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SUMMARY

We introduce a method based on a pseudolikelihood ratio for estimating the distribution
function of the survival time in a mixed-case interval censoring model. In a mixed-case
model, an individual is observed a random number of times, and at each time it is recorded
whether an event has happened or not. One seeks to estimate the distribution of time
to event. We use a Poisson process as the basis of a likelihood function to construct
a pseudolikelihood ratio statistic for testing the value of the distribution function at a
fixed point, and show that this converges under the null hypothesis to a known limit
distribution, that can be expressed as a functional of different convex minorants of a
two-sided Brownian motion process with parabolic drift. Construction of confidence sets
then proceeds by standard inversion. The computation of the confidence sets is simple,
requiring the use of the pool-adjacent-violators algorithm or a standard isotonic regression
algorithm. We also illustrate the superiority of the proposed method over competitors based
on resampling techniques or on the limit distribution of the maximum pseudolikelihood
estimator, through simulation studies, and illustrate the different methods on a dataset
involving time to HIV seroconversion in a group of haemophiliacs.

Some key words: Greatest convex minorant; Haemophilia data; Mixed-case interval censoring; Panel count
data; Pseudolikelihood.

1. INTRODUCTION

In the mixed-case interval censoring model each individual is followed up at the clinic for
a number of times, where this number and the times of inspection themselves can vary from
individual to individual. It is determined between which two successive observation times
the individual succumbed to infection/illness. It is of course possible that infection/illness
may not occur by the last follow-up time. The term ‘mixed-case’ is used to indicate that the
number of inspection times is patient-specific, and was first used by Schick & Yu (2000).
Our interest lies in constructing confidence sets for F , the distribution of the random time
to infection/illness.

The simplest form of mixed-case censoring is current status data, where the number of
observation times on each patient is exactly one; see for example Groeneboom & Wellner
(1992), Jewell & van der Laan (1995), Shiboski (1998), Banerjee & Wellner (2001, 2005) and
Jewell et al. (2003). In this model, the distribution of the indicator of time to infection/illness,
conditional on the single inspection time, is a Bernoulli random variable, and this makes
likelihood inference easy. Banerjee & Wellner (2001) showed that the likelihood-ratio
statistic for testing a pointwise hypothesis of the type H0 : F(t0) = θ0, for some prespecified
point t0, is asymptotically pivotal under H0. This immediately provides a way of constructing
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pointwise confidence bands for F by standard inversion of the likelihood-ratio statistic,
with the critical values determined by the quantiles of the limiting pivotal distribution.
While this result is, in principle, generalizable to mixed-case interval censoring, dealing with
the likelihood function in the mixed-case model is considerably more difficult, at both a
theoretical and a computational level. Only partial results, in fairly restrictive settings, exist
thus far, about the limiting behaviour of the nonparametric maximum likelihood estimator;
consequently, the limiting behaviour of the likelihood-ratio statistic for testing a pointwise
null hypothesis is not tractable either. See for example, Groeneboom (1996), where the
asymptotics of the behaviour of the nonparametric maximum likelihood estimator of F

in a particular version of the Case 2 censoring model is established, and Song (2004),
where estimation procedures for mixed-case censoring models and associated issues are
presented.

The nonparametric maximum likelihood estimator and likelihood-ratio statistic for
current status data are readily computable using appropriately modified versions of the
pool-adjacent-violators algorithm (Robertson et al., 1988). The computations are based
on explicit representations of the maximum likelihood estimates in terms of the given data
and do not involve iterative schemes. However, maximization of the likelihood function
in the mixed-case setting is much more complex and requires sophisticated optimization
techniques. The EM algorithm can be employed but is extremely slow (Jongbloed, 1998);
a faster algorithm is the modified iterative convex minorant algorithm of Jongbloed
(1998), based on the Kuhn–Tucker conditions associated with the maximization problem.
However, both methods involve iterating till convergence, and can therefore be quite slow.
Alternative methods for computing nonparametric maximum likelihood estimators and
likelihood-ratio-based intervals for interval censored data have been developed by Vandal
et al. (2005) using graph-theoretic representations of the unconstrained and constrained
estimators. These involve reduction techniques as well as versions of the EM algorithm
and the vertex exchange method. It is not known how these methods compare to the
modified iterative convex minorant algorithm in terms of speed. Finally, even if one obtains
likelihood-ratio-based intervals using methods of the type discussed above, it is not clear
how to calibrate them, since concrete inferential results for the likelihood ratio do not exist,
though conjectures do.

Our approach is to think of mixed-case interval censored data as data on a one-
jump counting process with counts available only at the inspection times and to use
a pseudolikelihood function based on the marginal likelihood of a Poisson process
to construct a pseudolikelihood-ratio statistic for testing null hypotheses of the form
H0 : F(t0) = θ0. We show that under such a null hypothesis the statistic converges to
a pivotal quantity. This result can now be used to construct confidence intervals for
F(t0). The pseudolikelihood method that we adopt is based on an estimator originally
proposed by Sun & Kalbfleisch (1995) whose asymptotic properties, under appropriate
regularity conditions, were studied in Wellner & Zhang (2000). Indeed, our key result
in § 2 draws freely on the work of Wellner & Zhang (2000) and our point of view here,
the fact that the interval censoring situation can be thought of as a one-jump counting
process to which, consequently, the results on the pseudolikelihood-based estimators can be
applied, is motivated by their work. That said, our likelihood-ratio approach for computing
confidence intervals has major advantages over the Wald-type intervals that can be derived
from their work.

We now introduce the stochastic processes and derived functionals that are needed
to describe the asymptotic distributions. For a real-valued function f defined on R, let
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slogcm(f, I ) denote the left-hand slope of the greatest convex minorant of the restriction
of f to the interval I . We abbreviate slogcm(f, R) to slogcm(f ). Also define

slogcm0(f ) = {slogcm (f, (−∞, 0]) ∧ 0} 1(−∞,0] + [slogcm {f, (0,∞)} ∨ 0]1(0,∞) .

For positive constants c and d define the process Xc,d(z) = c W(z) + dz2, where W(z)

is standard two-sided Brownian motion starting from 0. Set gc,d = slogcm(Xc,d) and
g0

c,d = slogcm0 (Xc,d). It is known that gc,d is a piecewise-constant increasing function, with
finitely many jumps in any compact interval. The function g0

c,d has the same characteristics
and differs, almost surely, from gc,d on a finite interval containing 0. In fact, with probability
1, g0

c,d is identically 0 in some random neighbourhood of 0, whereas gc,d is almost surely
nonzero in some random neighbourhood of 0. Also, the length of the interval Dc,d on which
gc,d and g0

c,d differ is Op(1). For more detailed descriptions of the processes gc,d and g0
c,d ,

see Banerjee and Wellner (2001), Wellner (2003) and M. Banerjee’s unpublished 2000 Ph.D.
thesis from the University of Washington. Thus, g1,1 and g0

1,1 are the unconstrained and
constrained versions of the slope processes associated with the canonical process X1,1(z).
By Brownian scaling, the slope processes gc,d and g0

c,d can be related in distribution to the
canonical slope processes g1,1 and g0

1,1. This leads to the following lemma.

LEMMA 1. For positive a and b, set

Da,b =
∫ [{ga,b(u)}2 − {g0

a,b(u)}2] du

and abbreviate D1,1 to D. Then Da,b has the same distribution as a2
D.

This is proved in Chapter 3 of M. Banerjee’s thesis; alternatively, see Banerjee and
Wellner (2001).

2. A PSEUDOLIKELIHOOD METHOD FOR ANALYZING MIXED-CASE INTERVAL
CENSORED DATA

We describe our method more broadly in the context of a counting process and then
specialize to the interval censoring situation. Suppose that N = {N(t) : t � 0} is a counting
process with mean function E N(t) = �(t), K is an integer-valued random variable and
T = {Tk,j , j = 1,. . . , k, k = 1, 2,. . .} is a triangular array of potential observation times.
It is assumed that N and (K, T ) are independent, that K and T are independent and that
Tk,j−1 � Tk,j , for j = 1,. . . , k, for every k; we interpret Tk,0 as 0. Let X = (NK, TK,K)

be the observed random vector for an individual. Here K is the number of times that
the individual was observed during a study, TK,1 � TK,2 � · · · � TK,K are the times when
they were observed and NK = {NK,j ≡ N(TK,j )}Kj=1 are the observed counts at those times.
The above scenario specializes easily to the mixed-case interval censoring model, when the
counting process is N(t) = 1(S � t), S being a positive random variable with distribution
function F and independent of (T ,K).

Suppose that we have data on n individuals; thus, we observe n independent
and identically distributed copies of X, say X = (X1,X2,. . . , Xn) where Xi =
(N

(i)
Ki

, T
(i)
Ki

,Ki), for i = 1,. . . , n. We are interested in estimating the mean function �(t) at
a prespecified point of interest t0.

Based on our data, we can construct a pseudolikelihood estimator, in the following
manner. Pretend that the process N(t) is a nonhomogeneous Poisson process. Then the
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marginal distribution of N(t) is

pr {N(t) = k} = exp {−�(t)} �k(t)

k!
, (k = 0, 1, 2,. . . ).

Note that, under the Poisson process assumption, the successive counts on an individual
(NK,1,NK,2,. . . ), conditional on the TK,j ’s, are actually dependent. However, we choose
to ignore the dependence in writing down a likelihood function for the data, conditional
on the T (i)’s and the Ki ’s. These do not involve � and hence will not contribute to the
estimation procedure. Our likelihood function is

Lps
n (� | X ) =

n∏
i=1

Ki∏
j=1

exp{−�(T
(i)
Ki,j

)} �(T
(i)
Ki ,j

)
N

(i)
Ki ,j

N
(i)
Ki,j

!
.

Thus, the loglikelihood function, up to an additive constant not depending upon the
parameter, is given by

lps
n (� | X ) =

n∑
i=1

Ki∑
j=1

{N(i)
Ki ,j

log �(T
(i)
Ki,j

) − �(T
(i)
Ki,j

)} .

The above loglikelihood can be written in the following slightly neater way. Let
T(1) < T(2) < · · · < T(M) denote the ordered distinct observation times in the set of all
observation time-points {T (i)

Ki,j
, j = 1,. . . ,Ki, i = 1,. . . , n}. For 1 � l � M, define

wl =
n∑

i=1

Ki∑
j=1

1{T (i)
Ki,j

= Tl}, N̄l = 1
wl

n∑
i=1

Ki∑
j=1

N
(i)
Ki ,j

1{T (i)
Ki ,j

= Tl} .

Thus wl is the frequency of the lth largest observation time in the sample and wl N̄l is the
total number of events that happened by the lth largest time. Writing �(T(l)) as �l , for
convenience, we can represent the loglikelihood as

lps
n (� | X ) =

M∑
l=1

(wl N̄l log �l − wl �l) . (1)

We define the nonparametric estimator �̂n of � to be the unique nondecreasing right-
continuous step-function with possible jumps only occurring at the T(i)’s, such that the
above expression is maximized. Of course, only �1,. . . ,�M are identifiable; the choice of
�̂n made above is arbitrary. Other conventions are possible, but will make no difference to
the asymptotics. Thus, �̂n, which we will subsequently refer to as �̂ for convenience, is the
unconstrained maximum pseudolikelihood estimator. The constrained estimator �̂

(0)
n , to

be referred to subsequently as �̂
(0), is defined to be the unique nondecreasing step-function

with possible jumps only at the T(i)’s and at t0, that maximizes (1) subject to the additional
constraint that �(t0) = θ0. Using the theory of generalized isotonic regression (Robertson
et al., 1988, § 1·5), or by appealing to the Kuhn–Tucker theorem (Robertson et al., 1988,
§ 6·4), we can show that �̂(T(i)) is f̂i , where (f̂1,. . . , f̂M) minimizes ∑M

i=1 wi (gi − fi)
2 over

all f1 � · · · � fM , with gi ≡ N̄i and wi as defined above. Also, �̂(0)(T(i)) is f̂
(0)
i , where

(f̂
(0)
1 , f̂

(0)
2 ,. . . , f̂

(0)
M ) solves the constrained isotonic least squares problem of minimizing∑M

i=1 wi (gi − fi)
2 over all f1 � · · · � fm � θ0 � fm+1 � · · · � fM , with T(m) < t0 < T(m+1).

The fact that none of the T(i)’s can actually be equal to t0, with probability 1, is guaranteed
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by the regularity conditions under which the asymptotic results for this model will be
established; in particular, see Assumptions A6 and A7 in the Appendix.

For points {(x0, y0), (x1, y1),. . . , (xk, yk)} where x0 = y0 = 0 and x0 < x1 < · · · < xk,
consider the left-continuous function P(x) such that P(xi) = yi and such that P(x) is
constant on (xi−1, xi). We will denote the vector of slopes, i.e., left-derivatives, of the greatest
convex minorant of P(x) computed at the points (x1, x2,. . . , xk) by slogcm {(xi, yi)}ki=0.

It is not difficult to see that

{�̂i}Mi=1 = slogcm { i∑
j=1

wj,
i∑

j=1
wjN̄j}

M

i=0

, (2)

where summation over an empty set is interpreted as 0. Also,

{�̂(0)

i }mi=1 = θ0 ∧ slogcm { i∑
j=1

wj,
i∑

j=1
wjN̄j}

m

i=0

, (3)

where the minimum is interpreted as being taken componentwise, while

{�̂(0)

i }Mi=m+1 = θ0 ∨ slogcm { i∑
j=m+1

wj,
i∑

j=m+1
wj N̄j}

M

i=m

, (4)

where the maximum is once again interpreted as being taken componentwise.
Define the pseudolikelihood-ratio statistic as

2 log λn = 2 {lps
n (�̂ | X ) − lps

n (�̂
(0) | X )} .

The limit distribution of 2 log λn will be established under a number of assumptions. These
are minor modifications of conditions given in Wellner & Zhang (2000), but, for the sake
of completeness, we state them in the Appendix and there discuss the implications of these
conditions in the interval censoring framework.

Under Assumptions A1–A4, there exist a0 < t0 < b0 such that

supx∈[a0,b0] | �̂n(x) − �(x) |→ 0,

almost surely. Also, if the null hypothesis holds,

supx∈[a,b] | �̂
(0)

n (x) − �(x) |→ 0,

almost surely. This consistency result will not be established here.
We now state the main result of this paper, which concerns the limiting behaviour of

2 log λn.

THEOREM 1. Under Assumptions A1–A9, the pseudolikelihood ratio statistic,

2 log λn ≡ 2 {lps
n (�̂n | X ) − lps

n (�̂
(0)

n | X )} → σ 2(t0)

�(t0)
D ,

in distribution, when H0 : �(t0) = θ0 holds.

A sketch proof of this theorem is given in the Appendix and uses the following theorem
on the limit distribution of the nonparametric maximum likelihood estimators of �. Define

Xn(z) = n1/3 {�̂n(t0 + z n−1/3) − θ0} , Yn(z) = n1/3 {�̂(0)

n (t0 + z n−1/3) − θ0} .
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THEOREM 2. Suppose that Assumptions A1–A9 hold and set

a = {σ 2(t0)

G
′
(t0)

}1/2

, b = 1
2 �

′
(t0) .

Then, under H0,

(Xn(z), Yn(z)) → (ga,b(z), g
0
a,b(z)) ,

in distribution, finite-dimensionally and also in the space L × L, where L is the space of
functions from R → R that are bounded on every compact set, equipped with the topology of
L2-convergence with respect to Lebesgue measure on compact sets.

For a sketch proof of this theorem, which can be established by extending the arguments
in Theorem 4·3 of Wellner & Zhang (2000), or by continuous mapping arguments, see a
longer version of this paper available from the authors.

Theorem 1 gives an easy way of constructing a likelihood-ratio-based confidence set for
F(t0) in the mixed-case interval censoring model. This is based on the observation that,
under the mixed-case interval censoring framework, where the counting process N(t) is
1(S � t) with S following distribution F independently of (K, T ), the pseudolikelihood-
ratio statistic in Theorem 1 converges to (1 − θ0) D under the null hypothesis F(t0) = θ0.
Thus, (1 − θ0)

−1 2 log λn converges in distribution to D, so that an asymptotic level-
(1 − α) confidence set for F(t0) is given by {θ : (1 − θ)−1 2 log λn(θ) � q(D, 1 − α)}, where
q(D, 1 − α) is the (1 − α)th quantile of D and 2 log λn(θ) is the pseudolikelihood-ratio
statistic computed under the null hypothesis H0,θ : F(t0) = θ . Thus, finding the confidence
set amounts to computing the likelihood ratio under a family of null hypotheses. The
computation is a simple affair and can be done through using the elementary pool-adjacent-
violators algorithm. Quantiles of D are tabulated in Banerjee & Wellner (2001).

Theorem 4·3 of Wellner & Zhang (2000) can also be derived as a special case of Theorem 2
by setting z = 0. Specialized to the mixed-case censoring scenario, it provides an alternative
route to constructing confidence sets for F(t0). Denoting by F̂n the pseudolikelihood
estimate of F , from Theorem 4·3 of Wellner & Zhang (2000), we obtain

n1/3 {F̂n(t0) − F(t0)} → {θ0 (1 − θ0) f (t0)

2 G′(t0)
}1/3

2 Z , (5)

in distribution, where Z = argminh {W(h) + h2} and f (t) is the derivative of F(t). An
approximate level-(1 − α) confidence interval for F(t0) is

[F̂n(t0) − 2 Cn q(Z, 1 − α/2) , F̂n(t0) + 2 Cn q(Z, 1 − α/2)] ,

where q(Z, 1 − α/2) is the (1 − α/2)th quantile of Z and

Cn = n−1/3 [ F̂n(t0) {1 − F̂n(t0)} f̂ (t0)

2 Ĝ′(t0)
]

1/3

,

with f̂ and Ĝ′ denoting estimators of f and G′ respectively. Quantiles of Z are tabulated
in Groeneboom & Wellner (2001). Estimating G′ involves estimating first the probability
density of K and then the marginal densities of the Tk,j ’s; this can be done using kernel
density methods with some optimal bandwidth selection procedure like least-squares
crossvalidation (Loader, 1999). However, it is not difficult to see that, if K assumes a
large number of values and the sample size n is moderate, there may not be sufficiently
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many observations to estimate the density of each Tk,j reliably. Finally there is also the
problem of estimating f , which is a trickier affair, since observations from the distribution
F are not available. A discussion of the issues involved in a similar situation can be found
in Banerjee & Wellner (2005). In § 3, we estimate f by kernel smoothing the maximum
pseudolikelihood estimator F̂n, as in Banerjee & Wellner (2005), using a likelihood-based
crossvalidation criterion. The procedure followed is analogous to the one described in § 3·1
of that paper, the only difference being that the likelihood used for crossvalidation here is
the pseudolikelihood, as opposed to the current status likelihood used in that paper.

Thus, the estimation of nuisance parameters turns out to be the major concern in the
Wald-based approach: the variability introduced through nuisance parameter estimation
will tend to make the confidence intervals much more unreliable, especially at smaller
sample sizes. The likelihood-ratio-based method, on the other hand, does not involve
nuisance parameter estimation and provides an extremely clear-cut way of constructing
confidence intervals for F(t0). This makes it a much more attractive option. Yet another
method of obtaining confidence sets is via the use of subsampling techniques. In view
of the nonstandard asymptotics involved, as manifested in the cube-root convergence of
the pseudolikelihood estimator to a nongaussian limit, the usual bootstrap is suspect, but
subsampling without replacement works. Subsampling was implemented by drawing a
large number of subsamples of size b from the original sample, without replacement, and
estimating the limiting quantiles of | n1/3{F̂n(t0) − F(t0)} |, using the empirical distribution
of | b1/3 {F̂ �

n (t) − F̂n(t)} |; here F̂ �
n (t) denotes the value of the maximum pseudolikelihood

estimator, based on the subsample. For consistent estimation of the quantiles, b/n should
converge to 0 as n increases. In the literature, b is referred to as the block-size. For
details, see Politis et al. (1999, Ch. 2). The choice of b can affect the precision of the
confidence intervals in finite samples. A data-driven choice of b is often resorted to but can
be computationally very intensive. For a discussion of subsampling in the context of an
interval censored model, see §§ 2 and 3 of Banerjee & Wellner (2005). Since the issues in the
present case are similar, we do not go into an exhaustive discussion here.

The pseudolikelihood-based method for constructing confidence sets at a single point
can be extended to finitely many points of interest; here the relevant limit distribution is
the maximum of k independent copies of D, where k is the number of points. However,
the construction of likelihood-based simultaneous confidence bands for F is still an open
problem.

3. SIMULATION STUDIES AND DATA ANALYSIS

3·1. Simulation studies

We present simulations from a mixed-case censoring model, in which the survival time
distribution X was taken to follow the Ex(1) distribution. The random number K of
observation times for an individual was generated from the uniform distribution on the
integers {1, 2, 3, 4} and, given K = k, the observation times {Tk,i}ki=1 were chosen as k

order statistics from the uniform distribution on (0,3). We generated 1000 replicates for
each sample size displayed in Table 1, and 95% confidence intervals for F(log 2) = 0·5
were computed by three different methods: pseudolikelihood ratio, limit distribution
of the maximum pseudolikelihood estimator with kernel-based estimation of nuisance
parameters, and subsampling with appropriate block-size. Kernel-based estimation was
done in the way described in connection with the construction of confidence sets for
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Table 1. Simulation study for mixed-case
interval censoring model: Average length (AL)
and empirical coverage (C) of asymptotic 95%
confidence intervals using pseudolikelihood-
ratio (PL), maximum pseudolikelihood (PMLE)

and subsampling-based (SB) methods.
PL PMLE SB

n AL C AL C AL C

50 0·410 0·904 0·441 0·867 0·538 0·971
100 0·327 0·920 0·353 0·896 0·469 0·972
200 0·261 0·924 0·282 0·899 0·308 0·958
500 0·198 0·949 0·210 0·923 0·242 0·958

1000 0·157 0·938 0·167 0·914 0·174 0·945
1500 0·136 0·936 0·144 0·933 0·158 0·962
2000 0·124 0·943 0·131 0·921 0·144 0·965

F(t0) in § 2. For the subsampling-based intervals, we did not resort to a data-driven
block-size selection algorithm, since this would have increased computational complexity
by orders of magnitude. Since the data-generating process here is known, we generated
separate datasets, 1000 replicates, from the mixed-case model for each sample size, and
computed subsampling-based intervals for F(t0) = 0·5 using a selection of block-sizes. We
then computed the empirical coverage of the 1000 confidence intervals produced for each
block-size, and chose, as the optimal block-size for the simulations presented here, as the
one for which the empirical coverage was closest to 0·95. Thus, block-size selection was
done via pilot simulations. Of course, this is not feasible in a real-life setting, since the data
generating process is unknown. A natural way to circumvent this problem for real datasets
is to use the bootstrap to generate ‘pilot data’ from the empirical measure of the observed
data and choose the block size based on the bootstrapped samples. This idea from Delgado
et al. (2001) is used in § 3·2. The results are reported in Table 1.

From Table 1 we see that the pseudolikelihood method produces the narrowest confidence
intervals on average. While they tend to be anticonservative, the coverage nevertheless is
quite satisfactory, being greater than or close to 94%, provided the sample size is moderately
large. The subsampling-based intervals are the widest, and not surprisingly conservative
in general. The kernel-based intervals perform quite poorly at lower sample sizes, being
extremely anticonservative but also giving wider confidence intervals than the likelihood
ratio, and they remain anticonservative at higher sample sizes as well. The overall picture
indicates the superiority of our pseudolikelihood-ratio method. This, added to the relative
computational simplicity of our method in comparison to its competitors, where one needs
to contend with the choice of a smoothing parameter or block-size, makes it an attractive
choice.

In the longer version of the paper we present simulation results for examples of current
status data and Case 2 interval censoring. Case 2 censoring is a special case of mixed-case
censoring where the number of observation times for each individual is identically 2. The
simulation results showed features similar to what was seen above.
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3·2. Illustration on a real dataset

De Gruttola & Lagakos (1989) present an interval censored dataset of the time to
HIV infection in a group of haemophiliacs. Since 1978, 262 people with Type A or
B haemophilia had been treated at Hôpital Kremlin Bicêtre and Hôpital Coeur des
Yvelines in France. Twenty-five of them were found to be infected on their first test
for infection. By August 1988, 197 had become infected and 43 of these had developed
some clinical symptoms relating to their HIV infection. All the infected persons are
believed to have become infected by contaminated blood factor that they received for their
haemophilia.

For each patient, the only information available is that X ∈ [XL,XR], where X denotes
the time to infection. Here time is measured in six-month intervals, with X = 1 denoting 1
July 1978. An individual was assigned XL = 1 if they were found to be infected with HIV
on their first test for infection. As mentioned above, there were 25 such individuals. For
details see § 6 of De Gruttola & Lagakos (1989), and their Table 1, where the (XL,XR)

values for each patient are provided. We are interested in estimating the distribution of X,
the time to infection, based on the (XL,XR) pairs. We do the analysis separately for the
two different groups into which the patients fell: the heavily-treated group of 105 patients
received at least 1000 µg/kg of blood factor for at least one year between 1982 and 1985,
and the lightly-treated group of 157 patients received less than 1000 µg/kg of blood factor
per year.

We model the data as Case 2 censored data. The two censoring times U and V , with
U < V , are defined as follows. If 1 = XL < XR < ∞, we set U = XR and V to be the
time till the end of the study. If 1 < XL < XR < ∞, we set U = XL and V = XR. If
1 < XL < XR = ∞, we set U = 1 and V = XL. If (�1,�2,�3) denotes the vector of
indicators, with �1 = 1(X � U),�2 = 1(U < X � V ) and �3 = 1(V � X), then for the
first case this vector is (1, 0, 0), for the second case it is (0, 1, 0) and in the third case it is
(0, 0, 1). The given dataset is really an example of mixed-case censoring in which only the
relevant inspection times have been noted. The formulation of the problem as a Case 2
model is a simplification that we adopt for the purpose of illustrating our method; because
of lack of information about the other inspection times, the full mixed-case model cannot
be fitted to the data.

The pseudolikelihood estimate of F , the distribution function of X, was computed for
each of the two groups, and confidence intervals for the values of F at several different
points were obtained using the three different methods illustrated in the simulation studies.
The subsampling-based confidence interval at any given point was computed by first
determining the block-size b using the bootstrap-based block selection algorithm referred
to in § 3·1; see Banerjee & Wellner (2005) for a brief description and an application of this
algorithm to current status data. Five hundred bootstrap samples were used for block-size
selection, and once the optimal block size had been ascertained 1000 subsamples of that
size were used to determine the confidence interval. As far as the estimation of nuisance
parameters for the construction of the Wald-type confidence interval was concerned, f (t0)

at a point of interest t0 was computed by smoothing the maximum pseudolikelihood
estimator using bandwidth determined by likelihood-based crossvalidation, as for the
simulation experiments. However, least-squares crossvalidation, for choosing the optimal
bandwidths to estimate G′(t0), did not perform well, and therefore G′ was estimated by
differentiating the piecewise-linear modification of the empirical distribution functions of
U and V .
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Fig. 1. HIV infection data. The estimated distribution functions of time
to HIV infection in the two different groups: heavily treated, solid line;

lightly treated, dashed line.

The estimated distribution functions of the time to infection are plotted for the two
different groups in Fig. 1. The distribution function for the heavily-treated group dominates
that for the lightly-treated group in the interval [6, 14); between 14 and 16, the distribution
function for the lightly-treated group is higher; at 16, the two distributions coincide at the
value 1. Individuals in the heavily-treated group received higher amounts of blood factor
for at least a year between 1982 and 1985; the higher the amount of blood transfusion,
the greater is the chance of infection through contaminated blood factor. The date of 1
July 1982 corresponds to t = 9, and t = 16, where the two distribution functions coincide,
corresponds to 1 January 1986. In the range 9 − 16, the distribution function for the heavily
treated group is either equal to or almost equal to that for the lightly treated group or
dominates it, except in the range [14, 15); this corresponds to the year 1985.

Table 2 gives confidence intervals at different time points obtained by the three different
methods. The second column gives the value of the maximum pseudolikelihood estimator,
the third gives the confidence intervals using the pseudolikelihood ratio, the fourth gives the
Wald-type intervals and the fifth gives the subsampling-based intervals. Note that the left
extremities of the confidence intervals for the distribution function in the heavily-treated
group are generally shifted to the right of those for the corresponding time points in the
lightly-treated group, with violations for large t . The general shift of the left extremities
to the right is predictable. The violation of this property for large t is not surprising,
since there we are dealing with the time range in which the two distribution functions
are essentially ‘catching up’ with each other, as is evident from Fig. 1. Also note that the
likelihood-ratio-based confidence intervals are somewhat less erratic than the two other
intervals; they exhibit monotonicity of left as well as right endpoints with increasing t .
Since F is monotone in t , this is a rather nice property. On the other hand, the Wald-type
or the subsampling-based intervals tend to exhibit violations of this property, though there
is an overall monotonic trend.

A beta version of the software employed for the simulations and data analysis is available
from the authors, and will be developed into an R-package in the near future. The data are
available in De Gruttola & Lagakos (1989) and also from the authors.
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Table 2. HIV infection data. Confidence intervals (CI) of
three kinds for the distribution of time to HIV infection
in the lightly and heavily treated groups at different
times: likelihood-ratio-based (lrt), Wald-type (Wald) and

subsampling-based (subsampling).
t F̂ (t) CI (lrt) CI (Wald) CI (subsampling)

Lightly treated group

6·0 0·160 0·068–0·285 0·000–0·354 0·068–0·252
7·0 0·160 0·068–0·285 0·000–0·409 0·046–0·274
8·0 0·160 0·068–0·298 0·000–0·410 0·042–0·278
9·0 0·160 0·069–0·321 0·000–0·379 0·026–0·294

10·0 0·250 0·069–0·458 0·000–0·463 0·048–0·451
11·0 0·357 0·099–0·546 0·000–0·623 0·174–0·540
12·0 0·556 0·187–0·660 0·381–0·730 0·396–0·716
13·0 0·556 0·402–0·700 0·277–0·834 0·361–0·750
14·0 0·792 0·439–0·888 0·553–1·000 0·660–0·923
15·0 0·891 0·637–0·943 0·712–1·000 0·786–0·996

Heavily treated group

6·0 0·340 0·000–0·442 0·067–0·613 0·087–0·593
7·0 0·340 0·092–0·442 0·171–0·509 0·220–0·459
8·0 0·340 0·240–0·442 0·113–0·567 0·184–0·496
9·0 0·340 0·240–0·442 0·179–0·501 0·213–0·467

10·0 0·340 0·240–0·451 0·206–0·474 0·213–0·467
11·0 0·588 0·242–0·665 0·437–0·739 0·459–0·717
12·0 0·588 0·472–0·665 0·451–0·725 0·490–0·686
13·0 0·588 0·484–0·673 0·462–0·715 0·496–0·680
14·0 0·588 0·504–0·676 0·450–0·727 0·478–0·699
15·0 0·852 0·504–0·927 0·751–0·953 0·740–0·964
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APPENDIX

Technical details

We first formally state the required assumptions.

Assumption A1. The observation times Tk,j , for j = 1,. . . , k and k = 1, 2,. . . , are random
variables taking values in the bounded set [0, τ ], where 0 < τ < ∞ and E(K) < ∞.

Assumption A2. The mean function � satisfies �(τ) � M for some 0 < M < ∞.

Assumption A3. The random variable M0, defined as M0 = ∑K
j=1 NK,j log NK,j , satisfies

E(M0) < ∞. Here, interpret 0 log 0 as 0.

For Borel subsets B of [0, τ ], define the measure µ as

µ(B) = E { K∑
j=1

1 (TK,j ∈ B)} .
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Let G(t) ≡ µ((0, t ]) be the distribution function corresponding to the measure µ. For each k, j ,
denote the distribution function of the random variable Tk,j by Gk,j . Then

G(t) = E ( K∑
j=1

1 {TK,j � t}) =
∞∑

k=1
pr (K = k)

k∑
j=1

pr (Tk,j � t |K = k )
=

∞∑
k=1

pr (K = k)
k∑

j=1
Gk,j (t) . (A1)

Call x a support point of µ if, for every ε > 0, it is the case that µ(x − ε, x + ε) > 0. Let Sµ denote
the set of all support points of µ.

Assumption A4. The point t0 lies in the interior of Sµ.

Assumption A5 (a). The variable K has a finite moment of order greater than 2.

Assumption A5 (b). There exist α > 0 and M1 > 0 such that E{N2+α(t)} � M1 for all
t ∈ Sµ.

Assumption A6. There is a neighbourhood U of t0 ∈ Sµ such that the distribution functions
Gk,j have positive continuous derivatives on U, which are bounded by a common constant
B for all k, j .

Assumption A7. There is a neighbourhood V of (t0, t0) ∈ R
2 such that, for all k = 1, 2,. . .

and 1 � i � j � k, Gk,i,j (s, t) = pr(Tk,i � s, Tk,j � t) is differentiable with respect to (s, t)

and gk,i,j (s, t) = ∂2 Gk,i,j (s, t)/∂s ∂t exists. Furthermore, the functions gk,i,j are bounded
on V, by a common constant C, for all (k, i, j).

Assumption A8. The mean function � has a continuous bounded derivative on U and
�′(t0) =| 0.

Assumption A9. The function σ 2(t) ≡ var{N(t)} is continuous in a neighbourhood of t0.

We discuss the implications of our assumptions in the interval censoring framework. Assumption
A2 is trivially satisfied in the interval censoring situation, since 0 � F(t) = �(t) � 1. Assumption
A3 is also easy to check; in the interval censored situation, Nk,j is either 1 or 0, so that M0 = 0. In
so far as estimation at the point t0 is concerned, it suffices to have a positive Lebesgue density for
one of the Tk,j ’s in a neighbourhood of the point t0, along with pr(K = k) > 0, for Assumption A4
to be satisfied. Assumption A5 is guaranteed for a K that is finitely supported, which is typically the
case in applications, and for the interval censoring situation, since N(t) � 1. Assumption A8, in the
interval censoring scenario, translates to F(t) being continuously differentiable in a neighbourhood
of t0 with f (t0) =| 0. Finally, Assumption A9 is easily satisfied, since σ 2(t) = F(t) {1 − F(t)}.

We first define the following processes:

Vn(t) = Pn ( K∑
j=1

NK,j 1{TK,j � t}) = 1
n

n∑
i=1

Ki∑
j=1

N
(i)
Ki ,j

1{T (i)
Ki ,j

� t} ,

Gn(t) = Pn ( K∑
j=1

1 {TK,j � t}) = 1
n

n∑
i=1

Ki∑
j=1

1{T (i)
Ki ,j

� t} .

Thus, both Vn and Gn are piecewise-constant right-continuous processes, with possible jumps only
at the distinct observation times; the jump of Gn at the point T(l) is simply wl/n, whereas the jump
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of Vn at the same point is wl N̄l/n. Also, set

ξ 1(X, t) =
K∑

j=1
NK,j 1 {TK,j � t} , ξ 0(X, t) =

K∑
j=1

1 {TK,j � t} .

Note that G(t) = E{ξ 0(X, t)}. Also, define V (t) = E{ξ 1(X, t)}. From (A1) we obtain that
G

′
(t) = ∑∞

k=1 pr(K = k)∑k
j=1 G

′
k,j (t) . Also,

V (t) = E ( K∑
j=1

NK,j 1 {TK,j � t}) =
∞∑

k=1
pr (K = k)

k∑
j=1

E (Nk,j 1{Tk,j � t})
=

∞∑
k=1

pr (K = k)
k∑

j=1

∫t

0
�(x) dGk,j (x)

=
∫t

0
�(x) { ∞∑

k=1
pr (K = k)

k∑
j=1

G
′
k,j (x) } dx =

∫t

0
�(x) G′(x) dx ,

whence

V
′
(t) = �(t) G

′
(t) . (A2)

Proof of Theorem 1. In the following derivation, we denote by �̂l the value of the unconstrained
estimator �̂n at the point T(l), and by �̂

(0)
l the value of �̂

(0)
n at the point T(l). The likelihood ratio

statistic is then given by

2 log λn = 2
M∑
l=1

wl (N̄l log �̂l − �̂l) − 2
M∑
l=1

wl (N̄l log �̂
(0)
l − �̂

(0)
l )

= 2
M∑
l=1

wl N̄l (log �̂l − log �̂
(0)
l ) − 2

M∑
l=1

wl (�̂l − �̂
(0)
l ) .

In what follows, we assume that the null hypothesis holds, so that �(t0) ≡ θ0. We will also denote
the set of indices for which �̂l differs from �̂

(0)
l by D. On Taylor expansion of log �̂l and log �̂

(0)
l

around θ0, we obtain

2 log λn = 2 ∑
l∈D

wl N̄l {log θ0 + 1
θ0

(�̂l − θ0) − 1

2 θ2
0

(�̂l − θ0)
2 + 1

3 �3
l,�

(�̂l − θ0)
3

− log θ0 − 1
θ0

(�̂
(0)
l − θ0) + 1

2 θ2
0

(�̂
(0)
l − θ0)

2 − 1

3 �3
l,� �

(�̂l − θ0)
3}

− 2 ∑
l∈D

wl (�̂l − �̂
(0)
l ) .

Here �̂l,� is a point intermediate between �̂l and θ0, and �̂l,�� is a point intermediate between �̂
(0)
l

and θ0. The above expression simplifies to

2 log λn = 2 ∑
l∈D

wl N̄l

1
θ0

{(�̂l − θ0) − (�̂
(0)

l − θ0)} − 2 ∑
l∈D

wl {(�̂l − θ0) − (�̂
(0)

l − θ0)}
− 1

θ2
0

∑
l∈D

{(�̂l − θ0)
2 − (�̂

(0)

l − θ0)
2} wl N̄l + op(1),

whence 2 log λn = T1 − T2 + op(1) with

T1 = 2 ∑
l∈D

wl N̄l

1
θ0

{(�̂l − θ0) − (�̂
(0)

l − θ0)} − 2 ∑
l∈D

wl {(�̂l − θ0) − (�̂
(0)

l − θ0)} ,
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and T2 = 1
θ2

0
∑l∈D {(�̂l − θ0)

2 − (�̂
(0)
l − θ0)

2} wl N̄l . Consider T2. Noting that n−1 wl N̄l is the jump

of the right-continuous process Vn at the point T(l), letting Dn denote the set on which �̂n and �̂
(0)
n

differ and setting D̃n to be the set n1/3 (Dn − t0), which is an interval and can be easily shown to be
Op(1), we can write

T2 = 1

θ2
0

n

∫
Dn

[{�̂n(t) − θ0}2 − {�̂(0)

n (t) − θ0}2] d Vn(t)

= 1

θ2
0

n

∫
Dn

[{�̂n(t) − θ0}2 − {�̂(0)

n (t) − θ0}2] d V (t) + op(1) (A3)

= 1

θ2
0

∫
D̃n

[n2/3 {�̂n(t0 + n−1/3 z) − θ0}2

− n2/3 {�̂(0)

n (t0 + n−1/3 z) − θ0}2] V
′
(t0 + n−1/3 z) dz + op(1)

= V
′
(t0)

θ2
0

∫
D̃n

{X2
n(z) − Y 2

n (z) } dz + op(1) ,

where (A3) follows from the step above it, with Vn replaced by V , by a standard empirical process
argument. Now, consider T1. If we use the definitions of the processes Vn and Gn, it is straightforward
to see that

T1 = 2
θ0

n

∫
Dn

[{�̂n(t) − θ0} − {�̂(0)

n (t) − θ0}] d {Vn(t) − θ0 Gn(t)} (A4)

= 2
θ0

n

∫
Dn

[{�̂n(t) − θ0}2 − {�̂(0)

n (t) − θ0}2] d Gn(t) (A5)

= 2
θ0

n

∫
Dn

[{�̂n(t) − θ0}2 − {�̂(0)

n (t) − θ0}2] G
′
(t) dt + op(1) (A6)

= 2
θ0

∫
D̃n

{X2
n(z) − Y 2

n (z)} G
′
(t0 + n−1/3 z) dz + op(1) (A7)

= 2 G
′
(t0)

θ0

∫
D̃n

{X2
n(z) − Y 2

n (z)} dz + op(1) ,

where (A5) follows from the characterization of the nonparametric maximum likelihood estimators
in terms of the processes Gn and Vn and will be justified at the end, (A6) follows from (A5) with
dGn(t) replaced by d G(t) ≡ G

′
(t) dt using standard empirical process arguments, and (A7) follows

if we transform to the local variable z and use the definitions of the processes Xn and Yn. Thus,

2 log λn = 2 G
′
(t0)

θ0

∫
D̃n

{X2
n(z) − Y 2

n (z)} dz − V
′
(t0)

θ2
0

∫
D̃n

{X2
n(z) − Y 2

n (z) } dz + op(1) .

Recalling that a2 = σ 2(t0)/G
′
(t0) from the statement of Theorem 2 and that V

′
(t0) = �(t0) G

′
(t0)

from equation (A2), so that θ2
0V

′
(t0) = θ−1

0 G
′
(t0), we have

2 log λn = G
′
(t0)

θ0

∫
D̃n

{X2
n(z) − Y 2

n (z) } dz = σ 2(t0)

�(t0)
a−2

∫
D̃n

{X2
n(z) − Y 2

n (z) } dz

→ σ 2(t0)

�(t0)
a−2

∫ [ {ga,b(z)}2 − {g0
a,b(z)}2 ] dz , (A8)

in distribution. Here (A8) follows from the previous step by application of Theorem 2 in
conjunction with the continous mapping theorem for distributional convergence and the fact
that (f, g) �→ ∫

(f 2 − g2) d λ, with λ denoting Lebesgue measure, is a continuous function from
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L × L to R. However, {σ 2(t0)/�(t0)} a−2
∫
[{ga,b(z)}2 − {g0

a,b(z)}2] dz has the same distribution as
{σ 2(t0)/�(t0)} D, by Lemma 1. If in particular N(t) is indeed a Poisson process, nonhomogeneous
or otherwise, σ 2(t0) = �(t0) and the limiting distribution is exactly D.

It only remains to justify going from (A4) to (A5). It suffices to show that

d1 ≡
∫

Dn

{�̂n(t) − θ0} d{Vn(t) − θ0 Gn(t)} =
∫

Dn

{�̂n(t) − θ0}2 d Gn(t),

d2 ≡
∫

Dn

{�̂0
n(t) − θ0} d{Vn(t) − θ0 Gn(t)} =

∫
Dn

{�̂0
n(t) − θ0}2 d Gn(t) .

We will only show the latter. Let Jn denote the set of indices i such that T(i) belongs to Dn, ordered
from smallest to largest. Partition Jn into consecutive blocks of indices B1,. . . , Bk such that, on each
Bj , we have that �̂

(0)
n (T(i)) is constant for all i ∈ Bj . Denote the constant value on Bj by vj . There

is potentially one block Bl on which �̂
(0)
n is equal to θ0. On every other Bj , we have

vj = n−1 ∑m∈Bj
wm N̄m

n−1 ∑m∈Bj
wm

≡ ∑m∈Bj
wm N̄m∑m∈Bj

wm

.

This is an easy consequence of the characterization of the constrained solution. We can now write

d2 = ∑
j =| l

∑
i∈Bj

{�̂(0)

n (T(i)) − θ0} (n−1 wi N̄i − θ0 n−1 wi)

= ∑
j =| l

(vj − θ0) ( ∑
i∈Bj

wi N̄i

n
− θ0 ∑

i∈Bj

wi

n
)

= ∑
j =| l

(vj − θ0) ( ∑
i∈Bj

wi

n
) (∑i∈Bj

wi N̄i∑i∈Bj
wi

− θ0)
= ∑

j =| l

(vj − θ0)
2 ∑

i∈Bj

wi

n
= ∑

j =| l
∑

i∈Bj

{�̂(0)

n (T(i)) − θ0}2 n−1 wi

=
∫

Dn

{�̂0
n(t) − θ0}2 d Gn(t) .

�
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