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On Fractile Transformation of Covariates
in Regression

Bodhisattva SEN and Probal CHAUDHURI

The need for comparing two regression functions arises frequently in statistical applications. Comparison of the usual regression functions
is not very meaningful in situations where the distributions and the ranges of the covariates are different for the populations. For instance,
in econometric studies, the prices of commodities and people’s incomes observed at different time points may not be on comparable
scales due to inflation and other economic factors. In this article, we describe a method of standardizing the covariates and estimating the
transformed regression function, which then become comparable. We develop smooth estimates of the fractile regression function and study
its statistical properties analytically as well as numerically. We also provide a few real examples that illustrate the difficulty in comparing the
usual regression functions and motivate the need for the fractile transformation. Our analysis of the real examples leads to new and useful
statistical conclusions that are missed by comparison of the usual regression functions.

KEY WORDS: Asymptotic consistency; Fractile regression; Groups of transformations; Invariance and equivariance; Kernel smoothing;
Nonparametric regression.

1. INTRODUCTION

Comparison of two regression functions can be a difficult task
when the covariates for the two populations have different dis-
tributions. Let us consider a couple of examples to illustrate this
point, where nonparametric estimates of regression functions
are used.

Example 1. Data were collected on 258 individuals from the
Bhutia tribe and 305 individuals from the Toto tribe in India
on blood pressure, height, and weight by the scientists of the
Human Genetics Unit at Indian Statistical Institute, Kolkata.
It is of interest to compare the relationship of blood pressure
with the height and the weight of an individual for the two pop-
ulations. A common approach would be to compare the two
regression surfaces as shown in Figure 1(a). But the two regres-
sion surfaces are not comparable as the covariates have very
different distributions in the two populations. In fact, the ranges
of the covariates are quite different. Probably the simplest way to
standardize the covariates in order to make the regression func-
tions comparable would be to subtract the mean from each of
the covariate values and divide by the standard deviation. Such
coordinate-wise location and scale-adjusted regression surfaces
are shown in Figure 1(b), whereas Figure 1(c) shows the re-
gression surfaces, where we standardize the covariate vector by
subtracting the sample mean vector and multiplying by the in-
verse of the square root of the sample dispersion matrix. But the
surfaces are still not quite in comparable forms—the supports
of the standardized covariates still tend to differ quite a bit. We
have used the Nadaraya–Watson smoother with the standard
bivariate Gaussian kernel to produce the regression surfaces.
For choosing the smoothing bandwidths, we have used the least
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squares cross-validation method (see Wand and Jones 1995) and
computation was done using the “sm” package in R developed
by Adrain Bowman and Adelchi Azzalini. This convention is
followed in computing all the bivariate regression surfaces illus-
trated in the article. One may use other standard nonparametric
regression tools, but it is our empirical experience that it does
not change the main results and findings.

A disturbing feature in the three figures is the crossing of the
two regression surfaces. The Toto population is usually believed
to have higher blood pressure than the Bhutia population. An
obvious question that arises is whether the crossing is a real
feature of the Bhutia population or not. Another anomaly illus-
trated in the figures is the high peak of the blue surface (for the
Toto tribe) at large values of height and weight. A tall and heavy
person would not usually be expected to have a higher blood
pressure than a short and heavy (overweight) person. As will
be shown later, these two features in the regression surfaces are
indeed spurious and lead to a misleading comparison of the two
regression surfaces.

Example 2. The Reserve Bank of India keeps data on the
sales (in Indian rupees), paid-up capital (in Indian rupees), and
profit (as a fraction of sales) for nongovernment, nonfinancial
public limited companies in India over different years. Here
paid-up capital refers to the total amount of shareholder cap-
ital that has been paid in full by shareholders. The Reserve
Bank of India is interested in comparing the profitability of the
companies against measures such as the sales and the paid-up
capital, at two time points. This gives rise to a regression prob-
lem where one regresses profit (as a fraction of sales) against
sales and paid-up capital. One would like to compare the two
regression surfaces for two time points. But the comparison of
usual regression surfaces is not meaningful, as due to inflation
and other economic changes over time, the covariate values at
two different time points happen to differ by several orders of
magnitude. Figure 2(a) shows the usual regression surfaces for
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Figure 1. (a) Usual regression surfaces, (b) coordinate-wise location and scale-adjusted regression surfaces, and (c) regression surfaces when
the covariates are standardized by the inverse of the square root of the dispersion matrix, for blood pressure on weight and height for the Bhutia
(red) and Toto (blue) tribes.

the year 1997 (blue surface) and 2003 (red surface) with 944
and 1243 data points, respectively. Figures 2(b) and 2(c) show
the regression surfaces with the covariate vector standardized
by a simple coordinate-wise location and scale change, and by
the inverse of the square root of the dispersion matrix, respec-
tively. The uneven covariate distribution leads to data sparsity
in certain regions of the covariate space and causes distortion
of the estimated regression surfaces. The choice of the smooth-
ing bandwidth also becomes very difficult. Besides, the large
difference in the covariate values for the years 1997 and 2003
makes the two regression surfaces virtually incomparable in the
figures.

Both the preceding examples demonstrate the need for a
methodology to appropriately standardize the covariate vectors
before comparing the corresponding regression functions, when
the distributions and supports of the covariates are very differ-
ent in the two populations. Note that the usual location and
coordinate-wise scale transformation standardizes the means

and variances of the covariates for each population, whereas
the standardization by subtracting the means and multiplying
by the inverse of the square root of the dispersion matrix
only normalizes the means and the dispersion matrix of the
covariate vectors. This raises two related questions of inter-
est that we address in this article: (1) How do we standard-
ize the distribution of the covariates that will enable a more
meaningful comparison of the regression functions? (2) Sup-
pose that we have two random vectors (X1, Y ) and (X2, Y ) in
R

d+1 for d ≥ 1, having continuous distributions, where the pre-
dictor X2 = g(X1) and g : R

d → R
d is an (unknown) invert-

ible function. Can we find a standardization of the covariates
X1 and X2 that will enable us to compare and conclude that the
two regression functions for the populations are essentially the
same?

In this article, we propose a method of standardizing the co-
variates using a multivariate transformation, which is derived
from their multivariate distribution, that achieves the desired
joint distributional standardization. The useful properties of the

Figure 2. (a) Usual regression surfaces, (b) coordinate-wise location and scale-adjusted regression surfaces, and (c) regression surfaces when
the covariates are standardized by the inverse of the square root of the dispersion matrix, for profit (as a fraction of sales) on sales and paid-up
capital for the years 1997 (blue) and 2003 (red).
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Figure 3. (a) Usual regression curves, (b) location and scale-adjusted regression curves, and (c) fractile regression curves, for blood pressure
against weight for the Bhutia (in red, solid line) and Toto (in blue, dashed line) tribes.

proposed multivariate standardization in enabling proper com-
parability of the regression functions, expressed in terms of
invariance/equivariance properties of the standardized regres-
sion functions under groups of transformations acting on the
covariates, are investigated. We also study the estimation of the
corresponding regression functions based on the standardized
covariates.

To start with, let us first look at the simpler problem when
d = 1. Consider two bivariate random vectors (X1, Y1) and
(X2, Y2) and the associated regression functions µ1 and
µ2 where µ1(x) = E(Y1|X1 = x) and µ2(x) = E(Y2|X2 =
x). Then the fractile regression functions are defined as

m1(t) = E{Y1|F1(X1) = t} and m2(t) = E{Y2|F2(X2) = t}

for t ∈ (0, 1), where F1 and F2 are the distribution functions
of X1 and X2, respectively (see Mahalanobis 1960). Note that
the transformed covariates F1(X1) and F2(X2) both have a uni-
form distribution on (0, 1). This distribution-free nonparamet-
ric standardization of the covariates makes comparison of the
regression functions meaningful even when the real-valued co-
variates have very different distributions in the two populations.
The comparison of m1(t) and m2(t) amounts to comparing the
means of the responses Y1 and Y2 at the tth quantile of the
covariates rather than the same value of the covariates, as is
done in usual regression. Also, this standardization makes the
fractile regression functions invariant under all strictly increas-
ing transformations of the covariate. In other words, suppose
that (X1, Y ) is a continuous bivariate random vector and if
X2 = φ(X1), where φ is any strictly increasing transformation,
then E{Y |F1(X1)} = E{Y |F2(X2)}, where F1 and F2 are the
distribution functions of X1 and X2, respectively. This is a cru-
cial property and can be interpreted in the following way: The
fractile transformation makes the regression functions compa-
rable even when the covariate in the second population is any
increasing transformation of that of the first population. Fractile
regression has been considered earlier in Mahalanobis (1960),
Parthasarathy and Bhattacharya (1961), Sethuraman (1961),
Bhattacharya and Müller (1993), and Sen (2005).

In Figure 3, we have plotted the usual regression curves, re-
gression curves with covariates standardized for location and
scale, and the smooth estimates of fractile regression curves
with blood pressure as the response and body weight as the pre-
dictor for the two populations discussed in Example 1. Figure 4
shows the corresponding three plots for the dataset in Example 2
with profit on sales as the response and sales as the predictor. We
used the Nadaraya–Watson smoother with the standard normal
kernel to estimate the regression functions. The highly irregular
regression curves obtained in Figures 4(a) and 4(b) are due to
the very uneven covariate distribution with data sparsity in some
regions of the covariate space. The performance of data-driven
bandwidths for the regression curves in this example was very
poor. We made a subjective choice of the smoothing parameter
after observing several plots with different bandwidths. In all the
other univariate regression plots shown in the article, we used
the direct plug-in bandwidth estimator developed by Ruppert,
Sheather, and Wand (1995). Bandwidth selection is a relatively
simpler problem for fractile regression as the transformed co-
variate values are uniformly spaced over the interval (0, 1). In
each of Figures 3(a), 3(b), 4(a), and 4(b), there is a serious lack
of comparability between the two regression curves, which is
adequately resolved in Figures 3(c) and 4(c).

Fractile regression techniques with one covariate have been
applied in diverse settings. Hertz-Picciotto and Din-Dzietham
(1998) compared the infant mortality of African Americans
and European Americans with gestational age using a “per-
centile based method” of standardization. They encountered a
very similar problem as in Example 1, the two usual regression
functions cross suggesting that African American infants do
better than European-Americans about half the time, whereas
the fractile regression functions remove this spurious visual
impression. Nordhaus (2006) used fractile plots to study the de-
pendence of log of “output density” on key geographic variables
(temperature, precipitation, latitude, etc.). This application illus-
trates another usefulness of fractile regression: it enables us to
simultaneously compare the effect of different, but possibly
related, covariates (as opposed to the same variable in differ-
ent populations) on one response variable by overplotting the

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 1
6:

57
 2

8 
N

ov
em

be
r 

20
13

 



352 Journal of the American Statistical Association, March 2012

(a) (b) (c)

Figure 4. (a) Usual regression curves, (b) location and scale-adjusted regression curves, and (c) fractile regression curves, for profit (as a
fraction of sales) against sales for the years 1997 (in red, solid line) and 2003 (in blue, dashed line).

different fractile regression functions, which are now all defined
on the same space (0, 1).

The article is organized as follows. In Section 2, we consider
a suitable notion of an invertible multivariate distribution func-
tion based on successive conditioning of the covariates and use
it to define the fractile standardization and the corresponding
regression function. The comparability of different fractile re-
gression functions is investigated using invariance/equivariance
properties of the transformed regression functions under differ-
ent groups of transformations acting on the space of covariates.
We also briefly discuss another notion of standardization along
with the associated regression function. Section 3 discusses non-
parametric smooth estimation of the fractile regression function
from a random sample. A simulation study shows the superior-
ity of our method over usual regression analysis without proper
standardization of the covariates. We also prove the consistency
and asymptotic normality of the fractile regression estimates.
The fractile surfaces for Examples 1 and 2 are presented in
Section 4 followed by another application of fractile regression
techniques on real data. We end this section with a comparison
and discussion of the two standardizations proposed in the ar-
ticle on the basis of the real data examples. In Section 5, the
concluding section, we discuss some extensions. Section 6, the
Appendix, gives the proofs of the main results.

2. STANDARDIZATION OF COVARIATES USING
TRANSFORMATIONS

Let (Y, X) be a random vector having a continuous distribu-
tion on R

d+1, d ≥ 1, where X = (X1, X2, . . . , Xd ) ∈ R
d is the

covariate/predictor and Y ∈ R is the response variable. We want
to study the effect of different kinds of “standardizations” of the
predictor that would aid comparison of the regression functions,
as discussed in the Introduction.

Let P be a class of covariate distributions on R
d . Formally,

a “standardization” can be defined as a function T : P×R
d →

E ⊂ R
d , which is used to transform the covariate, such that x �→

T(P, x) ≡ T(X, x) is an invertible map from XP, the support of
P, onto E, for every X ∼ P ∈ P. The standardized regression

function is then defined as

mX(t) = E{Y |T(P, X) = t} for t ∈ E. (1)

To study the effect of the standardization T, we need to
consider a group G of one-one transformations acting on the
space of all d-variate predictors belonging to P. Let g be one
such transformation and denote by g(X) the random vector that
takes on the value g(x) when X = x. We say that T is invari-
ant under G if T(g(X), g(x)) = T(X, x), for all x ∈ R

d and g ∈
G. We say that T is equivariant under G if T(g(X), g(x)) =
g(T(X, x)), for all x ∈ R

d and g ∈ G. The standardized regres-
sion function is invariant under the group action G if mg(X)(t) :=
E{Y |T(g(X), g(X)) = t} = mX(t), for all t ∈ E and g ∈ G.

2.1 Standardization by the Fractile Transformation

In this section, we develop and investigate fractile regression
when the dimension of covariates might be more than one. The
first hurdle in defining fractile regression with multiple covari-
ates is the absence of a straightforward notion of an invertible
distribution function [referred to as a centered rank function,
see Serfling (2010)] and/or multivariate quantiles, because of
the lack of natural ordering of points in R

d for d > 1. We re-
strict our attention to P , the class of all covariate distributions
on R

d having a continuously differentiable density (with respect
to the Lebesgue measure) on its support. This ensures that the
various univariate marginal and conditional distribution func-
tions associated with the covariate distribution will be strictly
increasing and invertible on their supports. For a d-dimensional
random vector X = (X1, X2, . . . , Xd ) ∼ P ∈ P , we define the
fractile standardization (transformation) RP : R

d �→ [0, 1]d (or
RX), as

RP(x) ≡ RX(x1, x2, . . . , xd ) = (
F1(x1), F2|1(x2|x1), . . . ,

Fd|1,2,...,d−1(xd |x1, x2, . . . , xd−1)
)
,

where F1(x1) = P (X1 ≤ x1), F2|1(x2) = P (X2 ≤ x2|X1 = x1),
. . . , Fd|1,2,...,d−1(xd ) = P (Xd ≤ xd |X1 = x1, X2 = x2, . . . ,

Xd−1 = xd−1). This is a multivariate analog of the univariate
distribution transform [i.e., x �→ FX(x)] and has a number of
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desirable properties. The fractile regression function, that is,
the RP-standardized regression function, can now be defined
through (1) with T(P, ·) replaced by RP(·).

Recently, a similar idea on successive conditioning of the co-
ordinate variables of a random vector was used by Wei (2007)
in the quantile regression setup on bivariate growth curves and
Chesher (2003) and Ma and Koenker (2006) in quantile regres-
sion for structural econometric models. Salibián-Barrera and
Wei (2008) used it to standardize the regressors to screen out
leverage points.

It can be easily shown that RP(X) ∼ Uniform(0, 1)d , if
X ∼ P ∈ P . This is a generalization of the invariance property
shared by any continuous univariate distribution function F, that
is, F (X) ∼ Uniform(0, 1), where X ∼ F . Thus, RP achieves
distributional standardization, making the transformed covari-
ate vector have the same distribution for any X ∼ P ∈ P .

We next show that the fractile standardization has impor-
tant invariance properties under statistically relevant groups
of transformations on the covariates. If we consider the
group of coordinate-wise scale and shift transformations G =
{g : R

d �→ R
d | g(x) = Dx + c}, where D is a d × d diago-

nal matrix with positive diagonal entries and c ∈ R
d , act-

ing on the space of covariates, then it is easy to see that
the simple coordinate-wise location and scale standardization
Tls defined by Tls(X, x) = �(X)−1/2(x − E(X)), where �(X) =
diag(var(X1), var(X2), . . . , var(Xd )), is invariant under G. As
a consequence, E{Y |Tls(X, X) = t} = E{Y |Tls(g(X), g(X)) =
t} for all t ∈ R

d , for all g ∈ G, and thus the standardized regres-
sion function is invariant under G.

But from the examples in the Introduction, we see that the
coordinate-wise location and scale standardization of the co-
variates does not yield satisfactory results. However, it is intu-
itively obvious that monotonically increasing transformations
of the covariates are meaningful and relevant for all the ex-
amples considered in Section 1, and hence it is reasonable to
consider appropriate nonlinear monotonic transformations to
standardize the covariates in such examples. For x ∈ R

d , let
us write xi = (x1, x2, . . . , xi), for i = 1, 2, . . . , d , and consider
the transformation x �→ g(x) = (g1(x1), g2(x2), . . . , gd (xd )),
where gi : R

i → R, is a strictly increasing transformation in
xi (the last coordinate) for every fixed (x1, x2, . . . , xi−1), and
(g1, g2, . . . , gi) : R

i → R
i is invertible for every i, for i =

1, 2 . . . , d . Consider the group F of all such transformations
on the covariates. The following result shows that the standard-
ization RP is invariant under F , and this justifies the use of
RP as a nonparametric standardization tool for the covariates.

Theorem 2.1 Let (X, Y ) ∈ R
d+1 be a random vector such

that X = (X1, X2, . . . , Xd ) ∼ P ∈ P . Then, for g ∈ F , RX(x) =
Rg(X)(g(x)) for all x ∈ R

d , and, in particular, E{Y |RX(X) = t} =
E{Y |Rg(X)(g(X)) = t} for all t ∈ (0, 1)d .

A special case of the previous theorem occurs when
we consider the group H ⊂ F of all coordinate-wise in-
creasing transformations on the covariates, that is, x �→
g(x) = (g1(x1), g2(x2), . . . , gd (xd )), where gi : R → R, i =
1, 2 . . . , d , is a strictly increasing function. The above theorem
can then be interpreted as if each covariate gets transformed
by an arbitrary strictly increasing transformation, the fractile
regression function will not change. This property is quite de-
sirable when we would like to standardize the covariates and

compare two regression functions, where the distribution of the
covariates in the two populations might be very different. Note
that, RP is invariant under the group of (linear) transformations
K = {g : R

d �→ R
d | g(x) = Dx + c}, where D is a lower trian-

gular nonsingular matrix with positive diagonal elements.
The next result shows that if we want the standardized regres-

sion function to be invariant under the group action F , then the
standardization T(X, ·) has to be a function of RP. In addition,
if we also want T(X, ·) to achieve distributional standardization
and belong to F , then RP is the only choice.

Theorem 2.2 Let (X, Y ) be as in Theorem 2.1, and suppose
that there exists a standardization T : P×R

d → E ⊂ R
d such

that E{Y |T(X, X) = t} = E{Y |T(g(X), g(X)) = t} for all t ∈
E and g ∈ F , and equality holds for all joint distributions
of (X, Y ), with X ∼ P ∈ P . Then T(P, x) must be a func-
tion of RP(x) for all x ∈ R

d and P ∈ P . Furthermore, if we
assume that T(X, X) ∼ Uniform(0, 1)d and T(X, ·) ∈ F , then
T(X, x) = RP(x) for all x ∈ R

d and X ∼ P ∈ P .

The computation of RP from a sample of independent, iden-
tically distributed (iid) data points X1, X2, . . . , Xn ∼ P ∈ P ,
where Xi = (Xi,1, Xi,2, . . . , Xi,d ) for i = 1, 2, . . . , n, requires
the estimation of the conditional distribution functions. In order
to estimate the conditional distributions, we may begin by esti-
mating the multivariate density f of X1 using the kernel density
estimator:

fn;1,2,...,d (x) = 1

n(h1,nh2,n . . . hd,n)

n∑
i=1

K

(
x1 − Xi,1

h1,n

)
× K

(
x2 − Xi,2

h2,n

)
. . . K

(
xd − Xi,d

hd,n

)
,

where K is a kernel function defined on R, hj,n is the bandwidth
parameter for the jth coordinate of the random vector at stage n,
for j = 1, 2, . . . , d, and x = (x1, x2, . . . , xd ) ∈ R

d . This joint
density estimate can then be used to compute estimates of the
conditional densities. The conditional densities are computed as
fn;j |1,2,...,j−1(xj |x1, x2, . . . , xj−1) = fn;1,2,...,j (x1,x2,...,xj )

fn;1,2,...,j−1(x1,x2,...,xj−1) , and
then used to estimate the conditional distribution func-
tions in a natural way as FPn,j |1,2,...,j−1(xj |x1, x2, . . . , xj−1) =∫ xj

−∞ fn;j |1,2,...,j−1(tj |x1, x2, . . . , xj−1)dtj . To compute the con-
ditional densities in the subsequent sections, we have used the
Gaussian kernel with bandwidths chosen by cross-validation
and the computation was done using the “sm” package in R
developed by Adrain Bowman and Adelchi Azzalini.

Let Rn be the estimated fractile standardization obtained from
the sample. Under appropriate conditions on the kernel and the
smoothing parameter(s) (e.g., when K is a bounded symmet-
ric density on R, ‖hn‖ → 0 and nh1,nh2,n, . . . , hd,n → ∞), it
can be shown that Rn is a uniformly consistent estimator of

RP, that is, supx∈Rd ‖Rn(x) − RP(x)‖ P→ 0. The result follows
from noting that under the regularity conditions, the estimated
conditional densities converge in probability to the their popula-
tion counterparts and an application of Scheffe’s theorem yields
the desired result. Note that for d = 1, as we directly estimate
Rn by the empirical distribution function of the covariate, the
Glivenko–Cantelli theorem gives the desired result.

Though the multivariate transform RP has nice invariance
properties and simple probabilistic interpretations, in high di-
mensions, it can be difficult to estimate, as it requires estimation
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of the conditional distribution functions. As the dimension d
increases, the density estimation becomes more difficult and the
computational complexity increases at an exponential rate. For
d greater than 4 or 5, the implementation of fractile regression
using the RP standardization becomes almost infeasible.

The fractile standardization RP is not equivariant under re-
ordering of the coordinates of the covariate vector which implies
that it lacks general affine equivariance. But as pointed out by
Van Keilegom and Hettmansperger (2002) and Serfling (2004)
that when the covariates of interest have a special physical in-
terpretation, as is the case in all our applications, there is no
interest in affinely transforming them. In such an application,
if there is a natural ordering of the importance of the covari-
ates, we advocate the use of the RP transform, conditioning
successively on the less important predictor. For example, in
Example 1 (in the Introduction), as body weight is known to
affect blood pressure (the response) more acutely than height,
the weight variable can be taken to be X1. In Example 2, be-
cause such an ordering of the covariates is not obvious, we
might like to use both orderings, (X1, X2) and (X2, X1), to con-
struct two fractile regression functions and compare them. Al-
ternatively, we can use a different procedure for standardization
of the covariate in such a situation, which is discussed in the next
section.

2.2 An Alternative to RP: The Marginal Rank Transform

Consider Example 2 in the Introduction. An economist
might want to compare the mean profitability for com-
panies with “median” sales and “median” paid-up capital
for the two populations. For d-dimensional covariates, such
comparisons involving the marginal quantiles of the covari-
ate vector can be accomplished by considering the function
m(t) = E{Y |X1 = F−1

1 (t1), . . . , Xd = F−1
d (td )} for the two

populations, where Fi is the marginal distribution function
of Xi , i = 1, 2, . . . , d, and t = (t1, t2, . . . , td ) ∈ (0, 1)d . This
leads to another nonparametric standardization of the covari-
ate vector based on the marginal rank transformation MP :
(x1, x2, . . . xd ) �→ (F1(x1), F2(x2), . . . , Fd (xd )). This standard-
ization retains the property of invariance possessed by RP under
the group of arbitrary coordinate-wise increasing transforma-
tions H (introduced in Section 2.1) of the covariates, that is,
Mg(X)(g(x)) = MX(x), for all x ∈ R

d and g ∈ H. In particular,
MP is invariant under the group of marginal scale and location
changes of the covariates. Further, MP is equivariant under the
relabeling (i.e., permutation) of the covariate variables, which
is not true for RP.

The standardized regression function is then de-
fined as m(t) = E{Y |MP(X) = t} for t ∈ (0, 1)d , and is re-
lated to the usual regression function µ(x) = E{Y |X =
x} through m(t) = µ(F−1

1 (t1), F−1
2 (t2), . . . , F−1

d (td )), where
t = (F1(x1), F2(x2), . . . , Fd (xd )). We can estimate the usual re-
gression function in any way we like, using nonparametric or
parametric techniques, and then estimate the marginal quantile
functions to estimate m.

The MP standardization is computationally much simpler
than the RP transform as it only requires the estimation of
univariate distribution functions. To compute Mn, the sample
analog of MP, from n iid data points, we replace Fi by the corre-
sponding empirical distribution function of the ith covariate. Us-
ing this estimator, it can be easily shown, by an application of the

Glivenko–Cantelli theorem, that supx∈Rd ‖Mn(x) − MP(x)‖ →
0 almost surely (a.s.) as n → ∞.

3. SMOOTH ESTIMATION OF FRACTILE
REGRESSION

In this section, we define smooth estimates of the stan-
dardized regression function. As pointed out by Stone (1977),
most nonparametric regression estimates can be expressed as
a weighted sum of the response values. We develop a simi-
lar kind of theory by using general weight functions satisfy-
ing some regularity conditions. Suppose that we have a sample
{(Xi , Yi)}ni=1 from a population in R

d+1 with a continuous den-
sity function, where Xi ∼ P ∈ P . Let (X, Y ) be a generic ran-
dom vector having the same joint distribution. For broader ap-
plicability, we describe the methodology for any standardization
H : R

d → E ⊂ R
d (which may or may not be RP or MP). For

notational convenience, we do not emphasize the dependence of
P on H, as P is fixed. We want to estimate the standardized re-
gression function m(t) = E{Y |H(X) = t} for t ∈ E. We define
the smooth estimated standardized regression function as

m̂n(t) =
n∑

i=1

YiWn,i(t) for t ∈ E, (2)

where Wn,i(t) is the weight function, which might de-
pend on Hn, the empirical or estimated value of H. Many
standard nonparametric regression estimates (e.g., kernel,
local polynomial, nearest neighbor, spline regressions) can
be expressed in the form of such weighted averages with
appropriate choices of weight functions. For instance, if
kernel based Nadaraya–Watson type weight function is used,

we have Wn,i(t) = K( t−Hn (Xi )
hn

)∑n
j=1 K(

t−Hn (Xj )

hn
)
, where K is a kernel

function defined on R
d , t = (t1, t2, . . . , td ) ∈ E, t−Hn(Xi )

hn
:=

( t1−Hn,1(Xi )
hn,1

,
t2−Hn,2(Xi )

hn,2
, . . . ,

td−Hn,d (Xi )
hn,d

), and hn,1, hn,2, . . . ,

hn,d are the smoothing bandwidths.

3.1 Some Asymptotic Results

Since it is well known that the standard nonparametric regres-
sion estimators are consistent under very general conditions, one
would expect similar asymptotic results to hold for fractile re-
gression estimates. This is indeed the case as is illustrated in the
following theorem, again stated for a general standardization.

Theorem 3.1. Fix t ∈ E. Suppose that m(t) = E{Y |H(X) =
t} is continuous on E and |m(u)| ≤ M for all u ∈ E; the condi-
tional variance of Yi given H(Xi) is bounded, that is, v(u) =
var{Yi |H(Xi) = u} ≤ K0 for all u ∈ E; and supx∈Rd ‖Hn(x) −
H(x)‖ P→ 0. Also assume the following conditions on the weight
functions:

(W1)
n∑

i=1

W 2
n,i(t)

P−→ 0 as n → ∞;

(W2)
n∑

i=1

Wn,i(t)
P−→ 1 as n → ∞;

(W3) the weights are asymptotically localized, that is, there
exists a sequence {δn}∞n=1, δn → 0 such that

∑n
i=1 |Wn,i(t)|

1{‖t−Hn(Xi )‖>δn}
P−→ 0 as n → ∞;
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Table 1. Ratio of the estimated IMSE for smoothed estimates of usual regression
and fractile regression functions when the data-generating model is (a)

Y = exp(−X) + ε (left panel) and (b) Y = X + ε (right panel)

X ε IMSE ratio X ε IMSE ratio

|N (0, 1)| N (0, 0.2) 1.10 |N (0, 1)| N (0, 1) 0.90
|N (0, 1)| N (0, 0.2X) 2.25 |N (0, 1)| N (0, X) 2.18
|t4| N (0, 0.2) 3.43
|t4| N (0, 0.2X) 4.81

(W4) there exists D ≥ 1 such that P (
∑n

i=1 |Wn,i(t)| ≤
D) = 1 for all n ≥ 1. Then, the conditional mean
squared error of m̂n(t) approaches 0 in probability. As

a consequence, m̂n(t)
P−→ m(t). Suppose now that (C1)

for every η > 0,
∑n

i=1
1
s2
n

∫
e2
i >η2 s2

n

W2
n,i

(t)

W 2
n,i(t)e

2
i dP → 0 a.s.,

where ei = Yi − E(Yi |Xi), for i = 1, 2, . . . , n. Letting s2
n =∑n

i=1 v(H(Xi))W 2
n,i(t), we have

m̂n(t) − E{m̂n(t)|X1, X2, . . . , Xn}
sn

d−→ N (0, 1)

conditional on the Xi’s, for almost all sequences
X1, X2, . . . , Xn.

Note that conditions (W1)–(W4) are similar to those used
by Stone (1977). Condition (C1) is essentially a version of the
well-known Lindeberg–Feller condition. In the following, we
briefly discuss the regularity conditions on the weight func-
tions. Recall that the estimated multivariate centered rank func-
tions Rn and Mn are uniformly consistent estimators of RP and
MP, respectively. For the Nadaraya–Watson type weight func-
tion, conditions (W2) and (W4) are immediate. For compactly
supported kernels, which are nonzero and bounded in a neigh-
borhood of 0, and also the standard Gaussian kernel, (W3) fol-
lows easily if ‖hn‖ −→ 0. Under the additional assumptions
(i) nhn,1hn,2, . . . , hn,d −→ ∞, (ii) the uniform consistency of
the estimated multivariate transform Hn, and (iii) the existence
of a nonvanishing density of H(X) in E, we can verify condi-
tion (W1). Condition (C1) can also be verified easily under the

above mentioned assumptions if the response is bounded. Thus,
for bounded response, as is the case in most of our applications,
the conclusions of Theorem 3.1 hold for estimates based on
the Nadaraya–Watson type weight function defined using the
multivariate transforms RP and MP. It must be noted that con-
ditions (W1)–(W4) and (C1) are also satisfied for other weight
functions, but we do not discuss them here.

Next we discuss an interesting optimality property of the
uniform distribution on [0, 1]d , the resulting distribution of
the RP-transformed covariates. Suppose that the covariate vec-
tor is standardized by the transformation H : R

d → [0, 1]d .
One plausible criterion to choose the optimal transforma-
tion might be to minimize the integrated asymptotic vari-
ance of the nonparametric function estimator [defined as in
(2)], that is, IAV = limn→∞ nhn,1, . . . , hn,d

∫
(0,1)d E{m̂n(t) −

E(m̂n(t))}2 dt. Note that IAV is related to the scientific issue of
reproducibility of the results obtained from a regression func-
tion estimate, when data are replicated, for instance, in repeated
trials of an experiment. For our kernel regression estimate, we
have the following result.

Theorem 3.2 Suppose that we are in a homoscedastic error
model, and conditions (i)–(iii) (described above) hold along with
‖hn‖ → 0. Then IAV is minimized when H(X) has uniform
distribution on [0, 1]d .

3.2 Finite Sample Performance of Fractile Regression

Consider a trivariate normal random vector (X1, X2, Y ) ∼
N (0, �) with � = (σi,j )3×3 such that σi,i = 1 and σi,j = 0.5 for

Figure 5. (a) Usual mean regression surfaces for Y |X1, X2, (b) estimated fractile regression surfaces, and (c) estimated MP-standardized
regression surfaces for Gaussian data.
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i �= j . To illustrate the usefulness of fractile regression, we con-
struct a second random vector (X′

1, X
′
2, Y ) where X′

1 = X2
1 and

X′
2 = X1.75

2 for positive values of X1 and X2, and X′
1 = X1 and

X′
2 = X2 for negative values of X1 and X2. We draw two samples

of size 400 each from the two distributions mentioned above.
Figure 5(a) shows the smoothed regression surfaces, whereas
Figure 5(b) shows the smoothed fractile regression surfaces, us-
ing the fractile standardization RP, for the two samples. It is easy
to see that the usual regression surfaces are not comparable and
look very different, whereas the two estimated fractile regres-
sion surfaces are very similar, as should be the case. Figure 5(c)
shows the MP-standardized regression surfaces, and again we
see that the regression surfaces are very similar and comparable.

In some situations, the use of fractile regression can provide
better [e.g., in terms of integrated mean squared error (IMSE)]
estimators of the underlying regression function. Tables 1 and 2
show the estimated IMSE in a simulation study, with one or two
covariates (using sample size 400 and 500 Monte Carlo replica-
tions) for four models: (a) Y = exp(−X) + ε, (b) Y = X + ε,
(c) Y = exp(−X1X2) + ε, and (d) Y = (X1 + X2)/2 + ε. For
a valid comparison (and also for computational simplicity), the
IMSE was approximated by evaluating the squared difference of
the estimator and the truth at all the data points and then taking
a simple average. We see that the estimated fractile regression
functions, using the RP standardization, have considerably lower
IMSEs in most of the cases. The estimated regression functions
perform poorly while estimating the mean response for extreme
covariate values, because of data sparsity and/or high error vari-
ance. For extreme values of covariates, the averaging (smooth-
ing) of the response involves only a few observations owing to
the small number of data points present in the smoothing neigh-
borhood, and this produces estimates with large variances. The
fractile regression functions perform better as the transformed
covariates are approximately uniformly distributed on [0, 1]d ,
and smoothing over a fixed bandwidth involves averaging with
similar number of observations, thereby producing more stable
results.

Notice that in models (a) and (c) where the regression func-
tions are bounded, fractile regression works better than usual
regression. This effect is more pronounced when we have un-
evenly distributed covariates and when the error distribution is
heteroscedastic (both phenomena are observed in most of our
examples). Note that the uneven distribution of covariates in the
simulation study is caused by the extreme observations gener-
ated from the heavy-tailed distributions. In the case of normal

Table 2. Ratio of the estimated IMSE for smoothed estimates of usual
regression and fractile regression functions with two covariates when

the data-generating model is (c) Y = exp(−X1X2) + ε and (d)
Y = (X1 + X2)/2 + ε

Model (X1, X2) ε IMSE ratio

(c) |N (0, 1)| × |N (0, 1)| N (0, 0.2) 1.35
(c) |N (0, 1)| × |N (0, 1)| N (0, 0.2X1) 1.77
(c) |t4| × |t4| N (0, 0.2) 2.62
(c) |t4| × |t4| N (0, 0.2X1) 3.39
(d) N2((0, 0), I2) N (0, 1) 0.70
(d) N2((0, 0), I2) N (0, |X1|) 1.14

linear models (b) and (d), the performance of fractile regres-
sion is slightly inferior to that of the usual regression functions.
Note that the true regression function in these models is lin-
ear, whereas the true fractile regression function has curvature,
and this makes its estimation more difficult, resulting in slightly
larger IMSEs. As the distribution of the transformed covariates
is Uniform(0, 1)d , the choice of the smoothing bandwidth for
estimating the fractile regression function is relatively simpler
and more stable.

4. FRACTILE REGRESSION IN REAL APPLICATIONS

Example 1. On an average, individuals in the Toto tribe are
heavier than those of the Bhutia tribe, and this makes the com-
parison of the usual regression surfaces difficult. Figure 6 shows
the fractile regression surfaces for the Bhutia and Toto tribes
along with the Mn-standardized regression function. The two
surfaces do not cross any longer because of a more appropri-
ate comparison of the regression surfaces. While comparing the
regression surfaces, it is more meaningful to compare blood
pressure of individuals in the same quantile group of height and
weight for the two tribes rather than their actual covariate val-
ues. The fractile standardization exactly achieves this purpose.
In Figure 1, the surfaces were plotted with matched covariate
values, but the matching covariates may belong to different frac-
tile groups leading to improper comparison of the corresponding
blood pressure values.

An increase in weight increases blood pressure (on an aver-
age) for both the populations, though the relation is much more
visible for the Toto tribe. The large peak in the blue surface in
Figure 1 corresponding to large values of weight and height is
absent in the fractile regression surfaces. On a careful investi-
gation, we saw that the spike was a result of uneven covariate
distribution and data sparsity around such large values of height
and weight. In such regions, the regression surfaces were es-
sentially obtained as a weighted average of a few very large
response values. We thus see that fractile regression surfaces
are robust to extreme values of covariates.

Example 2. In this example, we regress Y = ratio of profit
to sales against X1 = sales and X2 = paid-up capital. We study
data for the years 1997 and 2003. The fractile regression sur-
faces for the two samples are shown in Figure 7. The estimated
standardized regression surfaces (using both notions of stan-
dardization RP and MP) for the year 2003 lie almost completely
below those of 1997 indicating a fall in profit to sales ratio over
the years. This decrease in profitability might be due to sev-
eral reasons. One plausible reason for this might be an increase
in the competitiveness among the companies, which is due to
growth in the number of companies as well as the emergence
of foreign multinational companies over time. The analysis also
indicates that larger companies (i.e., companies with large sales
and paid-up capital) enjoy greater profitability, whereas, on an
average, those with low sales and high paid-up capital suffer the
worst losses, as might be expected. These features are not at all
prominent in the usual regression surfaces. It is very difficult to
compare the usual regression surfaces as shown in Figure 2 be-
cause of the large difference in the distributions of the covariates
corresponding to the two time points.
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Figure 6. Smooth standardized regression surfaces for comparing Y = blood pressure in the Bhutia (red) and Toto (blue) tribes in Example 1,
(a) using the standardization Rn with X1 = weight and X2 = height, (b) using the standardization Rn with the order of the covariates reversed,
and (c) using the standardization Mn.

4.1 A Further Example

The Household Expenditure and Income Data for Transitional
Economies (HEIDE) database contains data from household
survey maintained by the World Bank Group, and it includes
four countries in Eastern Europe and the former Soviet Union
(see http://www.worldbank.org/ for more information). It was
created as part of a project analyzing poverty and existing so-
cial assistance programs in the transitional economies. What
immediately arrests attention is the startling drop in income
and increase in inequality accompanying the transition of these
countries to market economies. We investigate this inequality in
income and compare the economic condition of the transitional
economies. A simple measure of the economic well-being of
a population can be taken as the proportion of expenditure on
food as a fraction of total expenditure per capita per household
(in USD). This proportion would be quite small for rich and
wealthy people, but for the poor it would be close to one. By
regressing this proportion on the total expenditure, we can get a

fair idea of the inequality in income and the economic condition
of the populations.

To illustrate our point, we consider datasets for two coun-
tries from the HEIDE database, namely, Poland (with 16,051
data points) and Bulgaria (with 2466 data points), and estimate
the regression functions. Figure 8 shows the usual regression
curves, regression curves with covariates standardized for loca-
tion and scale, and the smooth estimates of fractile regression
curves with proportion of expenditure on food as the response
and total expenditure per capita per household (in USD) as the
predictor. Both the regression curves in Figure 8(a) show an
initial decreasing trend but become very wiggly as total ex-
penditure increases. Also the ranges of the covariates are quite
different in the two populations even though both of them are
measured in USD. This might be partly because the data for the
two populations were collected at different time points (January
to June 1993 for Poland and January to June 1995 for Bulgaria).
It might also be partly due to the disparity in purchasing powers
of 1 USD in the two countries at two different time points. In

Figure 7. Smooth standardized regression surfaces for comparing Y = ratio of profit to sales for the years 1997 (red) and 2003 (blue) in
Example 2, (a) using the standardization RP with X1 = sales and X2 = paid-up capital, (b) using the standardization RP with the order of the
covariates reversed, and (c) using the standardization Mn.
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Figure 8. (a) Usual regression curves, (b) location and scale-adjusted regression curves, and (c) fractile curves, for proportion of expenditure
on food on total expenditure for Poland (in red, solid line) and Bulgaria (in blue, dashed line) as discussed in Section 4.1.

Figure 8(b), the two curves are more aligned, but still the wiggli-
ness for higher total expenditure values is disturbing. To make
the regression curves comparable, we need some standardiza-
tion of the covariates.

We would really like to compare the mean proportion of food
expenditure for the poor (or the rich) in one population with
that of the poor (or the rich) in the other population. The frac-
tile curves accomplish exactly this, enabling us to compare the
mean response values for fixed percentiles of total expenditure.
The transformed covariate values close to 0 correspond to the
very poor people and values close to 1 correspond to the richest
people in the populations if we take total expenditure as a mea-
sure of economic condition. From Figure 8(c), it appears that
the condition of households in Poland is uniformly economi-
cally better than those in Bulgaria. The standardization of the
covariate also eliminates the wiggliness of the earlier curves.

As total disposable income is another financial indicator, our
next step is to consider the regression problem with the fraction
of expenditure on food as the response and total expenditure
and total disposable income as the two covariates. We intend to
compare the regression surfaces for the Bulgarian and the Polish

populations. Figure 9(a) shows the usual regression surfaces,
while Figure 9(b) shows the coordinate-wise location and scale-
adjusted regression surfaces. Figure 9(c) shows the regression
surfaces when we standardize the covariate vector by subtracting
its mean vector and multiplying by the inverse of the square
root of the dispersion matrix. It is important to know whether
the crossing of the two surfaces at high covariate values is a
real feature, as that would imply sharper economic inequality
in Bulgaria (blue surface). But Figure 10 shows that the fractile
surfaces do not cross; they rather share a very similar pattern over
the entire domain of the covariates. This possibly reconfirms the
fact that the households in Poland were better off than those in
Bulgaria during the time of the survey.

4.2 Choice of the Standardization: RP Versus MP

In the preceding examples, we implemented both the multi-
variate standardizations RP and MP. In the following, we discuss
some of the advantages and disadvantages of the two methods.

Both RP and MP transform the covariate space to (0, 1)d and
achieve invariance under component-wise increasing functions.

Figure 9. (a) Usual regression surfaces, (b) location and scale-adjusted regression surfaces, and (c) regression surfaces when the covariates are
standardized by the inverse of the square root of the dispersion matrix for proportion of expenditure on food (as a fraction of total expenditure)
on total expenditure and total disposable income for the countries Poland (red) and Bulgaria (blue).
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Figure 10. Smooth standardized regression surfaces for comparing Y = proportion of expenditure on food for the countries Poland (red) and
Bulgaria (blue) (a) using the standardization Rn with X1 = total expenditure and X2 = total disposable income, (b) using the standardization
Rn and the order of the covariates reversed, and (c) using the standardization Mn.

But RP achieves invariance under the group F (see Section
2.1), which is in fact much larger than the group of component-
wise increasing transformations of the covariates. Recall from
Section 2 that Rn and Mn are uniformly consistent estimators
of RP and MP, respectively. Further, Mn is a n1/2-consistent
estimator of MP, which is a consequence of the fact that the
usual empirical process converges at n1/2-rate. However, for
d ≥ 2, Rn converges to RP at a slower rate, which depends
on d, because it involves estimation of conditional distribution
functions. As pointed out in Section 2.2, MP is computationally
simpler and does not depend on the ordering of the covariates.

But it is only RP that achieves the required joint distributional
standardization. MP, being a marginal standardization, does not
take into account the multivariate distribution of X and, as a con-
sequence, does not achieve joint distributional standardization.
Note that all the marginal distributions of the standardized co-
variate vector MP(X) are Uniform(0, 1), but the joint distribution
is not Uniform(0, 1)d unless the covariates are independent. The
multivariate uniform distribution of the RP-transformed covari-

ates also has a salutary effect on the estimation of the regression
function as demonstrated in Theorem 3.2.

In situations, where the covariates are correlated among them-
selves, as in all the examples considered in this section, MP leads
to an inadequate standardization of the covariates for the two
populations under comparison. On the other hand, RP yields
an adequate standardization of the covariate distributions by
not only standardizing the marginal distributions but also the
joint distributions. Figure 11 shows the scatterplots of the Mn-
transformed covariates for the three examples discussed in this
section. We note that the transformed covariates have signif-
icant correlations between themselves, varying from 0.55 to
0.78. Further, the Mn-transformed covariate space can still have
regions of data sparsity within (0, 1)d , as can be seen in Figure
11(b). Recall from Figure 7 that while comparing Y = ratio
of profit to sales for the years 1997 and 2003 in Example 2
with X1 = sales and X2 = paid-up capital, the figure corre-
sponding to the Mn-transformed covariates still shows cross-
ings of the two regression surfaces at the two extreme corners,
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Figure 11. Scatterplot of the Mn-transformed covariates in the three real examples: (a) for Bhutia (red) and Toto (blue) tribes with X1 = weight
and X2 = height; (b) for the years 1997 (red) and 2003 (blue) with X1 = sales and X2 = paid-up capital; and (c) for Poland (red) and Bulgaria
(blue) with X1 = total expenditure and X2 = total disposable income.
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a feature that is not seen in the Rn-transformed regression
surfaces.

Heuristically, one can think of MP as a nonparametric version
of the usual coordinate-wise location and scale standardization,
which has no effect on the correlation structure of the covariate
distribution. RP, on the other hand, can be viewed as a nonpara-
metric analog of the well-known standardization based on the
subtraction of the mean vector and multiplication by the inverse
of the square root of the dispersion matrix.

5. CONCLUDING REMARKS

In this article, we discuss standardization of covariates using
the fractile transformation RP in a regression setup to aid the
comparison of two (or more) regression functions when the co-
variate vectors in the different populations have different distri-
butions and supports. The RP transform achieves distributional
standardization, that is, the transformed covariates always have
a common Uniform(0, 1)d distribution, and the corresponding
fractile regression function possesses useful invariance proper-
ties under groups of transformations acting on the space of co-
variates. We also discuss the marginal transform MP and study
its equivariance/invariance properties. We develop smooth es-
timates of the transformed regression functions and illustrate
their asymptotic properties.

Let us note that the MP transform is particularly appealing
when we assume an additive structure in the regression func-
tion, that is, µ(x) = θ0 +∑d

i=1 θi(xi) (see Stone 1985; Hastie
and Tibshirani 1990). In this case, the fractile regression func-
tion using the MP transform also has an additive structure
and can be expressed as m(t) = θ0 +∑d

i=1 θi(F
−1
i (ti)), where

t = (t1, t2, . . . , td ). This, in particular, facilitates estimation of
m(t) using the backfitting algorithm (see Hastie and Tibshirani
1990), and the asymptotic properties of the estimator can be
derived using techniques similar to that in Sen (2005).

Though it is not very relevant in the examples considered in
this article, sometimes affine or rotational equivariance of the
chosen standardization may be an important requirement. For
instance, in order to compare regression surfaces in a problem
involving spatial covariates (e.g., rainfall data recorded in dif-
ferent locations in two geographical regions), orthogonal/affine
equivariance is a natural requirement for the method of stan-
dardization for the covariates because an inference procedure
should preferably not be affected by the choice of spatial co-
ordinate systems. In such situations, we propose the use of the
spatial rank transformation (discussed below), obtained by in-
verting the spatial quantile (or geometric quantile), introduced
and studied by Chaudhuri (1996) and Koltchinskii (1997) (also
see Breckling and Chambers 1988).

We define the spatial rank function (see Möttönen and Oja
1995) as SP(x) = EP( x−X

‖x−X‖ ) for all x ∈ R
d , where X ∼ P.

Suppose that we have a sample X1, X2, . . . , Xn ∼ P in
R

d . The empirical spatial rank function is defined as
Sn(x) = 1

n

∑n
i=1

x−Xi

‖x−Xi‖ . Computation of Sn(x) is simple, and
its asymptotic properties are known. From Theorem (5.5) in
Koltchinskii (1997), it follows that supx∈Rd ‖Sn(x) − SP(x)‖ →
0 a.s. as n → ∞. See Serfling (2004) for a detailed account
of the compelling strong points possessed by the spatial rank
function.

Unlike RP, SP is equivariant under the group of orthog-
onal linear transformations of X, that is, for the group of
transformations x �→ g(x) := Ax, where A is orthogonal, we
have Sg(X)(g(x)) = ASX(x). This ensures the equivariance of
the corresponding standardized regression function under such
transformations, that is, mg(X)(t) := E{Y |Sg(X)(g(X)) = t} =
mX(A′t), and makes it a particularly useful standardization
tool when dealing with spherically symmetric covariate dis-
tributions. As a consequence, SP, like MP, is equivariant un-
der permutations of the coordinates of X. However, unlike
RP or MP, SP is not equivariant under arbitrary increasing
transformations of the marginal variables. In fact, SP is also
not equivariant under general affine transformations. However,
affine equivariant versions of the spatial multivariate quan-
tile using the transformation–retransformation approach (see
Chakraborty, Chaudhuri, and Oja 1998; Chakraborty 2001) can
be used to extend the equivariance of the SP-standardized re-
gression function under affine transformations, making it useful
in problems involving covariates having elliptically symmetric
distributions. Also, see Serfling (2010) for another related notion
of centered rank function and its affine equivariant/invariance
properties.

APPENDIX

Proof of Theorem 2.1. The ith coordinate of RX(x) is
FX,i|1,2,...,i−1(xi |x1, . . . , xi−1), where FX,i|1,2,...,i−1 is the conditional dis-
tribution function of Xi given X1, X2, . . . , Xi−1, for i = 1, 2, . . . , d.
The result now follows from noting that the ith coordinate of
Rg(X)(g(x)) is Fg(X),i|1,2,...,i−1(gi(xi) | g1(x1), . . . , gi−1(xi−1)), which
simplifies as

P (gi(Xi) ≤ gi(xi) | g1(X1) = g1(x1), . . . , gi−1(Xi−1) = gi−1(xi−1))

= P (Xi ≤ xi | X1 = x1, X2 = x2, . . . , Xi−1 = xi−1)

= FX,i|1,2,...,i−1(xi |x1, . . . , xi−1). �
Proof of Theorem 2.2. We first show that the following two state-

ments are equivalent.

(i) E{Y |T(X, X) = t} = E{Y |T(g(X), g(X)) = t} for all t ∈ E, for all
random vectors (X, Y ) with X ∼ P ∈ P .

(ii) T(X, x) = T(g(X), g(x)) for all x ∈ R
d .

Note that T(X, x) = T(g(X), g(x)) for all x ∈ R
d trivially implies

E{Y |T(X, X) = t} = E{Y |T(g(X), g(X)) = t} (A.1)

and hence (ii) ⇒ (i). Also, choosing Y = Xi and simplifying the con-
ditional expectations on both sides of (3), for i = 1, 2, . . . , d, it follows
that (i) ⇒ (ii). Therefore we have

T(X, x) = T(g(X), g(x)) (A.2)

for all x ∈ R
d , for all g ∈ F .

Fix P ∈ P , and take g = RP. Note that the transformation RP :
R

d → R
d belongs to F . The result now follows immediately from (4)

and observing that g(X) ∼ Uniform(0, 1)d . Thus T(X, x) = h(RP(x)),
for some h : (0, 1)d → E.

Now, if we assume that T(X, X) = h(U) ∼ U =
(U1, U2, . . . , Ud )

d= Uniform(0, 1)d , we have E = (0, 1)d . Also,
if h = (h1, h2, . . . , hd ) ∈ F , noting that h1(U1) ∼ Uniform(0, 1),
we have P (h1(U1) ≤ u1) = u1 for all u1 ∈ (0, 1) which implies
h1(u1) = u1 for all u1 ∈ (0, 1). Using this and the fact that h ∈ F , we
can sequentially show that hi(u1, u2, . . . , ui) = ui for i = 1, 2, . . . , d.
Thus, h is the identity function and this proves the result. �
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Proof of Theorem 3.1. In the following theorem, all expectations are
conditional expectations given the Xi’s, i = 1, 2, . . . , n. For t ∈ E, the
conditional variance term, E{m̂n(t) − E(m̂n(t))}2, can be simplified as

E

[
n∑

i=1

{Yi − m(H(Xi))}Wn,i(t)

]2

=
n∑

i=1

E {Yi − m(H(Xi))}2 W 2
n,i(t)

(A.3)
which is bounded by K0

∑n

i=1 W 2
n,i(t) = oP (1), by assumption (W1)

and the fact that v(·) is bounded. We decompose the conditional bias∑n

i=1 m(H(Xi))Wn,i(t) − m(t) as

n∑
i=1

{m(H(Xi)) − m(t)}Wn,i(t) + m(t)

{
n∑

i=1

Wn,i(t) − 1

}
. (A.4)

Note that the second term in (6) goes to 0 in probability by assumption

(W2). We will show that
∑n

i=1 Vn,i

P−→ 0 as n → ∞, where Vn,i =
{m(H(Xi)) − m(t)} Wn,i(t). Let ε > 0 and η > 0 be given. To simplify
writing, we denote the event {‖t − Hn(Xi)‖ ≤ δn} as En,i . Therefore,

P

(∣∣∣∣∣
n∑

i=1

Vn,i

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
n∑

i=1

Vn,i1En,i

∣∣∣∣∣ > ε/2

)

+ P

(∣∣∣∣∣
n∑

i=1

Vn,i1Ec
n,i

∣∣∣∣∣ > ε/2

)
≤ P

(∣∣∣∣∣
n∑

i=1

Vn,i1En,i

∣∣∣∣∣ > ε/2

)
+ η/2 for all n ≥ N1 (A.5)

as P (|∑n

i=1 Vn,i1Ec
n,i

| > ε/2) ≤ P (2M
∑n

i=1 |Wn,i(t)|1Ec
n,i

> ε/2) ≤
η/2 for all n ≥ N1 by (W3) and the fact that m(t) is bounded.

Let Bn = supx∈R
‖Hn(x) − H(x)‖. By assumption, we know that

Bn

P−→ 0. Observe that, ‖t − Hn(Xi)‖ ≤ δn and ‖H(Xi) − Hn(Xi)‖ ≤
Bn implies that ‖H(Xi) − t‖ ≤ δn + Bn for all i = 1, 2, . . . , n. Also
notice that as m(·) is continuous at t, there exists δ > 0 such that
‖H(Xi) − t‖ ≤ δ ⇒ |m(H(Xi)) − m(t)| ≤ ε

2D
. Now,

P

(∣∣∣∣∣
n∑

i=1

Vn,i1En,i

∣∣∣∣∣ > ε/2

)
≤ P

(
n∑

i=1

∣∣Vn,i

∣∣ 1En,i
> ε/2

)

≤P

(
max
1≤i≤n

|m(H(Xi)) − m(t)| 1En,i

n∑
i=1

|Wn,i(t)| > ε/2

)

≤P

(
max
1≤i≤n

|m(H(Xi)) − m(t)| 1En,i
>

ε

2D

)
≤P (δn + Bn >δ) < η/2

(A.6)

for all n ≥ N2 as δn + Bn

P−→ 0. The last two inequalities follow be-
cause |m(H(Xi)) − m(t)| 1En,i

> ε

2D
implies that ‖H(Xi) − t‖ > δ and

‖t − Hn(Xi)‖ ≤ δn, which in turn implies that δn + Bn > δ.
Using (6), (7), and (8), we conclude P (|∑n

i=1{m(H(Xi)) −
m(t)}Wn,i(t)| > ε) < η for all n ≥ max {N1, N2}. Thus, the conditional
mean squared error of m̂n(t) approaches 0 in probability. An application
of Chebyshev’s inequality completes the proof of the weak consistency
of m̂n(t).

Note that m̂n(t) − E{m̂n(t)} = ∑n

i=1 Wn,i(t)ei , where ei = Yi −
E(Yi |Xi). To find the conditional limiting distribution of∑n

i=1 Wn,i(t)ei given the Xi’s, let us define Zn,i = Wn,i(t)ei for i =
1, 2, . . . , n, and Sn = ∑n

i=1 Zn,i . We use the Lindeberg–Feller cen-
tral limit theorem to find the asymptotic distribution of Sn. Observe
that E(Zn,i) = 0 and σ 2

n,i = var(Zn,i) = v(H(Xi))W 2
n,i(t). Then s2

n =∑n

i=1 σ 2
n,i . For any η > 0 and nonzero W 2

n,i(t), the Lindeberg–Feller
condition is exactly (C1), and thus the result follows. �

Proof of Theorem 3.2. Under the conditions of the the-
orem, using (5) and noticing that nhn,1 . . . hn,d

∑n

i=1 W 2
n,i(t) ≈

∑n

i=1 n−1(hn,1 . . . hn,d )−1K2
h((t − H(Xi))/h)/f 2(t) for the

Nadaraya–Watson estimator, where f is the density of H(X), it
can be shown that IAV = {σ 2

∫
Rd K2(u)du}× ∫

[0,1]d {1/f (t)}dt.
The result now follows from the fact that the minimizer of∫

[0,1]d {1/f (t)}dt with the constraint
∫

[0,1]d f (t)dt = 1 is obtained when
f ≡ 1 on [0, 1]d . The result is also true for the local linear estimator
[see Section 5.9, p. 140, of Wand and Jones (1995) for the key step in
the proof] and many other linear smoothers. �

[Received October 2009. Revised January 2011.]
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