suppose that the kernel function K(-) is symmetric about 

0 with a bounded derivative, nonzero in a neighbourhood of 0, and has com 

pact support (i.e., K(x) 
= 0 V |x| > Mo for some M$ > 0). Also sup 

pose that the bandwidth sequence associated with the kernel smoother satis 

fies livtin^Qohn 
= 0 and limn-^ nh? 

= oo. Then (4) holds for estimates 

based on Nadaraya- Watson and Gasser-Muller type weight functions. 

4 Comparison of Estimated Smooth Fractile Graphs 

Suppose that we have data from two populations: {(Xu^Yu)}^ and 

{(X2i,l2i)}^i? and we want to test the hypothesis 

Hq : m\ = m2 vs. Ha 
' 
rn\ ^ m2, (5) 

where mx(t) 
= 

E(Yli\Fl(X^ 
= 

t) and m2(t) 
= 

E(Y2i\F2(X2i) 
= 

t), and 

Fi and F2 are continuous strictly increasing distribution functions of the 

random variables Xu and X2{. 

Much effort has been devoted to the problem of comparison of nonpara 

metric regression curves in the recent literature; see e.g., Hardie and Marron 

(1990), King, Hart and Wehrly (1991), Hall and Hart (1990), Delgado (1993), 
Young and Bowman (1995), Hall, Huber and Speekman (1997), Munk and 
Dette (1998), Dette and Neumeyer (2003). These authors considered the 

testing problem 

Ho' ffi=52 vs. HA:gi^g2, (6) 

where g\ and g2 are the usual regression curves corresponding to two different 

populations. Most authors concentrated on equal design points to develop 
tests for (6). Hall and Hart (1990) discussed a bootstrapping procedure for 

testing (6) under the assumption of common design points and same number 

of data points for both the samples. They extended their tests to samples 
with unequal design points but with the same sample size. Hardie and Mar 

ron (1990) suggested a semiparametric method of testing (6) with equal de 

sign points. They parameterize the difference between the two curves. King, 
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Hart and Wehrly (1991) proposed two tests for common design points: one 
for normal errors and the other for non-normal errors that are shown to have 

good power properties. Kulasekera (1995) proposed a test for the hypoth 
esis (6) using quasi-residuals which is applicable under the assumption of 

different design points for both the samples. Kulasekera and Wang (1997) 
considered the selection of smoothing parameters to obtain optimal power 
in tests of regression curves. Munk and Dette (1998), Neumeyer and Dette 

(2003) considered the problem of the comparison of nonparametric regres 
sion curves under a very general set-up. Delgado (1993), Kulasekera (1995) 
and Kulasekera and Wang (1997) considered marked empirical processes to 

develop tests for the hypothesis (6). However, none of the above mentioned 

authors has addressed the problem of possible effects of some transforma 

tion on the covariate for the two populations. Some of the usual methods for 

comparison of the regression curves do not generalize in a straight forward 

manner in our setup as in fractile regression the covariate X? is replaced by 

Fn(Xi), and the Fn(X?)'s are not independent even if the X?'s are so. We 

next describe Mahalanobis' original approach towards this problem. 

4-1. Mahalanobis' idea for comparing two fractile graphs. The first 

sample of size n_ is obtained from the first bivariate population by draw 

ing two independent ("interpenetrating") random half-samples each of size 

ni/2. The first half-sample is then considered, and the fractile graph G(l) 
is constructed from it [see Section (2) for the construction of Mahalanobis' 

fractile graphs]. The second half-sample is used to get the second fractile 

graph G(2). Clearly, the two half-sample fractile graphs G(l) and G(2) have 
identical statistical distributions. 

Mahalanobis' idea was to mix the two half-samples to form the combined 

sample of size ri\ from the first population. The combined sample is again 
ranked according to the X-values and divided into g fractile groups each 

containing n[ (n[ 
= 

n\/g) units. The y-averages of the corresponding fractile 

groups are plotted to get the combined fractile graph G(l,2). The "error 

area" a(l,2) associated with the combined sample is defined as the area 

bounded between the two half-sample fractile graphs G(l) and G(2) (i.e., 

a(l,2)=J|G(l)-G(2)|). 
The second bivariate population is considered next from which a pair 

of independent ("interpenetrating") half-samples axe drawn. The second 

set of fractile graphs G'(1),G'(2) and G'(l,2) are computed from the half 

samples obtained from the second population. The area bounded between 

G;(l) and G'(2) is called the second "error area" associated with the second 

population and is denoted by a'(1,2) (i.e., a'(l,2) 
= 

/ |G'(1) 
- 

G'(2)|). The 
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area between the two combined fractile graphs G(l, 2) and G'(l, 2) is called 
the "separation area" between G(l,2) and G'(l,2) and is denoted by 5(1,2) 
(i.e.,5(l,2) 

= 
/|G(l,2)-G'(l,2)|). 

The statistical error E to be associated with the "separation area" 5(1,2) 
is defined by the formula E = 

^/a2(l,2) + aa(l,2). The significance of the 

observed value of 5(1,2) is tested by considering the test-statistic 
??2', 

which according to Mahalanobis would be distributed approximately like a 

chi-square random variable. For some of the statistical properties of the 

"error area" in FGA see Takeuchi (1961), Mitrofanova (1961), Mahalanobis 

(1988). 

4.2. Statistical comparison of smooth estimates of fractile graphs. As 

mentioned above, we use smooth estimates of fractile graphs rni)Tll and m2<tl2. 
To test hypothesis (5), we will use the following test statistic 

Tni,n2 
= 

/ \mi,ni(t) 
- 

m2i7l2(t)\dt (7) 
Jo 

which we call as the "separation area" between the smooth fractile graphs. 
We have also considered another test statistic defined as 

5^,712 
= 

/ {miini(t)-m2jn2(t)}2dt (8) 
Jo 

and call it the "squared difference between the fractile graphs". Under the 

null hypothesis, we expect the test statistics to be small, whereas large values 

of the test statistics would support the alternative hypothesis. 
We have adopted the multi-scale approach to curve estimation, where 

one considers a range of possible bandwidths and statistical tests are carried 

out for all of them, as e.g., in SiZer (see Chaudhuri and Marron, 1999, 2000). 
In this approach, we shift our attention from the "true underlying curve" 

to the "true curves viewed at different levels of smoothing" with the idea 

that it will enable us to extract relevant information available in the noisy 
data at different levels of smoothing. This approach is more 

informative 
than an approach based on a single "optimal" bandwidth. This approach 
is an alternative to selecting an optimal data-driven bandwidth. The poor 

performance of some of the data-driven bandwidth selection procedures have 

led us adopt this multi-scale approach to curve estimation. 

4.3. Resampling based test using Tnii7l2 and 5ni)Tl2. A major technical 

barrier using the test statistics TnijTl2 and Sniy7l2 [defined in (7) and (8)] is 
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that their sampling distributions are analytically intractable. In this section 

we provide detailed procedures to test the hypothesis (5) based on these test 
statistics using resampling techniques. 

4.3.I. Bootstrap method. Bootstrap (see e.g., Hall, 1992 and Efron and 

Tibshirani, 1993) is a very well known and widely used resampling procedure, 
which is used to estimate the distribution of a test statistic for which the 

sampling distribution is otherwise intractable. We describe below the steps 
involved in computing the boostrap estimates of the P-values when Tni)Tl2 
and Sni,7i2 are used 3S test statistics. 

We transform the covariate X into its quantiles, i.e., we transform the 

data set into 
{(^, Y^)}^ and 

{(?px, *2[i:na])}?i> where Yl[i:ni] 
denotes the concomitant of the i-th order statistic of X for the first 

sample (see e.g., David and Nagaraja, 1998, 2003 and Yang, 1977). 
These transformed covariate for the two samples help us compute the 

weight functions used in the smooth estimation of fractile graphs. 

After transforming the covariate, we obtain the smooth fractile graphs 
for the two populations as explained in Section 2. We compute Tni>Tl2 
and 5ni,n2 fr?m the data. We use the multi-scale approach discussed 

above, and fix bandwidths for the kernel smoother at different values 

for the two samples to carry out our analysis for each chosen pair. 

To test the significance of the observed values of Tnii7l2 and Sni,n2i 
we bootstrap from the joint distribution of (X,Y), i.e., from the joint 
density of the original data sets. We resample data sets from a kernel 

estimate of the joint density of (X, Y). 

One could have bootstrapped from the empirical joint distribution but 

that would result in repetitions of data-points and would distort the 

fractile graphs. This is because the empirical distribution function is 

not continuous. We separately compute the joint densities, using usual 

kernel density estimators, for the two populations as described below 

f^-kikpi^?^)* 
* p2 

where K is a symmetric and bounded kernel. 

For the kernel density estimators, we have to decide on the choice 

of the bandwidth; when standard cross-validation methods were tried 
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out, it did not work well in our numerical investigations. Further, it is 

computationally very expensive. After some empirical investigations, 
we decided to use kernel density estimates with fixed "very small" 

bandwidths for both the variables, namely hx 
= 

c\/n and hy 
= 

c2/n, 
where ci and c2 are the standard deviations of X and Y respectively. 
This "undersmoothed" density estimate leads to a distribution esti 

mate which is very close to the empirical distribution function. How 

ever, the distribution estimate is now continuous and strictly increasing 
- 

something that we need for proper estimates of the fractile graphs. 

We draw two independent bootstrap samples of size n\ and n2 from 

the estimated density of the first population, and let us denote it by 

{{XiuYu)}^ and {(X2i,Y2i)}^v Let f and S be the "error 
area" and "squared difference between the two bootstrapped fractile 

graphs", respectively, computed from those bootstapped samples. Let 

T^ and S^ be defined similarly for the bootstrapped fractile graphs 
obtained from two independent bootstrapped samples drawn from es 

timated density of the second population. These computations are 

repeated N times (in our numerical studies we have used N == 
1000) 

to yield {fM}gv {if >}f=1, {S^l, and {S<2)}f=i 

Note that Tni %7l2 and 5nijn2 measure the difference between the two 

estimated fractile graphs. To test the equality of the fractile graphs 
we compare this observed difference between the fractile graphs (Tni)Tl2 
and Sniin2) with the distribution of the test statistics when the two 

population fractile graphs are actually equal. Thus, under the null 

hypothesis, the observed values of Tni>Tl2 and 5ni,n2 would be compa 

rable to the distributions of T^ and ?ft1) and also that of f^ and 

?K2) respectively. Comparing Tni>n2 and Sni,n2 with the distributions 

of T^ and S^ would be like taking the first population as the null 

hypothesis population. The bootstrap estimates of the P-values for 

this comparison are the proportion of times ?? 
' 

exceeds the observed 

value of TniyTl2 and the proportion of times 
S\ 

exceeds the observed 

value of Snii7l2. Similarly, if the second population is taken as the null 

hypothesis population (i.e., we compare the observed values of the test 

statistics to the distribution of the test statistics obtained from the 

second population), the P-values are computed in the same manner 
"(2) "(2) 

using TI 
} and S\ 

. It is like the centering that is needed in a boot 

strap test to force the null hypothesis to be correct. Note that here for 

each test statistic we get two bootstrap estimates of the P-value. 
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4.3.2. Swap method. In this section, we propose another method that is 

computationally faster than the bootstrap and yields only one P-value for a 

given test-statistic. The steps involved in this procedure are described below. 

Once again, we transform the covariate (i.e., X) into its corresponding 

quantiles. 

After transforming the covariate, we construct the smooth estimates of 

fractile graphs and compute the statistics Tnx<n2 and 5ni,n2. Here also 

we have used the multi-scale analysis. We fix the kernel bandwidths 

at different values for both the populations and carry out our analysis 

separately for each pair of bandwidths chosen for the two populations 
as before. 

Assume next that n\ = n2. To test the significance of observed values 

of Tnif7l2 and 5ni)Tl2, we resample a pair of data sets from the original 
transformed data sets in the following way. We swap (or interchange) 
the i-th ranked data point (i.e., the data point (^^iiY^.^)) ?f the 
first population with the i-th ranked data point of the second pop 

ulation (i.e., the data point (^^^,^2(1:712])) w^h probability 0.5 and 

keep it unchanged with probability 0.5. This mixes the two data sets 

accordingly. Using the resampled data sets we re-calculate the fractile 

graphs and the corresponding test statistics. 

When n\ ^ n2, the i-th ranked data points for the two samples might 
not correspond to the same sample quantile. In this case, one can 

interpolate between covariate quantiles along with the corresponding 

y-values before carrying out the swap operation. 

The swap operation leads to resampled data sets,i.e., {(X[*\ Y?* )}?__ 

and {PQ* >Y?* )} lv These resampled data sets are used to com 

pute T* = the "resampled separation area" and 5* = the "resampled 

squared difference between resampled fractile graphs". 

We repeat the entire procedure N times as in the case of bootstrap 

(here also we use N = 1000 for our numerical studies) to get {7^*}i__i 
and {S*}?LV Finally the P-values corresponding to the two test statis 

tics are obtained as the proportion of times T* exceeds the observed 

value of Tniin2 and the proportion of times 5* exceeds the observed 

value of Sniyn2. 
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5 Data Analysis 

In the first part of this section we illustrate the performance of the testing 

procedures on synthetic data. We analyze some data collected from the 

Reserve Bank of India in the second part of the section. 

As mentioned earlier, we use the multi-scale approach to test signifi 
cant difference in a pair of smooth estimates of fractile graphs. We plot 
the P-values obtained from the multiple tests against the choice of the two 

bandwidths of the kernel smoothed fractile graphs for the two populations. 
This gives us a two-dimensional plot over a rectangle (please see Figures 5, 7 

and 9), where high P-values correspond to white regions and low P-values 

correspond to dark regions. We draw inference about the two populations 
based on the grey-scale plots obtained by the above procedure. We have 

used the Nadaraya-Watson type weight function with the standard normal 

kernel in all the examples considered below. We have taken a broad range 
of bandwidths for the grey-scale plots varying from 0.01 to 0.40. The min 

imum bandwidth is chosen so that at least two data-points have' significant 
contributions in the estimated fractile graph at each point. The maximum 

value of the bandwidth is chosen in such a manner that all the data-points 
have some contribution in the estimate at each point. These values can be 

computed using the fact that the standard normal kernel is practically zero 

outside (?3,3). 

The two methodologies considered by us for comparison of the fractile graphs 
are : 

1. Resample from the joint density of (X,Y) (bootstrap method) and 

2. Swap the response for the same fractile value (swap method). 

5.1. Evaluation of the resampling based tests using synthetic data. In this 

section we present a small-scale simulation study of the multi-scale analysis 
to investigate the P-values in cases when the null hypothesis is true and also 

when the null hypothesis is false. The examples illustrate the small sample 
behaviour of the resampling methods. Throughout the entire section we work 

with two samples from two populations with sample sizes n\ = n2 ? 100. 

We have used /(= 500 or 1000) iterations to compute the P-values. We plot 
the grey-scale images of the P-values computed using the test statistics (i) 

T (absolute difference) and (ii) 5 (squared difference between the fractile 

graphs) separately. 
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Example 1. We generate two samples, each of size 100, from the popu 

lation y 
? 1.0 + x + e where e ~ 

N(0,0.09) and x ~ 
Exp(l). The covariate 

for the second sample is then squared. This gives us the two samples for 

comparison. Thus, the population fractile graphs are the same for both the 

populations. We replicate this generation method 10 times and plot the 

average P-value for each pair of bandwidth in the following grey-scale plots 

(see Figure 2). The P-values are quite high varying mostly between 0.35 

and 0.70 for the bootstrap method and between 0.15 and 0.60 for the swap 

method. 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

Figure 2. Grey-scale images of the P-values for Example 1, where in each frame 

the bandwidths corresponding to the first sample are plotted along the horizontal 

axis, and those corresponding to the second sample are plotted along the vertical 

axis. The top and the bottom rows correspond to the test statistics Tni>n2 and 

Snun2 respectively. The first two columns are images of bootstrapped P-values 

obtained by using the first and second population as the null hypothesis populations, 

respectively. The third column gives images of P-values obtained by the swap 

method. 
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Example 2. In this example, we generate samples from different models. 

The first sample is generated from the population y 
= 1.0 + x-fe where 

e ~ 
N(0,0.09) and x ~ 

Exp(l). The second sample is from the population 

y = 1.3 + x + e where e ~ 
N(0,0.09) and a: ~ 

i^x^l). The covariate 

for the second sample is again squared. The fractile graphs for the two 

populations are different. As in the previous example, we replicate this 

generation method 10 times and plot the average P-value for each pair of 

bandwidth in Figure 3. The P-values are very close to zero, mostly ranging 

from 0.00 to 0.15 for the bootstrap method and from 0.00 to 0.10 for the 

swap method. 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

Figure 3. Grey-scale images of the P-values for Example 2, where in each frame 

the bandwidths corresponding to the first sample are plotted along the horizontal 

axis, and those corresponding to the second sample are plotted along the vertical 

axis. The top and the bottom rows correspond to the test statistics Tni)n2 and 

Snun2 respectively. The first two columns are images of bootstrapped P-values 

obtained by using the first and second population as the null hypothesis populations, 

respectively. The third column gives images of P-values obtained by the swap 

method. 
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5.2. Some real data illustrations. 

Example 3. Credit-Deposit Ratio vs. Total Deposit. We obtained the 

data from "Basic Statistical Report of the Scheduled Commercial Banks in 

India" published annually by the Reserve Bank of India (refer to the link 

"Basic Statistical Report of the Scheduled Commercial Banks in India" at 

the website http://www.rbi.org.in). We collected statewise data from the 32 

states in India (excluding Jharkhand, Chattisgarh, and Uttaranchal) for all 

Scheduled Commercial Banks in India on Credit-Deposit Ratio and Total 

Deposit for the years 1996 and 2002. We regress Y = 
Credit-Deposit Ratio 

= Total Credit/Total Deposit on X ? Total Deposit. Among the states, 
there are wide fluctuations in the value of Y in each year. In most years, 
the ratio Y varies from 0.2 to 1.4. The fractile graphs for the two samples 

corresponding to the years 1996 and 2002 are shown in Figure 4. The grey 
scale plots for the comparison of the fractile graphs for the two samples are 

presented in Figure 5. The P-values are quite high, and they mostly vary 

between 0.65 to 0.95 indicating no statistically significant change from 1996 

to 2002. 

> 1 

Figure 4. Smooth fractile graphs along with scatter plots for Credit-Deposit Ratio 

and Total Deposit for the years 1996 and 2002 using optimum least squares cross 

validation bandwidth (0.16 and 0.20 respectively). 
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0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

Figure 5. Grey-scale images of the P-values for Example 3 for comparing years 

1996 with 2002, where in each frame the bandwidths corresponding to the estimate 

for the year 1996 are plotted along the horizontal axis, and those corresponding to 

the estimate for the year 2002 are plotted along the vertical axis. The top and the 

bottom rows correspond to the test statistics Tni)Tl2 and Snifn2 respectively. The 

first two columns are images of bootstrapped P-values obtained by using the years 

1996 and 2002 as the null hypothesis populations, respectively. The third column 

gives images of P-values obtained by the swap method. 

Example 4. Profit-to-Sales Ratio vs. Sales. The Reserve Bank of 

India also maintains data on the annual abridged financial results of non 

government, non-financial public limited companies over different years. The 

data consists of Sales and Profit-to-Sales, among many other variables re 

lated to the companies. The Reserve Bank of India is interested in comparing 
the performance and profitability of the companies of different sizes, over the 

years. An appropriate size measure can be Sales (in 10000 rupees). In this 

example, we regress Y = ratio of Profit-to-Sales = 
Profit/Sales against 

X ? Sales. We first studied data for the years 1997 and 2003. The sample 
sizes for the years 1997 and 2003 are 945 and 1267 respectively. Over the 
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years, the Profit-to-Sales ratio has decreased. The fractile graphs for the two 

samples corresponding to the years 1997 and 2003 are shown in Figure 6. 

The least squares cross validated optimal bandwidth for the year 1997 is 

quite small which would make the smooth fractile graph very wiggled. Thus 

we use similar bandwidths (the bandwidth chosen was the least squares op 

timal bandwidth for the fractile graph for year 2003) for constructing both 
the fractile graphs. Grey-scale plots similar to those presented for Example 
3 are also given. The P-values for the pairwise comparison of the smooth 

estimated fractile graphs for the years 1997 and 2003 are plotted in Figure 7. 

The P-values are almost always zero or very close to zero, giving rise to com 

pletely black images. This fact indicates significant changes from 1997 to 

2003. 

0.16r 
___. 

n r 

0.14h 

0.12h 

0.08 [ 

0.06 h 

0.04 h 

0.02 r 

-0.02 L 

0 0.1 0.2 0.3 

_i_i_i_i_i_i_ 

0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 6. Smooth fractile graphs for Profit-to-Sales Ratio and Sales for the years 

1997 and 2003 using same bandwidth (0.069 in both cases). 
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0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

Figure 7. Grey-scale images of the P-values for Example 4 for comparing years 

1997 with 2003, where in each frame the bandwidths corresponding to the estimate 

for the year 1997.are plotted along the horizontal axis, and those corresponding to 

the estimate for the year 2003 are plotted along the vertical axis. The top and the 

bottom rows correspond to the test statistics Tni>n2 and 5ni,n2 respectively. The 

first two columns are images of bootstrapped P-values obtained by using the years 

1997 and 2003 as the null hypothesis populations, respectively. The third column 

gives images of P-values obtained by the swap method. 

As we have observed significantly small P-values for almost all choices of 

bandwidth pairs indicating significant change in the fractile graphs from 1997 

to 2003, we decided to compare two consecutive recent years namely 2002 and 

2003. The fractile graphs for the two samples are shown in Figure 8. Here 

again we observe that the optimal bandwidth for year 1997 is quite small and 

hence we use similar bandwidths for constructing both the fractile graphs. 
The P-value grey-scale plots are provided in Figure 9. In this case the P 

values generally vary between 0.20 to 0.70. The minimum P-value observed 

is around 0.10 while the maximum is around 0.9. This is an indication that 

there has possibly been some changes from the year 2002 and 2003 but the 

evidence is statistically not very strong. 
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0.121-1-1-1--i-r -i-1-1? 

0.1 

0.08 h 

0.06 h 

0.04 h 

0.02 h 

-0.02 L _J_I_I_L_ _1_I_I_L_ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 8. Smooth fractile graphs for Profit-to-Sales Ratio and Sales for the years 

2002 and 2003 using same bandwidth (0.069 in both cases). 

6 Proofs 

Proof of Theorem 3.1. We consider our data set as {(?/*, l^)}^, 
where U% = 

F(Xi) is the transformed covariate. As the [/?'s are not observed, 
we estimate them by Fn(X?)'s and the weight functions depend on Fn(X?)'s. 
Note that the conditional MSE given the [/?'s can be decomposed as 

E{mn(t) 
- 

m(t))}2 = E{mn(t) 
- 

E(mn(t))}2 + {E(mn(t)) 
- 

m(t)}2. (9) 

Now, the conditional variance term can be simplified as 

E{mn(t)-E(mn(t))}2 

= 
E?^(Yi-E(Yi\Ui))Wn4t,hn)\ 

n n 

= 
EE Y,(Yi 

- 
E(Yi\Ui))}{Yj 

- 
EiYjPjftWn^t,hn)Wnd(t,hn) 

?=i j=i 
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0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 0.10 0.20 0.30 0.40 

Figure 9. Grey-scale images of the P-values for Example 4 for comparing years 

2002 with 2003, where in each frame the bandwidths corresponding to the estimate 

for the year 2002 are plotted along the horizontal axis, and those corresponding to 

the estimate for the year 2003 are plotted along the vertical axis. The top and the 

bottom rows correspond to the test statistics T?1)n2 and 5ni,n2 respectively. The 

first two columns are images of bootstrapped P-values obtained by using the years 

2002 and 2003 as the null hypothesis populations, respectively. The third column 

gives images of P-values obtained by the swap method. 

= 
f^EiYi-EOrWtfWhfrhn) 

1=1 

n 

< 
K0^2 W*ti(t,hn) 

? 0 by assumption (Dl) and (Wl). 
i=l 

To show that the conditional bias goes to 0 almost surely, let e > 0 be given. 

E(mn(t)) 
- 

m(t) 
= 

E{Yi\Ui)Wn?{t,hn)-m{t) 

= 
^{E(Yi\Ui) 

- 
m(t)}Wn,i(t, hn) + m(t) 

j ? Wn,i(t, hn) - 11. 
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n 

L 
?=1 

< 

Note that the second term on the R.H.S goes to 0 by assumption (W2). 
Given 437 > 0, 3 A > 0 and N N such that 

n 

Yl\Wn.i(t,hn)\l^t-fMxt^^ 
< 
? 

Vn > No 

by (W3). Now, 

n I 

^{EiYilUi) 
- 

m(t)}Wnyi(t, hn) 
j 

n I 

J^{m(C/i) 
- 

m(t)}Wn?(t, ftw)lf?t-FnW)i<Ai 
*=i il hn l~ /| 

n 

^{m(C/i)~m(t)}Wn<i(t,/in)lfu-Fn(x,)i ?i 
?=1 II ^n I ; 

n I 

+e/2 V n > iV0 by assumption (W3) 
n 

< 
J2 lm^) 

- 
(*)ll^n,?(t, J*n)jl nt-FnWU?i + c/2 V n > Ap. (10) 

i=l il fcn h / 

Let Dn = 
suptGR|Fn(i) 

- 
F(t)\ where F is the distribution function 

of X\ and Fn is the empirical distribution function based on observations 

Xx,X2,...,Xn. Note that Dn > 
|F(X(i)) 

- 
Fn(X(i))| 

= 
|tf(i) 

- 
^|. By 

Glivenko Theorem, we know that Dn ?> 0 almost surely. Let D be the 

event {Dn 
? 

0}. Note that P(D) 
= 1. Let us restrict to this event by 

intersecting other events with D. 

+ 

< 

Now, observe that t-i/(n+l) 
hn 

< A and \U{i) 
- 
^| 

< Dn => \U{i) -t\< 

Ahn + Dn. As ra(-) is continuous, there exists <S > 0 such that \U^) ?t\<5 
implies \m(U{i)) 

- 
m(t)\ < e/2C, where ?"=i \Wn,i(t,hn)\ < C V n > 1 

by (W4). On the set D, 3 Ni N such that n > Ni => Ahn + Dn < 

5. Thus, on the set D V n > Nit we have |m(?/?) 
- 

m(t)\ < e/2C =? 

E?=iM^<) 
- 

rn{t)\\Wn,i{t,hn)\ln^F^^ 
< e/2. Therefore, on the 

set D, V n > max{iVi,iVo}, we have from equation (10), | YZ=iiE(Yi\ui) 
~ 

m(t)}Wn;i(t,hn)\ < t. This proves that | YZ=i{m(Ui)-m(t)}Wn!?(t,hn)\ 
?-? 

0 almost surely. 
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Now, using Chebyshev's inequality, we have 

P(\rhn(t)-m(t)\ > e\UuU2,...,Un) 

E({mn(t)-m(t)}2\UuU2,...,Un) < 0 as n 
? 

oo. 

This implies that rhn(t) 
?> 

m(t) as n ?> oo. 

Proof of Corollary 3.2. Let us first observe that 

i?Jf(!_?__)_/,i *(*?_)_ n/ln 
~ 

\ Aln J Jo hn \ hn J 

n/l"e? \ hn ) jriJ(i-l)/nhn \ K J 

where Sj is between 

??M1 

?-1 
and 

? 
Vz = 

1,2,... , n 
n n 

n+l 

/ir. 

?- Si 
where ?? is between 

? and ?? V ? = 
1,2,..., n 

< ?Y r>7)? ??' 
i=l n/in ^ 

5* n+l 

h? 

hn 

\K%)\ 

hn 

Assuming (Cl) and (K2), and using (12), we now have 

_1 
nh '" ?? V ^n / Jo K \ hn ) \nhlJ 

(H) 

D 

(12) 

Thus, we have ??= i 
?-x(?^_ii) 

_> 
?? ?#(?)_s 

= 1 as n - oo. 

On the other hand, if we assume (Cl) and (Kl), we have 

>?*(!_?__) 
= 

f1 >*(?? )_ +o^) n,ln e? V hn J Jo hn \ hn J nhn 

using the fact that K'{?j) 
= 0 if |&| > M0 and there are 0(nhn) nonzero 

terms in the sum in (12). 
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For the Nadaraya-Watson type estimator (W2) and (W4) are trivially 
true, while (Wl) can be easily verified. Note also that for a kernel with 

compact support, (W3) is trivially satisfied. To verify (W3) for kernels with 

support on the entire real line, observe that 

K(t-Fn(Xj)\ 
1 

K(t~Fn(Xj)\ 
W a h ) -_^_^_L- - nhn \ hn ' ?-12 

' 
n n?'K) 

_?*(*=%<*>) su?*HP)'-1'2"-" 
where the denominator converges to 1. Using the fact that K integrates to 

1, the tail integral converges to 0, which implies (W3). 
Next consider the Priestley-Chao type estimator. Here (Wl) follows 

trivially, and Equation (12) provides the proof of (W2) and (W3). Further, 

(W4) follows from that fact that a convergent sequence must be bounded. 

In the case of Gasser-Muller type estimator, (W2) and (W4) are trivially 
true as in the case of Nadar aya-Watson type estimator. It is also easy to 

prove (Wl) for this estimator. The verification of (W3) follows essentially the 
same lines of arguments as in the case of Nadar aya-Watson type estimator. 

Finally, for the proof of the consistency of the local linear type estima 

tor, see the arguments in Wand and Jones (1995) pp. 120-122 for the fixed 

equally spaced design model. The proof of our result follows from essentially 
same arguments. D 

Proof of Theorem 3.3. Note that, 

n 

mn(t)-m(t) = 
Y^W^?t^){rn(F(Xi)) + ei}-m(t) 

i=i 

n 

= 
? W"?*> K){m(F(Xi)) 

- 
m(t)} 

i=i 

( n \ n 

+ 
{ J2 Wn?*, hn)-l\ m(t) + ]T Wn?{t, hn)ei 

.i=i ; ?=i 

To find the limiting distribution of X^=i Wn?(t)hn)ei let us define Zn? 
= 

Wnj(i)(?,/in)e? 
for i = 

1,2,...,n, where 
Wn^(t,hn) corresponds to the 

weight for the ?th order-statistic of the X's. Let Sn 
= 

Ya=i Zn?- Note 

that 
W7lj(?)(?, hn) is just a constant which does not depend on the X's. Also 

notice that Sn 
= 

Ya=i Wn,i(t, hn)ci due to the independence of the X's and 

the e's (as we can re-arrange the e's). We use the Lindeberg-Feller Central 

Limit Theorem to find the asymptotic distribution of Sn. 
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Note that E{Zn?) 
= 0 and 

o*? 
= 

Var{Zn,i) 
= 

cr2W^{i){t,hn). 
Let 

4 
= 

??=i <i 
= *2 ??=i W* 

(i)(t, An). For any r? > 0, 

? ? I ,> Zli dP = 
? ? / : ,.-?* ^(?'/ln) ? dP 

i=1 *n J\Zn,i\>VSn i=1 *n 
/^i>vva^ 

," > 

w,?,(4)(,,h?> 

,-=1 Sn J?> 

< 

?=l 

-? 

^ * 
max1<?<n 

W?(?)(t,h?) 

f> 
?2.2 q dP ?> 0 as n ?> oo 

1 
?"?l^n^i^n) 

0 as n 
? 

oo. 

by (W3). Therefore by the Lindeberg-Feller Central Limit Theorem we have 

^X^l^Mn) 
Also observe that we have by (Wl) 

{TZ=iWn,i(t,hn)-l}m(t) 

Next, we split ??=1 Wnti(t,hn){m(F(Xi)) 
- 

m(t)} as ?tn=1 Wn<i(t, hn) 
{m(F(Xi)) 

- 
m(Fn(Xi))} + ??=1 Tyn,i(i,/in){m(Fn(Xi)) 

- 
m(i)} and deal 

with the two terms separately. To simplify notations, let An = 
{i : |'~ p *'| 

< j4}. We simplify the first term as 

Eti WnAt, hn){m(Fn(Xi)) 
- 

m(F(Xj))} 

< K 
$>up|Fn(t)-F(t)P 

"V^A."* 

< ?Ay/2(n + l)/ij/2 sup |F?(?) 
- 

F(?)| -?-? 0 as n -? oo. 
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The second term can be simplified as 

E?=i Wn,j(t, K){m(Fn(Xj)) 
- 

m(t)} 

Ei64? Wn,i(?,/in)m'(Ci)(Fn(Xi) -1) 

^v5^(?) 
where & is between Fn(X{) and t 

y 
? A? y ?e>in 

< ??y^fa + 1)^/2 
? 0 as n -* oo 

(7 

by Cauchy-Schwaxz inequality, (WA) and noting that \{i : 
|*~F?Xi)| 

< A}| < 

2(n + l)^4/in. Combining all the three terms we have the required result. D 

Proof of Corollary 3.4- As we have a compact kernel, (W2) is satisfied by 
taking A = Mo. Also (W4) holds by the assumption of the theorem. For the 

Nadaraya-Watson type estimator, (Wl) holds trivially as ]C*L_Wn,i(i> hn)=l, 
V n. Note that LHS of (W3) is ?ILi K2{^'F?Xi))/maxi<?<n _Y2(?z%p1) 
which goes to infinity as n ?> oo (since the kernel has a nonzero neighbour 
hood around 0 within which there will be infinitely many points as n ?? 

oo). 
For the Gasser-Muller type weight function, (Wl) holds as Ya=i Wn?(t, 

hn) 
= 

fJi)/h K(u)du 
= 1 for large n (hn should be small enough). (W3) 

holds because of similar reasons as above. D 

Acknowledgements. I am greatly indebted to my teacher, Proba! Chaud 

huri, whose guidance has been of invaluable help in developing the ideas 

presented here. I am grateful to Samsiddhi Bhattacharjee, Roger Koenker, 

Jayanta Kumar Pal, Dipankar Coondoo, Debasis Sengupta and the two ref 

erees for their helpful comments and suggestions. I would also like to thank 

A.K. Nag and the Reserve Bank of India for the data sets they provided. 

References 

Bhattacharya, P.K. and M?ller, H,G. (1993). Asymptotics for nonparametric re 

gression. Sankhi? Ser. A, 53, 420-441. 

Chaudhuri, P. and Marron, J.S. (1999). SiZer for exploration of structures in curves. 

J. Amer. Statist. Assoc, 94, 807-823. 



Estimation and comparison of fractile graphs 333 

Chaudhuri, P. and Marron, J.S. (2000). Scale space view of curve estimation. Ann. 

Statist, 28, 408-428. 

David, H.A. and Nagaraja, H.N. (1998). Concomitants of order statistics. In Hand 

book of Statistics 16, Order Statistics: Thoery and Methods, N. Balakrishnan and 
C.R. Rao, eds., 487-513, Elsevier, Amsterdam. 

David, H.A. and Nagaraja, H.N. (2003). Order Statistics (3rd edition), Wiley, New 
York. 

Delgado, M.A. (1993). Testing the equality of nonparametric regression curves. Statist. 

Probab. Lett, 17, 199-204. 

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman 
and Hall, New York. 

Fan, J. and GlJBELS, I. (1996). Local Polynomial Modeling and Its Application. Chap 
man and Hall, London. 

Hall, P. and Hart, J.D. (1990). Bootstrap test for difference between means in non 

parametric regression. J. Amer. Statist Assoc, 85, 1039-1049. 

Hall, P. (1992). The Bootstrap and Edgeworth Eocpansion. Springer-Verlag, New York. 

Hall, P. and Huber, C. and Speckman, P.L. (1997). Covariate-matched one-sided 

tests for the difference between functional means. J. Amer. Statist. Assoc, 92, 

1074-1083. 

H?rdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, 
Cambridge. 

H?rdle, W. and Marron, J.S. (1990). Semipararnetric comparsion of regression curves. 

Ann. Statist, 18, 63-89. 

King, E.C., Hart, J.D. and Wehrly, T.E. (1991). Testing the equality of two regres 

sion curves using linear smoothers. Statist. Probab. Lett, 12, 239-247. 

KULSEKERA, K.B. (1995). Comparison of regresi?n curves using quasi residuals. J. 

Amer. Statist Assoc, 90, 1085-1093. 

Kulsekera, K.B. and Wang, J. (1997). Smoothing parameter selection for power 

optimality in testing of regression curves. J. Amer. Statist Assoc, 92, 500-511. 

Mahalanobis, P.C. (1960). A method for fractile graphical analysis. Econometrica, 
28, 325-351. 

Mahalanobis, P.C. (1988). Fractile Graphical Analysis, P.K. B?se, ed., Statistical 

Publishing Society, Calcutta. 

MlTROFANOVA, N.M. (1961). On some problems of fractile graphical analysis. Sankhy? 
Ser. A, 23, 145-154. 

M?LLER, H.G. (1988). Nonparametric Regression Analysis of Longitudinal Data. Springer 

Verlag, Berlin. 

Munk, A. and Dette, H. (1998). Nonparametric comparison of several regression func 

tions: exact and asymptotic theory. Ann. Statist, 26, 2339-2368. 

Nadaraya, E.A. (1964). On estimating regression. Theor. Probability Appl, 9* 141-142. 

Neumeyer, N. and Dette, H. (2003). Nonparametric comparison of regression curves: 

an empirical process approach. Ann. Statist, 31, 880-920. 

Parthasarathy, K.R. and Bhattacharyya, P.K. (1961). Some limit theorems in 

regression theory. Sankhy? Ser. A, 23, 91-102. 

PRIESTLEY, M.B. and Chao, M.T. (1972). Nonparametric function fitting. J. Roy. 

Statist Soc Ser. B, 34, 385-392. 



334 Bodhisattva Sen 

Rice, J.A. (1984). Bandwidth choice for nonparametric regression. Ann. Statist, 12, 

1215-1230. 

Sethuraman, J. (1961). Some limit distributions connected with fractile graphical 
analysis. Sankhy? Ser. A, 23, 79-90. 

Simonoff, J.S. (1996). Smoothing Methods in Statistics. Springer-Verlag, New York. 

Stone, C.J. (1977). Consistent nonparametric regression. Ann. Statist, 5, 505-545. 

Takeuchi, K. (1961). On some properties of error area in the fractile graph method. 

Sankhy? Ser. A, 23, 65-78. 

Wand, M.P. and JONES, M.C. (1995). Kernel Smoothing. Chapman and Hall, London. 

Watson, C.S. (1964). Smooth regression analysis. Sankhy? Ser. A, 26, 359-372. 

Yang, S.S (1977). General distribution theory of the concomitants of order statistics. 

Ann. Statist, 5, 996-1002. 

Young, S.G. and Bowman, A.W. (1995). Nonparametric analysis of covariance. Bio 

metrics, 51, 920-931. 

bodhisattva sen 

Statistics Department 

University of Michigan 
Ann Arbor, MI 48109-1092 
E-mail: bodhi@umich.edu 

Paper received: August 2004; revised May 2005. 


	Article Contents
	p. [305]
	p. 306
	p. 307
	p. 308
	p. 309
	p. 310
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318
	p. 319
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332
	p. 333
	p. 334

	Issue Table of Contents
	Sankhy: The Indian Journal of Statistics (2003-), Vol. 67, No. 2, Quantile Regression and Related Methods (May, 2005), pp. i-ix, 153-440
	Front Matter
	Foreword [p. vii-vii]
	Preface [p. ix-ix]
	Regression Modelling
	Quantile Regression in Transformation Models [pp. 153-186]
	Isotonic Quantile Regression: Asymptotics and Bootstrap [pp. 187-199]
	Bootstrap in Detection of Changes in Linear Regression [pp. 200-226]
	Two-Step Regression Quantiles [pp. 227-252]
	Subsampling Inference on Quantile Regression Processes [pp. 253-276]

	Related Methods
	How to Combine M-Estimators to Estimate Quantiles and a Score Function [pp. 277-294]
	Quantile Estimation from Ranked Set Sampling Data [pp. 295-304]
	Estimation and Comparison of Fractile Graphs Using Kernel Smoothing Techniques [pp. 305-334]
	The Glejser Test and the Median Regression [pp. 335-358]

	Applications
	Bayesian Quantile Regression: An Application to the Wage Distribution in 1990s Britain [pp. 359-377]
	Conditional Quantiles for Dependent Functional Data with Application to the Climatic "El Niño" Phenomenon [pp. 378-398]

	Computational Issues
	Computational Issues for Quantile Regression [pp. 399-417]
	Inequality Constrained Quantile Regression [pp. 418-440]

	Back Matter



