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Abstract

This paper deals with the consistency of the least squares estimator of a convex regression func-
tion when the predictor is multidimensional. We characterize and discuss the computation of such an
estimator via the solution of certain quadratic and linear programs. Mild sufficient conditions for the
consistency of this estimator and its subdifferentials in fixed and stochastic design regression settings
are provided. We also consider a regression function which is known to be convex and component-
wise nonincreasing and discuss the characterization, computation and consistency of its least squares
estimator.

1 Introduction

Consider a closed, convex set X ⊂ Rd , for d ≥ 1, with nonempty interior and a regression model of the
form

Y =φ(X )+ε (1)

where X is a X-valued random vector, ε is a random variable with E (ε |X ) = 0, and φ : Rd → R is an
unknown convex function. Given independent observations (X1,Y1), . . . , (Xn ,Yn) from such a model, we
wish to estimate φ by the method of least squares, i.e., by finding a convex function φ̂n which minimizes
the discrete L2 norm (

n∑
k=1

∣∣Yk −ψ(Xk )
∣∣2

) 1
2

among all convex functions ψ defined on the convex hull of X1, . . . , Xn . In this paper we characterize the
least squares estimator, provide means for its computation, study its finite sample properties and prove
its consistency.

The problem just described is a nonparametric regression problem with known shape restriction
(convexity). Such problems have a long history in the statistical literature with seminal papers like Brunk
(1955), Grenander (1956) and Hildreth (1954) written more than 50 years ago, albeit in simpler settings.
The former two papers deal with the estimation of monotone functions while the latter discusses least
squares estimation of a concave function whose domain is a subset of the real line. Since then, many
results on different nonparametric shape restricted regression problems have been published. For in-
stance, Brunk (1970) and, more recently, Zhang (2002) have enriched the literature concerning isotonic
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regression. In the particular case of convex regression, Hanson and Pledger (1976) proved the consis-
tency of the least squares estimator introduced in Hildreth (1954). Some years later, Mammen (1991)
and Groeneboom et al. (2001) derived, respectively, the rate of convergence and asymptotic distribution
of this estimator. Some alternative methods of estimation that combine shape restrictions with smooth-
ness assumptions have also been proposed for the one-dimensional case; see, for example, Birke and
Dette (2006) where a kernel-based estimator is defined and its asymptotic distribution derived.

Although the asymptotic theory of the one-dimensional convex regression problem is well under-
stood, not much has been done in the multidimensional scenario. The absence of a natural order struc-
ture in Rd , for d > 1, poses a natural impediment in such extensions. A convex function on the real
line can be characterized as an absolutely continuous function with increasing first derivative (see, for
instance, Folland (1999), Exercise 42.b, page 109). This characterization plays a key role in the computa-
tion and asymptotic theory of the least squares estimator in the one-dimensional case. By contrast, anal-
ogous results for convex functions of several variables involve more complicated characterizations using
either second-order conditions (as in Dudley (1977), Theorem 3.1, page 163) or cyclical monotonicity (as
in Rockafellar (1970), Theorems 24.8 and 24.9, pages 238-239). Interesting differences between convex
functions on R and convex functions on Rd are given in Johansen (1974) and Brons̆teı̆n (1978).

Recently there has been considerable interest in shape restricted function estimation in multidimen-
sion. In the density estimation context, Cule et al. (2008) deal with the computation of the nonparamet-
ric maximum likelihood estimator of a multidimensional log-concave density, while Cule and Samworth
(2009), Schuhmacher et al. (2009) and Schuhmacher and Dümbgen (2010) discuss its consistency and
related issues. Seregin and Wellner (2009) study the computation and consistency of the maximum likeli-
hood estimator of convex-transformed densities. This paper focuses on estimating a regression function
which is known to be convex. To the best of our knowledge this is the first attempt to systematically study
the characterization, computation, and consistency of the least squares estimator of a convex regression
function with multidimensional covariates in a completely nonparametric setting.

In the field of econometrics some work has been done on this multidimensional problem in less gen-
eral contexts and with more stringent assumptions. Estimation of concave and/or componentwise non-
decreasing functions has been treated, for instance, in Banker and Maindiratta (1992), Matzkin (1991),
Matzkin (1993), Beresteanu (2007) and Allon et al. (2007). The first two papers define maximum likeli-
hood estimators in semiparametric settings. The estimators in Matzkin (1991) and Banker and Maindi-
ratta (1992) are shown to be consistent in Matzkin (1991) and Maindiratta and Sarath (1997), respectively.
A maximum likelihood estimator and a sieved least squares estimator have been defined and techniques
for their computation have been provided in Allon et al. (2007) and Beresteanu (2007), respectively.

The method of least squares has been applied to multidimensional concave regression in Kuosmanen
(2008). We take this work as our starting point. In agreement with the techniques used there, we define
a least squares estimator which can be computed by solving a quadratic program. We argue that this
estimator can be evaluated at a single point by finding the solution to a linear program. We then show
that, under some mild regularity conditions, our estimator can be used to consistently estimate both, the
convex function and its subdifferentials.

Our work goes beyond those mentioned above in the following ways: Our method does not require
any tuning parameter(s), which is a major drawback for most nonparametric regression methods, such
as kernel-based procedures. The choice of the tuning parameter(s) is especially problematic in higher
dimensions, e.g., kernel based methods would require the choice of a d ×d matrix of bandwidths. The
sets of assumptions that most authors have used to study the estimation of a multidimensional convex
regression function are more restrictive and of a different nature than the ones in this paper. As opposed
to the maximum likelihood approach used in Banker and Maindiratta (1992), Matzkin (1991), Allon et al.
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(2007) and Maindiratta and Sarath (1997), we prove the consistency of the estimator keeping the distribu-
tion of the errors unspecified; e.g., in the i.i.d. case we only assume that the errors have zero expectation
and finite second moment. The estimators in Beresteanu (2007) are sieved least squares estimators and
assume that the observed values of the predictors lie on equidistant grids of rectangular domains. By
contrast, our estimators are unsieved and our assumptions on the spatial arrangement of the predictor
values are much more relaxed. In fact, we prove the consistency of the least squares estimator under
both fixed and stochastic design settings; we also allow for heteroscedastic errors. In addition, we show
that the least squares estimator can also be used to approximate the gradients and subdifferentials of the
underlying convex function.

It is hard to overstate the importance of convex functions in applied mathematics. For instance, opti-
mization problems with convex objective functions over convex sets appear in many applications. Thus,
the question of accurately estimating a convex regression function is indeed interesting from a theoreti-
cal perspective. However, it turns out that convex regression is important for numerous reasons besides
statistical curiosity. Convexity also appears in many applied sciences. One such field of application is
microeconomic theory. Production functions are often supposed to be concave and componentwise
nondecreasing. In this context, concavity reflects decreasing marginal returns. Concavity also plays a
role in the theory of rational choice since it is a common assumption for utility functions, on which it
represents decreasing marginal utility. The interested reader can see Hildreth (1954), Varian (1982a) or
Varian (1982b) for more information regarding the importance of concavity/convexity in economic the-
ory.

The paper is organized as follows. In Section 2 we discuss the estimation procedure, characterize the
estimator and show how it can be computed by solving a positive semidefinite quadratic program and a
linear program. Section 3 starts with a description of the deterministic and stochastic design regression
schemes. The statement and proof of our main results are also included in Section 3. In Section 4 we
provide the proofs of the technical lemmas used to prove the main theorem. Section A, the Appendix,
contains some results from convex analysis and linear algebra that are used in the paper and may be of
independent interest.

2 Characterization and finite sample properties

We start with some notation. For convenience, we will regard elements of the Euclidian space Rm as
column vectors and denote their components with upper indices, i.e, any z ∈ Rm will be denoted as
z = (z1, z2, . . . , zm). The symbol Rwill stand for the extended real line. Additionally, for any set A ⊂Rd we
will denoted as Conv (A) its convex hull and we’ll write Conv (X1, . . . , Xn) instead of Conv ({X1, . . . , Xn}).
Finally, we will use 〈·, ·〉 and | · | to denote the standard inner product and norm in Euclidian spaces,
respectively.

For X = {X1, . . . , Xn} ⊂X⊂Rd , consider the set KX of all vectors z = (z1, . . . , zn)′ ∈Rn for which there
is a convex function ψ : X→ R such that ψ(X j ) = z j for all j = 1, . . . ,n. Then, a necessary and sufficient

condition for a convex functionψ to minimize the sum of squared errors is thatψ(X j ) = Z j
n for j = 1, . . . ,n,

where

Zn = argmin
z∈KX

{
n∑

k=1

∣∣∣Yk − zk
∣∣∣2

}
. (2)

The computation of the vector Zn is crucial for the estimation procedure. We will show that such a
vector exists and is unique. However, it should be noted that there are many convex functionsψ satisfying

ψ(X j ) = Z j
n for all j = 1, . . . ,n. Although any of these functions can play the role of the least squares
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estimator, there is one such function which is easily evaluated in Conv (X1, . . . , Xn). For computational
convenience, we will define our least squares estimator φ̂n to be precisely this function and describe it
explicitly in (7) and the subsequent discussion.

In what follows we show that both, the vector Zn and the least squares estimator φ̂n are well-defined
for any n data points (X1,Y1), . . . , (Xn ,Yn). We will also provide two characterizations of the set KX and
show that the vector Zn can be computed by solving a positive semidefinite quadratic program. Finally,
we will prove that for any x ∈Conv (X1, . . . , Xn) one can obtain φ̂n(x) by solving a linear program.

2.1 Existence and uniqueness

We start with two characterizations of the set KX . The developments here are similar to those in Allon
et al. (2007) and Kuosmanen (2008).

Lemma 2.1 (Primal Characterization) Let z = (z1, . . . , zn) ∈ Rn . Then, z ∈ KX if and only if for every
j = 1, . . . ,n, the following holds:

z j = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1,
n∑

k=1
θk Xk = X j , θ ≥ 0, θ ∈Rn

}
, (3)

where the inequality θ ≥ 0 holds componentwise.

Proof: Define the function g :Rd →R by

g (x) = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1,
n∑

k=1
θk Xk = x, θ ≥ 0, θ ∈Rn

}
(4)

where we use the convention that inf(;) =+∞. By Lemma A.1 in the Appendix, g is convex and finite on
the X j ’s. Hence, if z j satisfies (3) then z j = g (X j ) for every j = 1, . . . ,n and it follows that z ∈KX .

Conversely, assume that z ∈ KX and g (X j ) 6= z j for some j . Note that g (Xk ) ≤ zk for any k from the
definition of g . Thus, we may suppose that g (X j ) < z j . As z ∈ KX , there is a convex function ψ such
that ψ(Xk ) = zk for all k = 1, . . . ,n. Then, from the definition of g (X j ) there exist θ0 ∈ Rn with θ0 ≥ 0 and
θ1

0 + . . .+θn
0 = 1 such that θ1

0 X1 + . . .+θn
0 Xn = X j and

n∑
k=1

θk
0ψ(Xk ) =

n∑
k=1

θk
0 zk < z j =ψ(X j ) =ψ

(
n∑

k=1
θk

0 Xk

)
,

which leads to a contradiction because ψ is convex. �

We now provide an alternative characterization of the set KX based on the dual problem to the linear
program used in Lemma 2.1.

Lemma 2.2 (Dual Characterization) Let z ∈Rn . Then, z ∈KX if and only if for any j = 1, . . . ,n we have

z j = sup
{
〈ξ, X j 〉+η : 〈ξ, Xk 〉+η≤ zk ∀ k = 1, . . . ,n, ξ ∈Rd , η ∈R

}
. (5)

Moreover, z ∈KX if and only if there exist vectors ξ1, . . . ,ξn ∈Rd such that

〈ξ j , Xk −X j 〉 ≤ zk − z j ∀ k, j ∈ {1, . . . ,n}. (6)
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Proof: According to the primal characterization, z ∈KX if and only if the linear programs defined by (3)
have the z j ’s as optimal values. The linear programs in (5) are the dual problems to those in (3). Then,
the duality theorem for linear programs (see Luenberger (1984), page 89) implies that the z j ’s have to be
the corresponding optimal values to the programs in (5).

To prove the second assertion let us first assume that z ∈ KX . For each j ∈ {1, . . . ,n} take any solu-
tion (ξ j ,η j ) to (5). Then by (5), η j = z j −〈ξ j , X j 〉 and the inequalities in (6) follow immediately because
we must have 〈ξ j , Xk〉+η j ≤ zk for any k ∈ {1, . . . ,n}. Conversely, take z ∈ Rn and assume that there are
ξ1, . . . ,ξn ∈ Rd satisfying (6). Take any j ∈ {1, . . . ,n}, η j = z j −〈ξ j , X j 〉 and θ to be the vector in Rn with
components θk = δk j , where δk j is the Kronecker δ. It follows that 〈ξ j , Xk〉 +η j ≤ zk ∀ k = 1, . . . ,n so
(ξ j ,η j ) is feasible for the linear program in (5). In addition, θ is feasible for the linear program in (3) so
the weak duality principle of linear programming (see Luenberger (1984), Lemma 1, page 89) implies that
〈ξ, X j 〉+η ≤ z j for any pair (ξ,η) which is feasible for the problem in the right-hand side of (5). We thus
have that z j is an upper bound attained by the feasible pair (ξ j ,η j ) and hence (5) holds for all j = 1, . . . ,n.
�

Both, the primal and dual characterizations are useful for our purposes. The primal plays a key role
in proving the existence and uniqueness of the least squares estimator. The dual is crucial for its compu-
tation.

Lemma 2.3 The set KX is a closed, convex cone in Rn and the vector Zn satisfying (2) is uniquely defined.

Proof: That KX is a convex cone follows trivially from the definition of the set. Now, if z ∉ KX ,
then there is j ∈ {1, . . . ,n} for which z j > g (X j ) with the function g defined as in (4). Thus, there is
θ0 ∈ Rn with θ0 ≥ 0 and θ1

0 + . . .+ θn
0 = 1 such that θ1

0 X1 + . . .+ θn
0 Xn = X j and

∑n
k=1θ

k
0 zk < z j . Setting

δ = 1
2

(
z j −∑n

k=1θ
k
0 zk

)
it is easily seen that for all ζ ∈ ∏n

k=1(zk −δ, zk +δ) we still have
∑n

k=1θ
k
0 ζ

k < ζ j

and thus ζ ∉ KX . Therefore we have shown that for any z ∉ KX there is a neighborhood U of z with
U ⊂ Rn \ KX . Therefore, KX is closed and the vector Zn is uniquely determined as the projection of
(Y1, . . . ,Yn) ∈Rn onto the closed convex set KX (see Conway (1985), Theorem 2.5, page 9). �

We are now in a position to define the least squares estimator. Given observations (X1,Y1), . . . , (Xn ,Yn)
from model (1), we take the nonparametric least squares estimator to be the function φ̂n :Rd →R defined
by

φ̂n (x) = inf

{
n∑

k=1
θk Z k

n :
n∑

k=1
θk = 1,

n∑
k=1

θk Xk = x, θ ≥ 0, θ ∈Rn

}
(7)

for any x ∈Rd . Here we are taking the convention that inf(;) =+∞. This function is well-defined because
the vector Zn exists and is unique for the sample. The estimator is, in fact, a polyhedral convex function
(i.e., a convex function whose epigraph is a polyhedral; see Rockafellar (1970), page 172) and satisfies, as
a consequence of Lemma A.1,

φ̂n(x) = sup
ψ∈KX ,Zn

{ψ(x)},

where KX ,Zn is the collection of all convex functions ψ : Rd → R such that ψ(X j ) ≤ Z j
n for all j = 1, . . . ,n.

Thus, φ̂n is the largest convex function that never exceeds the Z j
n ’s. It is immediate that φ̂n is indeed a

convex function (as the supremum of any family of convex functions is itself convex). The primal char-

acterization of the set KX implies that φ̂n(X j ) = Z j
n for all j = 1, . . . ,n.
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2.2 Finite sample properties

In the following lemma we state some of the most important finite sample properties of the least squares
estimator defined by (7).

Lemma 2.4 Let φ̂n be the least squares estimator obtained from the sample (X1,Y1), . . . , (Xn ,Yn). Then,

(i)
n∑

k=1
(ψ(Xk )−φ̂n(Xk ))(Yk −φ̂n(Xk )) ≤ 0 for any convex functionψwhich is finite on Conv (X1, . . . , Xn);

(ii)
n∑

k=1
φ̂n(Xk )(Yk − φ̂n(Xk )) = 0;

(iii)
n∑

k=1
Yk =

n∑
k=1

φ̂n(Xk );

(iv) the set on which φ̂n <∞ is Conv (X1, . . . , Xn);

(v) for any x ∈ Rd the map (X1, . . . , Xn ,Y1, . . . ,Yn) ,→ φ̂n(x) is a Borel-measurable function from Rn(d+1)

into R.

Proof: Property (i ) follows from Moreau’s decomposition theorem, which can be stated as:
Consider a closed convex set C on a Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖. Then, for
any x ∈ H there is only one vector xC ∈ C satisfying ‖x − xC ‖ = argminξ∈C {‖x − ξ‖}. The vector xC is
characterized by being the only element of C for which the inequality 〈ξ− xC , x − xC 〉 ≤ 0 holds for every
ξ ∈C (see Moreau (1962) or Song and Zhengjun (2004)).

Taking ψ to be κφ̂n and letting κ vary through (0,∞) gives (i i ) from (i ). Similarly, (i i i ) follows from
(i ) by letting ψ to be φ̂n ±1. Property (i v) is obvious from the definition of φ̂n .

To see why (v) holds, we first argue that the map (X1, . . . , Xn ,Y1, . . . ,Yn) ,→ Zn is measurable. This fol-
lows from the fact that Zn is the solution to a convex quadratic program and thus can be found as a limit
of sequences whose elements come from arithmetic operations with (X1, . . . , Xn , Y1, . . . ,Yn). Examples of
such sequences are the ones produced by active set methods, e.g, see Boland (1997); or by interior-point
methods (see Kapoor and Vaidya (1986) or Mehrotra and Sun (1990)). The measurability of φ̂n(x) follows
from a similar argument, since it is the optimal value of a linear program whose solution can be obtained
from arithmetic operations involving just (X1, . . . , Xn ,Y1, . . . ,Yn) and Zn (e.g., via the well-known simplex
method; see Nocedal and Wright (1999), page 372 or Luenberger (1984), page 30). �

2.3 Computation of the estimator

Once the vector Zn defined in (2) has been obtained, the evaluation of φ̂n at a single point x can be
carried out by solving the linear program in (7). Thus, we need to find a way to compute Zn . And here the
dual characterization proves of vital importance, since it allows us to compute Zn by solving a quadratic
program.

Lemma 2.5 Consider the positive semidefinite quadratic program

min
∑n

k=1 |Yk − zk |2
subject to 〈ξk , X j −Xk〉 ≤ z j − zk ∀ k, j = 1, . . . ,n

ξ1, . . . ,ξn ∈Rd , z ∈Rn .
(8)
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Then, this program has a unique solution Zn in z, i.e., for any two solutions (ξ1, . . . ,ξn , z) and (τ1, . . . ,τn ,ζ)
we have z = ζ= Zn . This solution Zn is the only vector in Rn which satisfies (2).

Proof: From Lemma 2.2 if (ξ1, . . . ,ξn , z) belongs in the feasible set of this program, then z ∈ KX . More-
over, for any z ∈ KX there are ξ1, . . . ,ξn ∈ Rd such that (ξ1, . . . ,ξn , z) belongs to the feasible set of the
quadratic program. Since the objective function only depends on z, solving the quadratic program is the
same as getting the element of KX which is the closest to Y . This element is, of course, the uniquely
defined Zn satisfying (2). �
The quadratic program (8) is positive semidefinite. This implies certain computational complexities, but
most modern nonlinear programming solvers can handle this type of optimization problems. Some ex-
amples of high-performance quadratic programming solvers are CPLEX, LINDO,
MOSEK and QPOPT. Here we present two simulated examples to illustrate the computation of the esti-
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Figure 1: The scatter plot and nonparametric least squares estimator of the convex regression function
when (a) φ(x) = |x|2 (left panel); (b) φ(x) =−x1 +x2 (right panel).

mator when d = 2. The first one, depicted in Figure 1a corresponds to the case where φ(x) = |x|2. Figure
1b shows the convex function estimator when the regression function is the hyperplane φ(x) =−x1 +x2.
In both cases, n = 256 observations were used and the errors were assumed to be i.i.d. from the standard
normal distribution. All the computations were carried out using the MOSEK optimization toolbox for
Matlab and the run time for each example was less than 2 minutes in a standard desktop PC. We refer
the reader to Kuosmanen (2008) for additional numerical examples (although the examples there are for
the estimation of concave, componentwise nondecreasing functions, the computational complexities
are the same).

2.4 The componentwise nonincreasing case

We now consider the case where the regression function φ is assumed to be convex and componentwise
nonincreasing. The developments here are quite similar to those in the convex case, so we omit some of
the details. Given the observed values (X1,Y1), . . . , (Xn ,Yn), we write QX for the collection of all vectors
z ∈ Rn for which there is a convex, componentwise nonincreasing function ψ satisfying ψ(X j ) = z j for
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every j = 1, . . . ,n. We will denote by Rd+ and Rd−, respectively, the nonnegative and nonpositive orthants
of Rd . We now have the following characterizations.

Lemma 2.6 Let z ∈Rn . Then, z ∈QX if and only if the following holds for every j = 1, . . . ,n:

z j = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1, ϑ+
n∑

k=1
θk Xk = X j , θ ≥ 0, θ ∈Rn ,ϑ ∈Rd

+

}
.

Proof: The proof is very similar to that of Lemma 2.1. The difference being that we use Lemma A.2 and
the function

h(x) = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1, ϑ+
n∑

k=1
θk Xk = x, θ ≥ 0, θ ∈Rn ,ϑ ∈Rd

+

}
instead of using Lemma A.1 and the function g . �

The analogous dual characterization here is given in the following lemma. Its proof is just an appli-
cation of the duality theorem of linear programming, so we omit it.

Lemma 2.7 Let z ∈Rn . Then, z ∈QX if and only if for every j = 1, . . . ,n we have

z j = sup
{
〈ξ, X j 〉+η : 〈ξ, Xk〉+η≤ zk ∀ k = 1, . . . ,n, ξ ∈Rd

−, η ∈R
}

.

Moreover, z ∈QX if and only if there exist vectors ξ1, . . . ,ξn ∈Rd− such that

〈ξ j , Xk −X j 〉 ≤ zk − z j ∀ k, j ∈ {1, . . . ,n}.

Just as in the previous case, we can use both characterizations to show the existence and uniqueness of
the vector

Wn = argmin
z∈QX

{
n∑

k=1

∣∣∣Yk − zk
∣∣∣2

}
and then define the nonparametric least squares estimator by

ϕ̂n (x) = inf

{
n∑

k=1
θkW k

n :
n∑

k=1
θk = 1,ϑ+

n∑
k=1

θk Xk = x,θ ∈Rn+,ϑ ∈Rd+

}
.

Here, the vector Wn can also be computed by solving the corresponding quadratic program

min
∑n

k=1 |Yk − zk |2
subject to 〈ξk , X j −Xk〉 ≤ z j − zk ∀ k, j = 1, . . . ,n

ξ1, . . . ,ξn ∈Rd−, z ∈Rn .

which differs from the program (8) just because here the ξ j ’s have to be nonpositive. The estimator enjoys
analogous finite dimensional properties to those listed in Lemma 2.4. For the sake of completeness, we
include them in the following lemma.

Lemma 2.8 Let ϕ̂n be the convex, componentwise nonincreasing least squares estimator obtained from
the sample (X1,Y1), . . . , (Xn ,Yn). Then,
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(i)
n∑

k=1
(ψ(xk )−ϕ̂n(Xk ))(Yk−ϕ̂n(Xk )) ≤ 0 for any convex, componentwise nonincreasing functionψwhich

is finite on Conv (X1, . . . , Xn);

(ii)
n∑

k=1
ϕ̂n(Xk )(Yk − ϕ̂n(Xk )) = 0;

(iii)
n∑

k=1
Yk =

n∑
k=1

ϕ̂n(Xk );

(iv) the set on which ϕ̂n <∞ is Conv (X1, . . . , Xn)+Rd+;

(v) for any x ∈ Rd the map (X1, . . . , Xn ,Y1, . . . ,Yn) ,→ ϕ̂n(x) is a Borel-measurable function from Rn(d+1)

into R.

3 Consistency of the least squares estimator

The main goal of this paper is to show that in an appropriate setting the nonparametric least squares
estimator φ̂n described above is consistent for estimating the convex function φ on the set X. In this
context, we will prove the consistency of φ̂n in both, fixed and stochastic design regression settings.

Before proceeding any further we would like to introduce some notation. For any Borel set X ⊂ Rd

we will denote by BX the σ-algebra of Borel subsets of X. Given a sequence of events (An)∞n=1 we will be

using the notation [An i.o.] and [An a.a.] to denote lim An and lim An , respectively.
Now, consider a convex function f :Rd →R. This function is said to be proper if f (x) >−∞ for every

x ∈Rd . The effective domain of f , denoted by Dom( f ), is the set of points x ∈Rd for which f (x) <∞. The
subdifferential of f at a point x ∈Rd is the set ∂ f (x) ⊂Rd of all vectors ξ satisfying the inequality

〈ξ,h〉 ≤ f (x +h)− f (x) ∀ h ∈Rd .

The elements of ∂ f (x) are called subgradients of f at x (see Rockafellar (1970)). For a set A ⊂ Rd we
denote by A◦, A and ∂A its interior, closure and boundary, respectively. We write Ext(A) = Rd \ A for the
exterior of the set A and diam(A) := supx,y∈A |x − y | for the diameter of A. We also use the sup-norm

notation, i.e., for a function g :Rd →Rwe write ‖g‖A = supx∈A |g (x)|.
To avoid measurability issues regarding some sets, specially those involving the random set-valued

functions {∂φ̂n(x)}x∈X◦ , we will use the symbols P∗ and P∗ to denote inner and outer probabilities, re-
spectively. We refer the reader to Van der Vaart and Wellner (1996), pages 6-15, for the basic properties
of inner and outer probabilities. In this context, a sequence of (not necessarily measurable) functions
(Ψn)∞n=1 from a probability space (Ω,F ,P) into R is said to converge to a function Ψ almost surely (see

Van der Vaart and Wellner (1996), Definition 1.9.1-(iv), page 52), written Ψn
a.s.−→Ψ, if P∗ (Ψn →Ψ) = 1.

We will use the standard notation P (A) for the probabilities of all events A whose measurability can be
easily inferred from the measurability of the random variables {φ̂n(x)}x∈X, established in Lemma 2.4.

Our main theorems hold for both, fixed and stochastic design schemes, and the proofs are very sim-
ilar. They differ only in minor steps. Therefore, for the sake of simplicity, we will denote the observed
values of the regressor variables always with the capital letters Xn . For any Borel set X⊂Rd , we write

Nn(X) = #{1 ≤ j ≤ n : X j ∈ X}.

The quantities Xn and Nn(X) are non-random under the fixed design but random under the stochastic
one.

9



3.1 Fixed Design

In a “fixed design” regression setting we assume that the regressor values are non-random and that all
the uncertainty in the model comes from the response variable. We will now list a set of assumptions for
this type of design. The one-dimensional case has been proven, under different regularity conditions, in
Hanson and Pledger (1976).

(A1) We assume that we have a sequence (Xn ,Yn)∞n=1 satisfying

Yk =φ(Xk )+εk

where (εn)∞n=1 is an i.i.d. sequence with E
(
ε j

)= 0, E
(
ε2

j

)
=σ2 <∞ andφ :Rd →R is a proper convex

function.

(A2) The non-random sequence (Xn)∞n=1 is contained in a closed, convex set X ⊂ Rd with X◦ 6= ; and
X⊂ Dom(φ).

(A3) We assume the existence of a Borel measure ν on X satisfying:

(i) {X ∈BX : ν(X) = 0} = {X ∈BX : X has Lebesgue measure 0}.

(ii) 1
n Nn(X) → ν(X) for any Borel set X⊂X.

Condition (A1) may be replaced by the following:

(A4) We assume that we have a sequence (Xn ,Yn)∞n=1 satisfying

Yk =φ(Xk )+εk

where φ : Rd → R is a proper convex function and (εn)∞n=1 is an independent sequence of random
variables satisfying

(i) E (εn) = 0 ∀ n ∈N and lim 1
n

∑n
k=1 E (|εk |) > 0.

(ii)
∑∞

n=1
Var(ε2

n)
n2 <∞.

(iii) supn∈N{E
(
ε2

n

)
} <∞.

Under these conditions we define σ2 := limn→∞ 1
n

∑n
j=1 E

(
ε2

j

)
.

The raison d’etre of condition (A4) is to allow the variance of the error terms to depend on the regressors.
We make the distinction between (A1) and (A4) because in the case of i.i.d. errors it is enough to require
a finite second moment to ensure consistency.

3.2 Stochastic Design

In this setting we assume that (Xn ,Yn)∞n=1 is an i.i.d. sequence from some Borel probability measure µ on

Rd+1. Here we make the following assumptions on the measure µ:

(A5) There is a closed, convex set X⊂Rd with X◦ 6= ; such that µ(X×R) = 1. Also,∫
X×R

y2µ(d x,d y) <∞.

10



(A6) There is a proper convex function φ : Rd → R with X ⊂ Dom(φ) such that whenever (X ,Y ) ∼ µ we
have E

(
Y −φ(X )|X )= 0 and E

(|Y −φ(X )|2)=σ2 <∞. Thus, φ is the regression function.

(A7) Denoting by ν(·) =µ((·)×R) the x-marginal of µ, we assume that

{X ∈BX : ν(X) = 0} = {X ∈BX : X has Lebesgue measure 0}.

We wish to point out some conclusions that one can draw from these assumptions. Consider the class
of functions

Kµ :=
{
ψ :Rd →R |ψ is convex with

∫
|ψ(x)|2ν(d x) <∞

}
.

Then for any X⊂X the following holds∫
X×R

ψ(x)(y −φ(x))µ(d x,d y) = 0 ∀ψ ∈Kµ;

so we get thatφ is in fact the element of Kµ which is the closest to Y in the Hilbert space L2(X×R,BX×R,µ).
This follows from Moreau’s decomposition theorem (see the proof of Lemma 2.4).

Additionally, conditions {A5-A7} allow for stochastic dependency between the error variable Y −φ(X )
and the regressor X . Although some level of dependency can be put to satisfy conditions {A2-A4}, the
measure µ allows us to take into account some cases which wouldn’t fit in the fixed design setting (even
by conditioning on the regressors).

3.3 Main results

We can now state the two main results of this paper. The first result shows that assuming only the convex-
ity of φ, the least squares estimator can be used to consistently estimate both φ and its subdifferentials
∂φ(x).

Theorem 3.1 Under any of {A1-A3}, {A2-A4} or {A5-A7} we have,

(i) P
(
sup
x∈X

{|φ̂n(x)−φ(x)|} → 0 for any compact set X⊂X◦
)
= 1.

(ii) For every x ∈X◦ and every ξ ∈Rd

lim
n→∞ lim

h↓0

φ̂n(x +hξ)− φ̂n(x)

h
≤ lim

h↓0

φ(x +hξ)−φ(x)

h
almost surely.

(iii) Denoting by B the unit ball (w.r.t. the Euclidian norm) we have

P∗
(
∂φ̂n(x) ⊂ ∂φ(x)+εB a.a.

)= 1 ∀ ε> 0, ∀ x ∈X◦.

(iv) If φ is differentiable at x ∈X◦, then

sup
ξ∈∂φ̂n (x)

{|ξ−∇φ(x)|} a.s.−→ 0.
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Our second result states that assuming differentiability of φ on the entire X◦ allows us to use the subdif-
ferentials of the least squares estimator to consistently estimate ∇φ uniformly on compact subsets of X◦.

Theorem 3.2 If φ is differentiable on X◦, then under any of {A1-A3}, {A2-A4} or {A5-A7} we have,

P∗

 sup
x∈X

ξ∈∂φ̂n (x)

{|ξ−∇φ(x)|} → 0 for any compact set X⊂X◦

= 1.

3.4 Proof of the main results

Before embarking on the proofs, one must notice that there are some statements which hold true under
any of {A1-A3}, {A2-A4} or {A5-A7}. We list the most important ones below, since they’ll be used later.

• For any set X⊂X we have
Nn(X)

n
a.s.−→ ν(X). (9)

• The strong law of large numbers implies that for any Borel set X ⊂X with positive Lebesgue mea-
sure we have

1

Nn(X)

∑
Xk∈X

1≤k≤n

(Yk −φ(Xk ))
a.s.−→ 0 (10)

and also

lim
n→∞

1

n

∑
1≤k≤n

(Yk −φ(Xk ))2 =σ2 a.s. (11)

We would like to point out that in the case of condition A4, A4-(iii) allows us to obtain (10) from an
application of a version of the strong law of large number for uncorrelated random variables, as it
appears in Chung (2001), page 108, Theorem 5.1.2. Similarly, condition A4-(ii) implies that we can
apply a version the strong law of large numbers for independent random variables as in Williams
(1991), Lemma 12.8, page 118 or in Folland (1999), Theorem 10.12, page 322 to obtain (11).

• For any Borel subset X⊂X with positive Lebesgue measure,

#{n ∈N : Xn ∈ X}
a.s.−→+∞ (12)

Proof of Theorem 3.1. We will only make distinctions among the design schemes in the proof if we are
using any property besides (9), (10), (11) or (12). For the sake of clarity, we divide the proof in steps.

Step I: We start by showing that for any set with positive Lebesgue measure there is a uniform band
around the regression function (over that set) such that φ̂n comes within the band at least at one point
for all but finitely many n’s. This fact is stated in the following lemma (proved in Section 4.1).

12



Lemma 3.1 For any set X⊂X with positive Lebesgue measure we have,

P
(

inf
x∈X

{|φ̂n(x)−φ(x)|}≥ M i.o.

)
= 0 ∀ M > σp

ν(X)
.

Step II: The idea is now to use the convexity of both, φ and φ̂n , to show that the previous result in fact
implies that the sup-norm of φ̂n is uniformly bounded on compact subsets of X◦. We achieve this goal in
the following two lemmas (whose proofs are given in Sections 4.2 and 4.3 respectively).

Lemma 3.2 Let X⊂X◦ be compact with positive Lebesgue measure. Then, there is a positive real number
KX such that

P
(

inf
x∈X

{φ̂n(x)} <−KX i.o.

)
= 0.

Lemma 3.3 Let X⊂X◦ be a compact set with positive Lebesgue measure. Then, there is KX > 0 such that

P
(
sup
x∈X

{φ̂n(x)} ≥ KX i.o.

)
= 0.

Step III: Convex functions are determined by their subdifferential mappings (see Rockafellar (1970), The-
orem 24.9, page 239). Moreover, having a uniform upper bound KX for the norms of all the subgradients
over a compact region X imposes a Lipschitz continuity condition on the convex function over X (see
Rockafellar (1970), Theorem 24.7, page 237); the Lipschitz constant being KX. For these reasons, it is im-
portant to have a uniform upper bound on the norms of the subgradients of φ̂n on compact regions. The
following lemma (proved in Section 4.4) states that this can be achieved.

Lemma 3.4 Let X⊂X◦ be a compact set with positive Lebesgue measure. Then, there is KX > 0 such that

P∗

 sup
ξ∈∂φ̂n (x)

x∈X

{|ξ|} > KX i.o.

= 0.

Step IV: For the next results we need to introduce some further notation. We will denote by µn the em-
pirical measure defined on Rd+1 by the sample (X1,Y1), . . . , (Xn ,Yn). In agreement with Van der Vaart and
Wellner (1996), given a class of functions G on D ⊂ Rd+1, a seminorm ‖·‖ on some space containing G

and ε> 0 we denote by N (ε,G ,‖ ·‖) the ε covering number of G with respect to ‖ ·‖.
Although Lemmas 3.5 and 3.7 may seem unrelated to what has been done so far, they are crucial for

the further developments. Lemma 3.5 (proved in Section 4.5) shows that the class of convex functions is
not very complex in terms of entropy. Lemma 3.7 is a uniform version of the strong law of large numbers
which proves vital in the proof of Lemma 3.8.

Lemma 3.5 Let X ⊂ X◦ be a compact rectangle with positive Lebesgue measure. For K > 0 consider the
class GK ,X of all functions of the formψ(X )(Y −φ(X ))1X(X ) whereψ ranges over the class DK ,X of all proper
convex functions which satisfy

(a) ‖ψ‖X ≤ K ;

(b)
⋃

ξ∈∂ψ(x)
x∈X

{ξ} ⊂ [−K ,K ]d .
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Then, for any ε> 0 we have

lim
n→∞N (ε,GK ,X,L1(X×R,µn)) <∞ almost surely,

and there is a positive constant Aε <∞, depending only on (X1, . . . , Xn), K and X, such that the covering
numbers N ( εn

∑n
j=1 |Y j −φ(X j )|,GK ,X,L1(X×R,µn)) are bounded above by Aε, for all n ∈N, almost surely.

The proofs of Lemmas 3.7 and 3.8 (given in Sections 4.7 and 4.8 respectively) are the only parts in the
whole proof where we must treat the different design schemes separately. To make the argument work,
a small lemma (proved in Section 4.6) for the set of conditions {A2-A4} is required. We include it here for
the sake of completeness and to point out the difference between the schemes.

Lemma 3.6 Consider the set of conditions {A2-A4} and a subsequence (nk )∞k=1 such that

lim
k→∞

1

nk

nk∑
j=1

E
(
ε2

j

)
=σ2.

Let (Xm)∞m=1 be a an increasing sequence of compact subsets of X satisfying ν(Xm) → 1. Then,

lim
m→∞ lim

k→∞

1

nk

∑
{1≤ j≤nk :X j ∈Xm }

E
(
ε2

j

)
=σ2.

We are now ready to state the key result on the uniform law of large numbers.

Lemma 3.7 Consider the notation of Lemma 3.5 and let X⊂X◦ be any finite union of compact rectangles
with positive Lebesgue measure. Then,

sup
ψ∈DK ,X

{∣∣∣∣∣ 1

n

∑
{1≤ j≤n:X j ∈X}

ψ(X j )(Y j −φ(X j ))

∣∣∣∣∣
}

a.s.−→ 0.

Step V: With the aid of all the results proved up to this point, it is now possible to show that Lemma 3.1
is in fact true if we replace M by an arbitrarily small η > 0. The proof of the following lemma is given in
Section 4.8.

Lemma 3.8 Let X⊂X◦ be any compact set with positive Lebesgue measure. Then,

(i) P
(

inf
x∈X

{φ(x)− φ̂n(x)} ≥ η i.o.

)
= 0 ∀ η> 0,

(ii) P
(
sup
x∈X

{φ(x)− φ̂n(x)} ≤−η i.o.

)
= 0 ∀ η> 0.

Step VI: Combining the last lemma with the fact that we have a uniform bound on the norms of the
subgradients on compacts, we can state and prove the consistency result on compacts. This is done in
the next lemma (proof included in Section 4.9).

Lemma 3.9 Let X⊂X◦ be a compact set with positive Lebesgue measure. Then,

(i) P
(

inf
x∈X

{φ̂n(x)−φ(x)} <−η i.o.

)
= 0 ∀ η> 0,
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(ii) P
(
sup
x∈X

{φ̂n(x)−φ(x)} > η i.o.

)
= 0 ∀ η> 0,

(iii) sup
x∈X

{|φ̂n(x)−φ(x)|} a.s.−→ 0.

Step VII: We can now complete the proof of Theorem 3.1. Consider the class C of all open rectangles R

such that R ⊂X◦ and whose vertices have rational coordinates. Then, C is countable and
⋃

R∈CR =X◦.
Observe that Lemmas 3.2 and 3.3 imply that for any finite union A := R1 ∪ ·· · ∪Rm of open rectan-
gles R1, . . . ,Rm ∈ C there is, with probability one, n0 ∈ N such that the sequence (φ̂n)∞n=n0

is finite on
Conv (A). From Lemma 3.9 we know that the least squares estimator converges at all rational points in
X◦ with probability one. Then, Theorem 10.8, page 90 of Rockafellar (1970) implies that (i ) holds if X◦ is
replaced by the convex hull of a finite union of rectangles belonging to C. Since there are countably many
of such unions and any compact subset of X◦ is contained in one of those unions, we see that (i ) holds.
An application of Theorem 24.5, page 233 of Rockafellar (1970) on an open rectangle C containing x and
satisfying C ⊂X◦ gives (i i ) and (i i i ). Note that (i v) is a consequence of (i i i ). �

Proof of Theorem 3.2. To prove the desired result we need the following lemma (whose proof is pro-
vided in Section 4.10) from convex analysis. The result is an extension of Theorem 25.7, page 248 of
Rockafellar (1970), and might be of independent interest.

Lemma 3.10 Let C ⊂Rd be an open, convex set and f a convex function which is finite and differentiable
on C . Consider a sequence of convex functions ( fn)∞n=1 which are finite on C and such that fn → f point-
wise on C . Then, if X⊂C is any compact set,

sup
x∈X

ξ∈∂ fn (x)

{|ξ−∇ f (x)|}→ 0.

Defining the class C of open rectangles as in the proof of Theorem 3.1, one can use a similar argument to
obtain Theorem 3.2 from an application of Theorem 3.1 and the previous lemma. �

3.5 The componentwise nonincreasing case

The regression function φ is now assumed to be convex and componentwise nonincreasing. Recalling
the notation defined in Section 2.4, we now have that Theorems 3.1 and 3.2 still hold with φ̂n replaced by
ϕ̂n . In view of the fact that the proof of the results is very similar to that when φ is just convex, we omit
the proof and sketch the main differences. The proof of the main results in Section 3 relied essentially on
two key facts:

(i) The finite sample properties of φ̂n established in Lemma 2.4.

(ii) The vector (φ̂n(X1), . . . , φ̂n(Xn))′ ∈Rn is the L2 projection of (Y1, . . . , Yn) on the closed, convex cone
KX of all evaluations of proper convex functions on (X1, . . . , Xn). Also, note that (φ(X1), . . . ,φ(Xn))′ ∈
KX .

We know from Lemma 2.8 that ϕ̂n has similar finite sample properties as its convex counterpart. Note
that ifφ is convex and componentwise nonincreasing (φ(X1), . . . ,φ(Xn))′ ∈QX and (ϕ̂n(X1), . . . ,ϕ̂n(Xn))′ ∈
Rn is the L2 projection of (Y1, . . . ,Yn) onto QX .

From these considerations and the nature of the arguments used to prove Theorems 3.1 and 3.2, it
follows that all but one of those arguments carry forward to the componentwise nonincreasing case; the
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only difference being the entropy calculation of Lemma 3.5. At some point in that proof, one breaks the
rectangle [−K ,K ]d into a family of subrectangles in order to approximate the subdifferentials of the class
DK ,X. It is easily seen that the same argument holds in the componentwise nonincreasing case if one
instead uses a partition of [−K ,0]d to approach the subdifferentials of the corresponding class DK ,X for
componentwise nonincreasing convex functions. By doing this, the resulting function g will be convex
and componentwise nonincreasing and (30), (31) and (32) will still hold for the corresponding class Hn,ε.
Then, the conclusions of Lemma 3.5 are also true for the componentwise nonincreasing case and we can
conclude that our main results are valid in this case too.

4 Proofs of the lemmas

Here we prove the lemmas involved in the proof of the main theorem. To prove these, we will need ad-
ditional auxiliary results from matrix algebra and convex analysis, which may be of independent interest
and are proved in the Appendix.

4.1 Proof of Lemma 3.1

We will first show that the event[
infx∈X

{
φ̂n(x)−φ(x)

}≥ M i.o.
]

has probability zero. Under this event, there is a subsequence (nk )∞k=1
such that infx∈X

{
φ̂nk (x)−φ(x)

}≥ M ∀ k ∈N. Then (10) implies that for this subsequence, with probabil-
ity one, we have

lim
k→∞

1

Nnk (X)

∑
X j ∈X

{Y j − φ̂nk (X j )} ≤ −M . (13)

On the other hand, it is seen (by solving the corresponding quadratic programming problems; see, e.g.,
Exercise 16.2, page 484 of Nocedal and Wright (1999)) that for any η> 0, m ∈N

inf

{
1

m

∑
1≤ j≤m

|ξ j |2 :
1

m

∑
1≤ j≤m

ξ j ≥ η, ξ ∈Rm

}
= η2, (14)

inf

{
1

m

∑
1≤ j≤m

|ξ j |2 :
1

m

∑
1≤ j≤m

ξ j ≤−η, ξ ∈Rm

}
= η2. (15)

For 0 < δ< M , using (15) with η= M −δ together with (12) and (13) we get that, with probability one, we
must have

lim
k→∞

1

nk

nk∑
j=1

(Y j − φ̂nk (X j ))2 ≥ ν(X)(M −δ)2.

Letting δ→ 0 we actually get

lim
k→∞

1

nk

nk∑
j=1

(Y j − φ̂nk (X j ))2 ≥ ν(X)M 2 >σ2 = lim
k→∞

1

nk

nk∑
j=1

(Y j −φ(X j ))2 a.s.

which is impossible because φ̂nk is the least squares estimator. Therefore,

P
(

inf
x∈X

{
φ̂n(x)−φ(x)

}≥ M i.o.

)
= 0.

16



A similar argument now using (14) gives

P
(
sup
x∈X

{
φ̂n(x)−φ(x)

}≤−M i.o.

)
= 0,

which completes the proof of the lemma. �

Before we prove Lemmas 3.2 and 3.3, we need some additional results from matrix algebra. For con-
venience, we state them here, but postpone their proofs to Section A.2 in the Appendix.

We first introduce some notation. We write e j ∈ Rd for the vector whose components are given by
ek

j = δ j k , where δ j k is the Kronecker δ. We also write e = e1 + . . .+ ed for the vector of ones in Rd . For

α ∈ {−1,1}d we write

Rα =
{

d∑
k=1

θkαk ek : θ ≥ 0,θ ∈Rd

}

for the orthant in the α direction. For any hyperplane H defined by the normal vector ξ ∈ Rd and the
intercept b ∈R, we write H = {x ∈Rd : 〈ξ, x〉 = b}, H + = {x ∈Rd : 〈ξ, x〉 > b} and H − = {x ∈Rd : 〈ξ, x〉 < b}.
For r > 0 and x0 ∈ Rd we will write B(x0,r ) = {x ∈ Rd : |x − x0| < r }. We denote by Rd×d the space of d ×d
matrices endowed with the topology defined by the ‖ · ‖2 norm (where ‖A‖2 = sup|x|≤1{|Ax|} and can be
shown to be equal to the largest singular value of A; see Harville (2008)).

Lemma 4.1 Let r > 0. There is a constant Rr > 0, depending only on r and d, such that for any ρ∗ ∈ (0,Rr )
there are ρ,ρ∗ > 0 with the property: for any α ∈ {−1,1}d and any d-tuple of vectors β = {x1, . . . , xd } ⊂ Rd

such that x j ∈ B(α j r e j ,ρ) ∀ j = 1, . . . ,d, there is a unique pair (ξα,β,bα,β), with ξα,β ∈ Rd , |ξα,β| = 1 and
bα,β > 0 for which the following statements hold:

(i) β form a basis for Rd .

(ii) x1, . . . , xd ∈Hα,β := {x ∈Rd : 〈ξα,β, x〉 = bα,β}.

(iii) min
1≤ j≤d

{|ξ j
α,β|} > 0.

(iv) B(0,ρ∗) ⊂H −
α,β.

(v) {x ∈Rd : |x| ≥ ρ∗}∩Rα ⊂H +
α,β.

(vi) B(−α j r e j ,ρ) ⊂ {x ∈Rd : 〈ξα,β, x〉 < 0} for all j = 1, . . . ,d.

(vii) For any w1 ∈ B
(
0, ρ∗

16
p

d

)
and w2 ∈ B

(
3ρ∗
8
p

d
α, ρ∗

8
p

d

)
we have

min
1≤ j≤d

{(
X −1
β (w1 + t (w2 −w1))

) j
}
> 0 ∀ t ≥ 1

where Xβ = (x1, . . . , xd ) ∈Rd×d is the matrix whose j ’th column is x j .

Figure 2a illustrates the above lemma when d = 2 and α= (1,1). The lemma states that whatever points
x1 and x2 are taken inside the circles of radius ρ around α1r e1 and α2r e2, respectively, B(0,ρ∗) and
{x ∈ Rd : |x| ≥ ρ∗}∩Rα are contained, respectively, in the half-spaces H −

α,β and H +
α,β. Assertion (vi i ) of
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Figure 2: Explanatory diagram for (a) Lemma 4.1 (left panel); (b) Lemma 4.2 (right panel).

the lemma implies that all the points in the half line {w1+t (w2−w1}t≥1 should have positive co-ordinates
with respect to the basis β as they do with respect to the basis {α j e j }d

j=1. We refer the reader to Section

A.2.1 for a complete proof of Lemma 4.1.
We now state two other useful results, namely Lemma 4.2 and Lemma 4.3, but defer their proofs to

Section A.2.2 and Section A.2.3 respectively.

Lemma 4.2 Let r > 0 and consider the notation of Lemma 4.1 with the positive numbers ρ, ρ∗ and ρ∗
as defined there. Take 2d vectors {x±1, . . . , x±d } ⊂ Rd such that x± j ∈ B(±r e j ,ρ) and for α ∈ {−1,1}d write
βα = {xα11, xα22, . . . , xαd d }, ξα = ξα,βα , bα = bα,βα and Hα = Hα,β, all in agreement with the setting of
Lemma 4.1. Then, if K =Conv

(
x±1, . . . , x±d

)
we have:

(i) K =⋂
α∈{−1,1}d {x ∈Rd : 〈ξα, x〉 ≤ bα}.

(ii) K ◦ =⋂
α∈{−1,1}d {x ∈Rd : 〈ξα, x〉 < bα}.

(iii) ∂K =⋃
α∈{−1,1}d Conv

(
xα11, . . . , xαd d

)
.

(iv) ∂K =
(⋃

α∈{−1,1}d {x ∈Rd : 〈ξα, x〉 = bα}
)⋂(⋂

α∈{−1,1}d {x ∈Rd : 〈ξα, x〉 ≤ bα}
)

.

(v) B(0,ρ∗) ⊂ K ◦.

(vi) ∂B(0,ρ∗) ⊂ Ext(K ).

Figure 2b illustrates Lemma 4.2 for the two-dimensional case. Intuitively, the idea is that as long as the
points x±1 and x±2 belong to B(±r e1,ρ) and B(±r e2,ρ), respectively, we will have B(0,ρ∗) and ∂B(0,ρ∗)
as subsets of K ◦ and Ext(K ), respectively.

Lemma 4.3 Let [a,b] ⊂ Rd be a compact rectangle and r > 0, with r < 1
d−2 if d ≥ 3. For each α ∈ {−1,1}d

write zα = a +∑d
j=1

1+α j

2

(
b j −a j

)
e j so that {zα}α∈{−1,1}d is the set of vertices of [a,b]. Then, there is ρ > 0

such that if xα ∈ B(zα+ r (zα− z−α),ρ) ∀ α ∈ {−1,1}d , then

[a,b] ⊂Conv
(
xα :α ∈ {−1,1}d

)◦
.
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Figure 3: Explanatory diagram for (a) Lemma 4.3 (left panel); (b) Lemma 3.2 (right panel).

Figure 3a describes Lemma 4.3 in the two-dimensional case. As long as the points x(±1,±1) are chosen in
the balls of radius ρ around z(±1,±1) + r (z(±1,±1) − z(∓1,∓1)), Conv

(
x(±1,±1)

)
will contain Conv

(
z(±1,±1)

)
.

4.2 Proof of Lemma 3.2

Since any compact subset of X◦ is contained in a finite union of compact rectangles, it is enough to prove
the result when X is a compact rectangle [a,b] ⊂X◦. Let r = 1

4 min1≤k≤d {bk −ak } and choose ρ ∈ (0, 1
4 r ),

ρ∗ > 0 and 0 < ρ∗ < 1
2 r such that the conclusions of Lemmas 4.1 and 4.2 hold for any α ∈ {−1,1}d and any

β= (z1, . . . , zd ) ∈Rd×d with z j ∈ B(α j r e j ,ρ). Take N ∈N such that

1

N
max

1≤k≤d
{bk −ak } < 1

32d
ρ∗ (16)

and divide X into N d rectangles all of which are geometrically identical to 1
N [0,b −a]. Let C be any one

of the rectangles in the grid and choose any vertex z0 of C satisfying

z0 = argmax
z∈C

{
max

1≤ j≤d

{
z j −a j ,b j − z j

}}
.

Then, from the definition of z0 and r , there is α0 ∈ {−1,1}d such that

B(z0,r )∩ (
z0 +Rα0

)⊂ X.

Additionally, define

B1 = B

(
z0,

ρ∗
16

p
d

)
,

B2 = B

(
z0 + 3ρ∗

8
p

d
α0,

ρ∗
8
p

d

)
,

A j = B(z0 +α j
0r e j ,ρ)∩ (z0 +Rα0 ) ∀ j = 1, . . . ,d ,

A− j = B(z0 −α j
0r e j ,ρ) ∀ j = 1, . . . ,d .
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Observe that all the sets in the previous display have positive Lebesgue measure and that the A− j ’s are not
necessarily contained in X. Let M1 =

∥∥φ∥∥
X, M0 > σp

min{ν(B1),ν(B2),ν(A1),...,ν(Ad )}
, M = M1+M0 and KC > 6M .

Also, notice that C ⊂ B1 because of (16). We will argue that

P
(

inf
x∈C

{φ̂n(x)} ≤−KC i.o.

)
= 0. (17)

From Lemma 3.1, we know that

P

(
d⋂

j=1

[
inf

x∈A j

{∣∣φ̂n(x)−φ(x)
∣∣}< M0 a.a.

])
= 1, (18)

so there is, with probability one, n0 ∈ N such that infx∈A j

{∣∣φ̂n(x)−φ(x)
∣∣} < M0 for any n ≥ n0 and any

j = 1, . . . ,d .
Assume that the event

[
infx∈C {φ̂n(x)} <−KC i.o.

]
is true. Then, there is a subsequence nk such that

infx∈C {φ̂nk (x)} <−KC for all k ∈N. Fix any k ≥ n0. We know that there is X∗ ∈C ⊂ B1 such that φ̂nk (X∗) ≤
−KC . In addition, for j = 1, . . . ,d , there are Z

α
j
0 j

∈ A j such that |φ̂nk (Z
α

j
0 j

)−φ(Z
α

j
0 j

)| < M0, which in turn

implies φ̂nk (Z
α

j
0 j

) < M . Pick any Z−α j
0
∈ A− j and let K =Conv

(
Z±1, . . . , Z±d

)= z0+Conv
(
Z±1 − z0, . . . , Z±d − z0

)
.

Take any x ∈ B2. We will show the existence of X ∗ ∈Conv
(

Zα1
01, . . . , Zαd

0 d

)
such that x ∈Conv (X∗, X ∗),

as shown in Figure 3b for the case d = 2. We will then show that the existence of such an X ∗ implies that

|φ(x)− φ̂nk (x)| > M0. (19)

Consequently, since x is an arbitrary element of B2 we will have[
inf

x∈C
{φ̂n(x)} ≤−KC i.o.

]
∩

(
d⋂

j=1

[
inf

x∈A j

{∣∣φ̂n(x)−φ(x)
∣∣}< M0 a.a.

])

⊂
[

inf
x∈B2

{|φ(x)− φ̂nk (x)|} ≥ M0 i.o.

]
.

But from Lemma 3.1, the event on the right is a null set. Taking (18) into account, we will see that (17)
holds and then complete the argument by taking KX = maxC {KC }.

To show the existence of X ∗ consider the function ψ : R→ Rd given by ψ(t ) = X∗ + t (x − X∗). The
function ψ is clearly continuous and satisfies ψ(0) = X∗ and ψ(1) = x ∈ B2 ⊂ K ◦. That B2 ⊂ K ◦ is a con-
sequence of Lemma 4.1, (i v). The set K is bounded, so there is T > 1 such that ψ(T ) ∈ Ext(K ) = Rd \ K .
The intermediate value theorem then implies that there is t∗ ∈ (1,T ) such that X ∗ :=ψ(t∗) ∈ ∂K . Observe
that by Lemma 4.2 (i i i ) we have

∂K = ⋃
α∈{−1,1}d

Conv
(
Zα11, . . . , Zαd d

)
.

Lemma 4.1 (i ) implies that {Zα1
01−z0, . . . , Zαd

0 d−z0} forms a basis ofRd so we can write X ∗−z0 =∑d
j=1θ

j (Z
α

j
0 j
−

z0). Moreover, Lemma 4.1 (vi i ) implies that θ j > 0 for every j = 1, . . . ,d as θ = (θ1, . . . ,θd ) = (Zα1
01 −

z0, . . . , Zαd
0 d − z0)−1(X ∗− z0). Here we apply Lemma 4.1 (vi i ) with w1 = X∗ ∈ B1, w2 = x ∈ B2 and t∗ > 1.

Forα ∈ {−1,1}d consider the pair (ξα,bα) ∈Rd ×R as defined in Lemma 4.2 for the set of vectors {Z±1−
z0, . . . , Z±d−z0} (here we move the origin to z0). Observe that Lemma 4.1 (i i ) implies that 〈ξα0 , Z

α
j
0 j
−z0〉 =
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bα0 for all j = 1, . . . ,d . Consequently, 〈ξα0 , X ∗ − z0〉 = bα0

∑d
j=1θ

j , but since X ∗ ∈ ∂K , Lemma 4.2 (i v)

implies that 〈ξα0 , X ∗−z0〉 ≤ bα0 and hence
∑d

j=1θ
j ≤ 1. Additionally, for α 6=α0 we can write 〈ξα, X ∗−z0〉

as
d∑

j=1
θ j 〈ξα, Z

α
j
0 j
− z0〉 =

∑
α j =α j

0

θ j bα+
∑

α j 6=α j
0

θ j 〈ξα, Z
α

j
0 j
− z0〉 < bα (20)

as 〈ξα, Zα j −z0〉 = bα (by Lemma 4.1 (i i )) and 〈ξα, Z−α j −z0〉 < 0 (by Lemma 4.1 (vi )) for every j = 1, . . . ,d .
Since 〈ξα, w −z0〉 = bα for all w ∈Conv

(
Zα11, . . . , Zαd d

)
and all α ∈ {−1.1}d , (20) and the fact that X ∗ ∈ ∂K

imply that X ∗ ∈Conv
(

Zα1
01, . . . , Zαd

0 d

)
. Hence φ̂n(X ∗) ≤∑d

j=1θ
j φ̂nk (Z

α
j
0 j

) < M . We therefore have

φ̂nk (X ∗) < M , φ̂nk (X∗) <−KC , (21)

X∗+ 1

t∗
(X ∗−X∗) = x. (22)

Since X∗ ∈ B1 and d ≥ 1 we have

|z0 −X∗| < 1

8
ρ∗. (23)

By using the triangle inequality we get the following bounds

1

4
ρ∗ < |z0 −x| < 1

2
ρ∗. (24)

And from Lemma 4.1 (i v) and the fact that 〈ξα0 , X ∗〉 = bα0 we also obtain

|z0 −X ∗| ≥ ρ∗. (25)

From (22) we know that t∗ = |X ∗−X∗|
|x−X∗| . Using the triangle inequality with (23), (24) and (25) one can find

lower and upper bounds for |X ∗ − X∗| (as |X ∗ − X∗| ≥ |X ∗ − z0| − |z0 − X∗|) and |x − X∗| (as |x − X∗| ≤
|x − z0|+ |z0 −X∗|), respectively, to obtain t∗ ≥ 7

5 . Then, (21) and (22) imply

φ̂nk (x) ≤
(
1− 1

t∗

)
φ̂nk (X∗)+ 1

t∗
φ̂nk (X ∗) ≤−2

7
KC + 5

7
M <−M .

Consequently,
|φ(x)− φ̂nk (x)| > M −M1 = M0.

This proves (19) and completes the proof. �

4.3 Proof of Lemma 3.3

Assume without loss of generality that X is a compact rectangle. Let {zα : α ∈ {−1,1}d } be the set of ver-
tices of the rectangle. Then, there is r ∈ (0,1) such that B(zα,r ) ⊂ X◦ ∀ α ∈ {−1,1}d . Recall that from
Lemma 4.3, there is 0 < ρ < 1

2 r such that for any {ηα : α ∈ {−1,1}d } if ηα ∈ B(zα + r
2 (zα − z−α),ρ) then

X⊂Conv
(
ηα :α ∈ {−1,1}d

)
.

Let Aα = B(zα+ 1
2 r (zα− z−α), ρ2 ) and M0 > σp

min{ν(Aα):α∈{−1,1}d }
and choose

M1 = sup
x∈Conv

(⋃
α∈{−1,1}d Aα

){|φ(x)|}.
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Take KX > M0 +M1. Since

P

( ⋂
α∈{−1,1}d

[
inf

x∈Aα
{|φ̂n(x)−φ(x)|} < M0, a.a.

])
= 1

by Lemma 3.1, there is, with probability one, n0 ∈ N such that for any n ≥ n0 we can find ηα ∈ Aα, α ∈
{−1,1}d , such that |φ̂n(ηα)−φ(ηα)| < M0. It follows that φ̂n(ηα) ≤ KX ∀ α ∈ {−1,1}d . Now, using Lemma
4.3 we have X⊂Conv

(
ηα :α ∈ {−1,1}d

)
and the convexity of φ̂n implies that φ̂n(x) ≤ KX for any x ∈ X. �

4.4 Proof of Lemma 3.4

Assume that X= [a,b] is a rectangle with vertices {zα :α ∈ {−1,1}d }. The functionψ(x) = inf
η∈Ext(X){|x−η|}

is continuous on Rd so there is x∗ ∈ ∂X such that ψ(x∗) = infx∈∂X{ψ(x)}. Observe that ψ(x∗) > 0 because
x∗ ∈ ∂X ⊂ X◦. By Lemma 4.3, there is a r < 1

2ψ(x∗) for which there exists ρ < 1
4 r such that whenever

ηα ∈ Aα := B
(
zα+ 3

4 r
(

zα−z−α
|zα−z−α|

)
,ρ

)
for any α ∈ {−1,1}d and

Kz = Conv

(
zα+ 1

2
r

(
zα− z−α
|zα− z−α|

)
:α ∈ {−1,1}d

)
Kη = Conv

(
ηα :α ∈ {−1,1}d

)
we have

X⊂ Kz ⊂ K ◦
η ⊂ Kη ⊂X◦. (26)

Let M0 > σp
min{ν(Aα):α∈{−1,1}d }

and M1 ∈R be such that

P
(

inf
x∈X

{φ̂n(x)} ≤−M0 i.o.

)
= 0 and M1 = sup

x∈Conv
(⋃

α∈{−1,1}d Aα
){φ(x)}.

From Lemmas 3.1 and 3.2 we can find, with probability one, n0 ∈ N such that infx∈X{φ̂n(x)} > −M0 and
infx∈Aα {|φ̂n(x)−φ(x)|} < M0 for any n ≥ n0. Define

M = M1 +M0

KX = 4|b −a|
r min1≤ j≤d {b j −a j }

M

and take any n ≥ n0. Then, for any α ∈ {−1,1}d we can find ηα ∈ Aα such that |φ̂n(ηα)−φ(ηα)| < M0.
Then, (26) implies that φ̂n(x) ≤ M ∀x ∈ X. Take then x ∈ X and ξ ∈ ∂φ̂n(x). A connectedness argument,
like the one used in the proof of Lemma 3.2, implies that there is t∗ > 0 such that x + t∗ξ ∈ ∂Kη. But then

we must have t∗ > r min1≤ j≤d {b j −a j }
2|ξ||b−a| as a consequence of (26), since the smallest distance between ∂Kz and

∂X is
r min1≤ j≤d {b j −a j }

2|b−a| and ∂Kη ⊂ Ext(Kz ). This can be seen by taking a look at Figure 4, which shows the
situation in the two dimensional case. Thus, using the definition of subgradients,

r min1≤ j≤d {b j −a j }

2|ξ||b −a| 〈ξ,ξ〉 ≤ 〈ξ, t∗ξ〉 ≤ φ̂n(x + t∗ξ)− φ̂n(x) ≤ 2M

which in turn implies |ξ| ≤ KX. We have therefore shown that, with probability one, we can find n0 ∈ N
such that |ξ| ≤ KX ∀ ξ ∈ ∂φ̂n(x), ∀ x ∈ X, ∀ n ≥ n0. This completes the proof. �
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Kη

Kz

X

Figure 4: The smallest distance between ∂Kz and ∂X is at least
r min1≤ j≤d {b j −a j }

2|b−a| .

4.5 Proof of Lemma 3.5

The result is obvious for conditions {A1-A3} and {A5-A7} when σ2 = 0. So we assume that σ2 > 0 for
{A1-A3} and {A5-A7}. Let ε> 0 and M = supx∈X{|x|}. Choose δ> 0 satisfying

ε

2(2M+K
p

d+1)
n

∑n
j=1 |Y j −φ(X j )|

< δ< ε

(2M+K
p

d+1)
n

∑n
j=1 |Y j −φ(X j )|

(27)

for n large. Notice that δ is well-defined and the quantity on the left is positive, finite and bounded away
from 0 as lim 1

n

∑n
j=1 |Y j −φ(X j )| > 0 a.s. under any set of regularity conditions (for {A2-A4}, conditions

A4-(i) and A4-(iii) imply that we can apply the version of the strong law of large number for uncorrelated
random variables, as it appears in Chung (2001), page 108, Theorem 5.1.2 to the sequence (|ε j |)∞j=1; for

{A1-A3} and {A5-A7} this is immediate as σ2 > 0). The definition of the class DK ,X implies that all its
members are Lipschitz functions with Lipschitz constant bounded by K

p
d , a consequence of Rockafellar

(1970), Theorem 24.7, page 237. Hence, (27) implies that

sup
|x−y |<δ

x,y∈X,ψ∈DK ,X

{|ψ(x)−ψ(y)|} ≤ ε
1
n

∑n
j=1 |Y j −φ(X j )| .

Now, define Nn ∈N by Nn =
⌈

diam(X)
δ

⌉
∨

⌈
2K

p
d

δ

⌉
, where d·e denotes the ceiling function. Observe that (27)

implies

Nn −1 ≤
(
diam(X)∨2K

p
d

) 2(2M +K
p

d +1)

ε

(
1

n

n∑
j=1

|Y j −φ(X j )|
)

. (28)
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Then, we can divide the rectangles X and [−K ,K ]d in N d
n subrectangles, all of which have diameters less

than δ. In other words, we can write

[−K ,K ]d = ⋃
1≤ j≤N d

n

R j

X = ⋃
1≤ j≤N d

n

V j

with diam(R j ) < δ and diam(V j ) < δ ∀ j = 1, . . . N d
n . In the same way, we can divide the interval [−K ,K ]

in Nn subintervals I1, . . . ,INn each having length less than δ. For each j = 1, . . . , N d
n , let ξ j and x j be the

centroids of R j and V j respectively and for j = 1, . . . , Nn let η j be the midpoint of Ij . Consider the class
of functions Hn,ε defined by

Hn,ε =
{

max
(s,t , j )∈S

{〈ξs , ·−xt 〉+η j } : S ⊂ {1, . . . , N d
n }2 × {1, . . . , Nn}

}
.

Observe that the number of elements in the class Hn,ε is bounded from above by 2N 2d+1
n . Now, take

any ψ ∈ DK ,X. Pick any Ξ j ∈ ∂ψ(X j ). Then, for any j such that X j ∈ X, there are s j , t j ∈ {1, . . . , N d
n } and

τ j ∈ {1, . . . , Nn} such that |Ξ j −ξs j |, |X j −xt j | and |ψ(xt j )−ητ j | are all less than δ. We then have that

sup
x∈X

{∣∣∣〈ξs j , x −xt j 〉+ητ j −
(〈Ξ j , x −X j 〉+ψ(X j )

)∣∣∣}
≤ 2M |ξs j −Ξ j |+K

p
d |xt j −X j |+δ< (2M +K

p
d +1)δ (29)

by an application of the Cauchy-Schwarz inequality. But then, (27) implies that if we define the functions
ψ̃ and g as

ψ̃(x) = max
X j ∈X

{〈Ξ j , x −X j 〉+ψ(X j )},

g (x) = max
X j ∈X

{〈ξs j , x −xt j 〉+ητ j }

then we have

ψ̃(X j ) = ψ(X j ) for j such that X j ∈ X, (30)

‖g − ψ̃‖X ≤ ε
1
n

∑n
j=1 |Y j −φ(X j )| (from (29)), (31)

g ∈ Hn,ε. (32)

Note that (30) follows from the definition of subgradients. All these facts put together give that for any
f (x, y) =ψ(x)(y −φ(x)) ∈GK ,X, ψ ∈DK ,X there is g ∈Hn,ε such that∫

X
| f (x, y)− g (x)(y −φ(x))|µn(d x,d y) < ε

and hence
N (ε,GK ,X,L1(X×R,µn)) ≤ #Hn,ε ≤ 2N 2d+1

n .

But then, the strong law of large numbers and (28) give that lim Nn <∞ a.s. Furthermore, by replacing ε
with ε

n

∑n
j=1 |Y j −φ(X j )| in the entire construction just made, we can see that the covering numbers

N
(
ε
n

∑n
j=1 |Y j −φ(X j )|,GK ,X,L1(X×R,µn)

)
depend neither on the Y ’s nor onφ. Taking Bε =

(
diam(X)∨K

p
d

)
2(2M+K

p
d+1)

ε +
1 and Aε = 2B 2d+1

ε it is seen that the second part of the result holds. �
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4.6 Proof of Lemma 3.6

Note that for every m, we have

1

nk

∑
1≤ j≤nk

E
(
ε2

j

)
≤ 1

nk

∑
X j ∈Xm

1≤ j≤nk

E
(
ε2

j

)
+ Nnk (X\Xm)

nk
sup
j∈N

{E
(
ε2

j

)
}.

Taking limit inferior on both sides as k →∞, we get

σ2 ≤ lim
k→∞

1

nk

∑
X j ∈Xm

1≤ j≤nk

E
(
ε2

j

)
+ν(X\Xm)sup

j∈N
{E

(
ε2

j

)
}.

Now taking the limit as m →∞ we get the result because the opposite inequality is trivial. �

4.7 Proof of Lemma 3.7

We may assume that X is a compact rectangle. Here we need to make a distinction between the design
schemes. In the case of the stochastic design, the proof is an immediate consequence of Lemma 3.5 and
Theorem 2.4.3, page 123 of Van der Vaart and Wellner (1996). Thus, we focus on the fixed design scenario.

For notational convenience, we write M = sup j∈N{E
(
ε2

j

)
} and

∑
X j ∈X instead of the more cumbersome∑

1≤ j≤n:X j ∈X. Letting ε j = Y j −φ(X j ) (and using the same notation as in the proof of Lemma 3.7) first
observe that the random quantity

sup
ψ∈DK ,X

{∣∣∣∣∣ 1

n

∑
{X j ∈X}

ψ(X j )ε j

∣∣∣∣∣
}
= sup

m∈N

 sup
g∈H

n, 1
m

{∣∣∣∣∣ 1

n

∑
{X j ∈X}

g (X j )ε j

∣∣∣∣∣
} .

by (30), (31) and (32) and is thus measurable.
All of the following arguments are valid for both, {A1-A3} and {A2-A4}. Lyapunov’s inequality (which

states that for any random variable X and 1 ≤ p ≤ q ≤ ∞ we have ‖X ‖p ≤ ‖X ‖q ) and the strong law of
large numbers imply

lim
m→∞

1

m

∑
1≤ j≤m

|ε j | = lim
m→∞

1

m

∑
1≤ j≤m

E
(|ε j |

)≤p
M a.s. (33)

Letη> 0. From Lemma 3.5 we know that the covering numbers an := N
(
η
n

∑n
j=1 |Y j −φ(X j )|,GK ,X,L1(X×R,µn)

)
are not random and uniformly bounded by a constant Aη. Therefore, for any n ∈ N we can find a class

An ⊂DK ,X with exactly an elements such that {ψ(x)(y−φ(x))}ψ∈An forms an
(
η
n

∑n
j=1 |Y j −φ(X j )|

)
-net for

GK ,X with respect to L1(X×R,µn). It follows that

sup
ψ∈DK ,X


∣∣∣∣∣∣ 1

n

∑
X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣
≤ η

n

∑
1≤ j≤n

|ε j | + sup
ψ∈An


∣∣∣∣∣∣ 1

n

∑
X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣
 . (34)
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With (34) in mind, we make the following definitions

Bn = sup
ψ∈An

{∣∣∣∣∣ 1

n

∑
X j ∈X

ψ(X j )ε j

∣∣∣∣∣
}

,

Cn = sup
ψ∈An


∣∣∣∣∣∣ 1

n

∑
1≤ j≤bpnc2: X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣
 ,

Dn = sup
ψ∈Ak

n2≤k<(n+1)2


∣∣∣∣∣∣ 1

k

∑
n2< j≤k: X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣
 ,

where b·c denotes the floor function. Now, pick δ> 0 and observe that

P (Bn > δ) = P

( ⋃
ψ∈An

[∣∣∣∣∣ ∑
X j ∈X

ψ(X j )ε j

∣∣∣∣∣> nδ

])

≤ ∑
ψ∈An

1

n2δ2 M
∑

X j ∈X
ψ(X j )2 ≤ K 2M Aη

nδ2 .

The Borel-Cantelli Lemma then implies that P
(
Bn2 > δ i.o.

) = 0. Letting δ→ 0 through a decreasing se-
quence gives

Bn2
a.s.−→ 0. (35)

On the other hand, the definition of Cn implies that

Cn ≤ bpnc2

n
Bbpnc2 + η

n

∑
1≤ j≤bpnc2

|ε j | (36)

which together with (35) and (33) gives

limCn ≤ η
p

M almost surely. (37)

Note that (36) is a consequence of the fact that for any ψ ∈ An , there exists g ∈ Abpnc2 such that if Jn =
{1 ≤ j ≤ bpnc2 : X j ∈ X}, then∣∣∣∣∣ 1

n

∑
j∈Jn

ψ(X j )ε j

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

n

∑
j∈Jn

(ψ(X j )− g (X j ))ε j

∣∣∣∣∣+
∣∣∣∣∣ 1

n

∑
j∈Jn

g (X j )ε j

∣∣∣∣∣
≤

( bpnc2

n

)
η

bpnc2

∑
1≤ j≤bpnc2

|ε j |+ bpnc2

n
Bbpnc2 .
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Now, a similar argument to the one used in (35) gives

P (Dn > δ) = P

 ⋃
ψ∈Ak

n2≤k<(n+1)2

∣∣∣∣∣∣ ∑
n2< j≤k:X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣> kδ




≤ ∑
ψ∈Ak

n2≤k<(n+1)2

P

∣∣∣∣∣∣ ∑
n2< j≤k:X j ∈X

ψ(X j )ε j

∣∣∣∣∣∣> kδ



≤ ∑
ψ∈Ak

n2≤k<(n+1)2

K 2M(k −n2)

k2δ2 ≤ K 2M Aη(2n +1)2

n4δ2 . (38)

Again, one can use (38) and the Borel-Cantelli Lemma to prove that
P (Dn > δ i.o.) = 0 and then let δ→ 0 through a decreasing sequence to obtain

Dn
a.s.−→ 0. (39)

Finally, one sees that

sup
ψ∈An

{∣∣∣∣∣ 1

n

∑
X j ∈X

ψ(X j )(Y j −φ(X j ))

∣∣∣∣∣
}
= Bn ≤Cn +Dbpnc,

which combined with (37) and (39) gives

limBn ≤ η
p

M almost surely.

Taking (34) into account we get

lim
n→∞ sup

ψ∈DK ,X

{∣∣∣∣∣ 1

n

∑
1≤ j≤n:X j ∈X

ψ(X j )(Y j −φ(X j ))

∣∣∣∣∣
}
≤ 2η

p
M almost surely.

Letting η→ 0 we get the desired result. �

4.8 Proof of Lemma 3.8

We can assume, without loss of generality, that X is a finite union of compact rectangles. Consider a
sequence (Xm)∞m=1 satisfying the following properties:

(a) X⊂ Xm ⊂X◦ ∀ m ∈N.

(b) ν(Xm) > 1− 1
m ∀ m ∈N.

(c) Xm ⊂ Xm+1 ∀ m ∈N.

(d) Every Xm can be expressed as a finite union of compact rectangles with positive Lebesgue measure.

The existence of such a sequence follows from the inner regularity of Borel probability measures on Rd

and from the fact that sinceX◦ is open, for any compact set F ⊂X◦ we can find a finite cover composed by
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compact rectangles with positive Lebesgue measure and completely contained inX◦. Also, from Lemmas
3.2, 3.3 and 3.4 and the fact that X⊂ Dom(φ), for any m ∈Nwe can find Km > 0 such that

‖φ‖Xm ≤ Km and P
(‖φ̂n‖Xm > Km i.o.

)= 0; (40)

sup
x∈Xm
ξ∈∂φ(x)

{|ξ|} ≤ Km and P∗

 sup
x∈Xm

ξ∈∂φ̂n (x)

{|ξ|} > Km i.o.

= 0. (41)

Fix η> 0 and consider the sets

A =
[

inf
x∈X

{φ(x)− φ̂n(x)} ≥ η i.o.

]
B = [‖φ̂n‖Xm ≤ Km a.a.

]
C =

[
sup
x∈Xm

ξ∈∂φ̂n (x)

{|ξ|} ≤ Km a.a.
]

.

Suppose now that A∩B∩C is known to be true. Then, there is a subsequence (nk )∞k=1 such that infx∈X{φ(x)−
φ̂nk (x)} ≥ η ∀ k ∈ N and 1

nk

∑nk
j=1 E

(
ε2

j

)
→ σ2. Taking (40) and (41) into account, we have that for k large

enough the inequality

1

nk

nk∑
j=1

(Y j − φ̂nk (X j ))2 ≥ 1

nk

∑
X j ∈Xm

(Y j −φ(X j ))2

+ 2

nk

∑
X j ∈Xm

(Y j −φ(X j ))(φ(X j )− φ̂nk (X j ))+ 1

nk

∑
X j ∈Xm

(φ(X j )− φ̂nk (X j ))2

implies
1

nk

nk∑
j=1

(Y j − φ̂nk (X j ))2 ≥ 1

nk

∑
X j ∈Xm

(Y j −φ(X j ))2 +

Nnk (X)

nk
η2 −4 sup

ψ∈DKm ,Xm

{∣∣∣∣∣ 1

nk

∑
{1≤ j≤nk :X j ∈Xm }

ψ(X j )(Y j −φ(X j ))

∣∣∣∣∣
}

.

Thus, from Lemma 3.7 we can conclude that

lim
k→∞

1

nk

∑
1≤ j≤nk

(Y j − φ̂nk (X j ))2 ≥ ν(Xm)σ2 +ν(X)η2 if {A1-A3} hold.

Under {A2-A4} and {A5-A7} the left-hand side of the last display is bounded from below by

lim
k→∞

1

nk

∑
X j ∈Xm

(Y j −φ(X j ))2 +ν(X)η2

and ∫
Xm

(y −φ(x))2µ(d x,d y)+ν(X)η2,

respectively.
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Finally, using (a)-(d), the strong law of large numbers (for {A2-A4} we can apply a version of the strong
law of large numbers for independent random variables thanks to condition A4-(ii); see Williams (1991),
Lemma 12.8, page 118 or Folland (1999), Theorem 10.12, page 322) and Lemma 3.6 we can let m →∞ to
see that, under any of {A1-A3}, {A2-A4} or {A5-A7},

lim
k→∞

1

nk

∑
1≤ j≤nk

(Y j − φ̂nk (X j ))2 ≥σ2 +ν(X)η2

which is impossible because φ̂nk is the least squares estimator.
Therefore P∗ (A∩B ∩C ) = 0 and, since P∗ (B ∩C ) = 1,

P (A) = P
(

inf
x∈X

{φ(x)− φ̂n(x)} ≥ η i.o.

)
= 0.

This finishes the proof of (i ). The second assertion follows from similar arguments. �

4.9 Proof of Lemma 3.9

We can assume, without loss of generality, that X is a finite union of compact rectangles. Pick KX such
that

sup
x∈X

ξ∈∂φ(x)

{|ξ|} ≤ KX and P∗

 sup
x∈X

ξ∈∂φ̂n (x)

{|ξ|} > KX i.o.

= 0.

Let η> 0 and δ= η
3KX

. We can then divide X in M subrectangles {C1, . . . ,CM } all having diameter less than
δ. Define the events

A =
[ ⋂

1≤k≤M
inf

x∈Ck

{φ̂n(x)−φ(x)} < η

3
a.a.

]

B =
[

sup
x∈X

ξ∈∂φ̂n (x)

{|ξ|} ≤ KX a.a.
]

.

We will show that A ∩B ⊂ [
supx∈X{φ̂n(x)−φ(x)} ≤ η a.a.

]
. Suppose A ∩B is true. Then, there is N ∈ N

such that for any n ≥ N we can find Ξn,k ∈Ck such that φ̂n(Ξn,k )−φ(Ξn,k ) < η
3 . Moreover, we can make

N large enough such that for any n ≥ N , KX is an upper bound for all the subgradients of φ̂n on X. Then,
for any ξ ∈Ck we obtain from the Lipschitz property,

φ̂n(ξ)−φ(ξ) = (φ̂n(Ξn,k )−φ(Ξn,k ))+ (φ(Ξn,k )−φ(ξ))+ (φ̂n(ξ)− φ̂n(Ξn,k ))

≤ η

3
+KXδ+KXδ≤ η.

Therefore,
sup
x∈Ck

{φ̂n(x)−φ(x)} ≤ η ∀ 1 ≤ k ≤ M ∀ n ≥ N

which implies
sup
x∈X

{φ̂n(x)−φ(x)} ≤ η ∀ n ≥ N .

Considering Lemmas 3.8-(ii) and 3.4; A∩B ⊂ [
supx∈X{φ̂n(x)−φ(x)} ≤ η a.a.

]
and P∗ (A∩B) = 1 we obtain

(i i ). The first assertion follows from similar arguments and (i i i ) is a direct consequence of (i ) and (i i ).
�
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4.10 Proof of Lemma 3.10

Throughout this proof we will denote by B the unit ball (w.r.t. the euclidian norm) in Rd . From Theorem
25.5, page 246 on Rockafellar (1970) we know that f is continuously differentiable on C . Let

h∗ = inf
ξ∈X,η∈Rd \C

{|ξ−η|} > 0.

Pick ε> 0. We will first show that there is nε ∈N such that

〈ξ,η〉 ≤ 〈∇ f (x),η〉+ε, ∀ ξ ∈ ∂ fn(x), ∀ x ∈ X, ∀ η ∈ B, ∀ n ≥ nε. (42)

Suppose that such an nε does not exist. Then, there is an increasing sequence (mn)∞n=1 such that for any
n ∈Nwe can find xmn ∈ X, ξmn ∈ ∂ fmn (xmn ), ηmn ∈ B satisfying 〈ξmn ,ηmn 〉 > 〈∇ f (xmn ),ηmn 〉+ε. But X and
B are both compact, so there are x∗ ∈ X, η∗ ∈ B and a subsequence (kn)∞n=1 of (mn)∞n=1 such that xkn → x∗
and ηkn → η∗. Then, for any 0 < h < h∗ we have

fkn (xkn +hηkn )− fkn (xkn )

h
≥ 〈ξkn ,ηkn 〉 > 〈∇ f (xmn ),ηkn 〉+ε ∀ n ∈N,

and therefore

lim
n→∞

lim
h↓0

fkn (xkn +hηkn )− fkn (xkn )

h
≥ 〈∇ f (x∗),η∗〉+ε.

But this is impossible in view of Theorem 24.5, page 233 on Rockafellar (1970). It follows that we can
choose some nε ∈ N with the property described in (42). By noting that −B = B, we can conclude from
(42) that

|〈ξ,η〉−〈∇ f (x),η〉| ≤ ε ∀ ξ ∈ ∂ fn(x), ∀ x ∈ X, ∀ η ∈ B, ∀ n ≥ nε.

By taking ηξ = ξ−∇ f (x)
|ξ−∇ f (x)| when ξ 6= ∇ f (x) we get

sup
x∈X

ξ∈∂ fn (x)

{|ξ−∇ f (x)|}≤ ε ∀ n ≥ nε.

Since ε> 0 was arbitrarily chosen, this completes the proof. �

A Appendix

A.1 Results from convex analysis

Lemma A.1 Let z ∈Rn , x1, . . . , xn ∈Rd and define the function g :Rd →R by

g (x) = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1,
n∑

k=1
θk xk = x, θ ≥ 0, θ ∈Rn

}
.

Then, g defines a convex function whose effective domain is Conv (x1, . . . , xn). Moreover, if Kx,z is the
collection of all proper convex functions ψ such that ψ(x j ) ≤ z j for all j = 1, . . . ,n, then g = supψ∈Kx,z

{ψ}.
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Proof: To see that g defines a convex function, for any x ∈Rd write

Ax =
{
θ ∈Rn :

n∑
k=1

θk = 1,
n∑

k=1
θk xk = x, θ ≥ 0

}

and observe that for any x, y ∈Rd , t ∈ (0,1), ϑ ∈ Ay and θ ∈ Ax we have tθ+(1− t )ϑ ∈ At x+(1−t )y and hence

g
(
t x + (1− t )y

)− (1− t )
∑n

k=1ϑ
k zk

t
≤

n∑
k=1

θk zk .

Taking infimum over Ax and rearranging terms, we get

g
(
t x + (1− t )y

)− t g (x)

1− t
≤

n∑
k=1

ϑk zk

and taking now the infimum over Ay gives the desired convexity. The convention that inf(;) = +∞
shows that the effective domain is precisely the convex hull of x1, . . . , xn . Finally, for any ψ ∈ Kx,z and
x ∈Conv (x1, . . . , xn) we have, for θ ∈Rn with θ ≥ 0, x =∑n

j=1θ
j x j and

∑n
j=1θ

j = 1,

ψ(x) ≤
n∑

j=1
θ jψ(x j ) ≤

n∑
j=1

θ j z j

since ψ(x j ) ≤ z j for any j = 1, . . . ,n. The definition of g as an infimum then implies that ψ(x) ≤ g (x) ∀
ψ ∈Kx,z , x ∈Conv (x1, . . . , xn). The result then follows from the fact that g ∈Kx,z . �

Lemma A.2 Let z ∈Rn , x1, . . . , xn ∈Rd and define the function h :Rd →R by

h(x) = inf

{
n∑

k=1
θk zk :

n∑
k=1

θk = 1, ϑ+
n∑

k=1
θk Xk = x, θ ≥ 0, θ ∈Rn ,ϑ ∈Rd

+

}
Then, h defines a convex, componentwise nonincreasing function whose effective domain is Conv (x1, . . . , xn)+
Rd+. Moreover, if Qx,z is the collection of all componentwise nonincreasing, proper convex functionsψ such
that ψ(x j ) ≤ z j for all j = 1, . . . ,n, then h = supψ∈Qx,z

{ψ}.

Proof: The proof that h is convex is similar to the proof that g is convex in Lemma A.1. Now, if x ≤
y ∈ Rd , observe that for any θ ∈ Rn , ϑ ∈ Rd+ with

∑n
k=1θ

k = 1, ϑ+∑n
k=1θ

k Xk = x, θ ≥ 0, we also have

ϑ+ (y − x)+∑n
k=1θ

k Xk = y and ϑ+ (y − x) ∈ Rd+. Then, from the definition of h we see that h(x) ≥ h(y).

Thus, h is componentwise nonincreasing. That the effective domain of h is Conv (x1, . . . , xn)+Rd+ is clear
from the fact that for any x not belonging to that set, the infimum defining h(x) would be taken over the
empty set. Finally, for any ψ ∈ Qx,z and x ∈ Conv (x1, . . . , xn)+Rd+ we have, for θ ∈ Rn and ϑ ∈ Rd+ with
θ ≥ 0, x =ϑ+∑n

j=1θ
j x j and

∑n
j=1θ

j = 1,

ψ(x) ≤ψ
(

n∑
j=1

θ j x j

)
≤

n∑
j=1

θ jψ(x j ) ≤
n∑

j=1
θ j z j

since ψ(x j ) ≤ z j for any j = 1, . . . ,n. The definition of h as an infimum then implies that ψ(x) ≤ h(x) ∀
ψ ∈Qx,z , x ∈Conv (x1, . . . , xn)+Rd+. The result then follows from the fact that h ∈Qx,z . �
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A.2 Results from matrix algebra

Before proving Lemma 4.1, we need the following result.

Lemma A.3 Let j ∈ {1, . . . ,d},α ∈ {−1,1}d and ρ∗ > 0. Then, the optimal value of the optimization problem

min 〈α j e j , w2 −w1〉
s.t.

∣∣∣w2 − 3ρ∗
8
p

d
α

∣∣∣≤ ρ∗
8
p

d
|w1| ≤ ρ∗

16
p

d
w1, w2 ∈Rd

is 3
16

p
d
ρ∗ and it is attained at w∗

1 = ρ∗
16

p
d
α j e j and w∗

2 = 3ρ∗
8
p

d
α− ρ∗

8
p

d
α j e j .

Proof: Writing w = (w1; w2) with w1, w2 ∈Rd for any w ∈R2d , consider f , g1, g2 :R2d →R defined as:

f (w) = 〈α j e j , w2 −w1〉,

g1(w) = 1

2

((
ρ∗

16
p

d

)2

−|w1|2
)

,

g2(w) = 1

2

((
ρ∗

8
p

d

)2

−
∣∣∣∣w2 − 3ρ∗

8
p

d
α

∣∣∣∣2)
.

Then, f , g1, g2 are twice continuously differentiable on R2d and the optimization problem can be re-
written as minimizing f (w) over the set {w ∈R2d : g1(w) ≥ 0, g2(w) ≥ 0}. The proof now follows by noting

that the vector w∗ = (w∗
1 ; w∗

2 ) ∈ R2d and the Lagrange multipliers λ∗
1 = 16

p
d

ρ∗ and λ∗
2 = 8

p
d

ρ∗ are the only
ones which satisfy the Karush-Kuhn-Tucker second order necessary and sufficient conditions for a strict
local solution to this problem as stated in Theorem 12.5, page 343 and Theorem 12.6, page 345 in Nocedal
and Wright (1999). �

A.2.1 Proof of Lemma 4.1

Without loss of generality, we may assume that r = 1. Let Rr be 1p
d

and pick δ ∈
(
0, 1p

d

)
, ρ∗ = 1p

d
−δ

and ρ∗ = 2d
1−δpd

. Consider a matrix Z = (z1, . . . , zd ) ∈ Rd×d with columns z1, . . . , zd ∈ Rd and define the

function ξ̃ :Rd×d →Rd as

ξ̃(Z ) =

∣∣∣∣∣∣∣∣
e1 z1

2 − z1
1 · · · z1

d − z1
1

...
...

...
...

ed zd
2 − zd

1 · · · zd
d − zd

1

∣∣∣∣∣∣∣∣
where the bars denote the determinant and the equation is written symbolically to express that ξ̃(Z ) is a
linear combination of the vectors {e j }1≤ j≤d with the cofactor corresponding to the ( j ,1)’th position as the
coefficient of e j . This is a common notation for “generalized vector products”; see, for instance, Courant
and John (1999), Section 2.4.b, page 187 for more details. Since the determinant and all cofactors can be
seen as a continuous function on Rd×d , it follows that ξ̃ is continuous on Rd×d . Now choose α ∈ {−1,1}d
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and observe that

ξ̃(α1e1, . . . ,αd ed ) =
(

d∏
j=1

α j

)
α,∣∣∣ξ̃(α1e1, . . . ,αd ed )

∣∣∣ =
p

d ,

〈ξ̃(α1e1, . . . ,αd ed ),α j e j 〉 =
d∏

k=1
αk ∀ j = 1, . . . ,d .

Since Rd×d has the product topology of the d-fold topological product of Rd with itself, the continuity

of ξ̃ and of 〈·, ·〉 imply that we can find ρα ∈
(
0, 1p

d
−δ

)
such that if x j ∈ B(α j e j ,ρα) for any j = 1, . . . ,d ,

β= {x1, . . . , xd } and Xβ = (x1, . . . , xd ), then∣∣∣∣∣ξ̃(Xβ)
∣∣−p

d
∣∣∣ < δ,∣∣∣∣∣ ξ̃(Xβ)

|ξ̃(Xβ)| −
∏

1≤ j≤d α
j

p
d

α

∣∣∣∣∣ < δ, (43)∣∣∣∣∣
〈
ξ̃(Xβ)

|ξ̃(Xβ)| , x j

〉
−

∏d
k=1α

k

p
d

∣∣∣∣∣ < δ ∀ j = 1, . . . ,d . (44)

Taking this into account, define

ξα,β =
(

d∏
j=1

α j

)
ξ̃(Xβ)

|ξ̃(Xβ)| , and bα,β = 〈ξα,β, x1〉.

From the definition of the function ξ̃ it is straight forward to see that 〈ξα,β, x j − x1〉 = 0 ∀ j ∈ {1, . . . ,d}, so
we in fact have

x1, . . . , xd ∈Hα,β := {x ∈Rd : 〈ξα,β, x〉 = bα,β}.

Moreover, (43) and (44) imply

1p
d
+δ> bα,β >

1p
d
−δ> 0,

min
1≤ j≤d

{
|ξ j
α,β|

}
> 1p

d
−δ> 0.

For simplicity, and without loss of generality (the other cases follow from symmetry), we now assume
that α = e, the vector of ones. By solving the corresponding quadratic programming problems, it is not
difficult to see that

ρ∗ = 1p
d
−δ< bα,β = inf

〈ξα,β,x〉≥bα,β

{|x|}

ρ∗ = 2d

1−δpd
> bα,β

min1≤ j≤d {|ξ j
α,β|}

= sup
〈ξα,β,x〉≤bα,β

x≥0

{|x|}.

For the first inequality see, for instance, Exercise 16.2, page 484 of Nocedal and Wright (1999). For the
second one, one must notice that 2

p
d > 1p

d
+δ > bα,β and that the optimal value of the optimization
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problem must be attained at one of the vertices of the polytope {x ∈ Rd+ : 〈ξα,β, x〉 ≤ bα,β}. The latter
statement can be derived from the Karush-Kuhn-Tucker conditions of the problem.

The inequalities in the last display imply that B(0,ρ∗) ⊂H −
α,β and {x ∈Rd : |x| ≥ ρ∗}∩Rα ⊂H +

α,β.

Finally, for x ∈ B(−α j e j , 1
2ρα) we have |x+x j | < ρα and therefore 〈ξα,β, x〉 <−〈ξα,β, x j 〉+ρα < δ− 1p

d
+

ρα < 0. We can then take any ρ ≤ 1
2 minα∈{−1,1}d {ρα} to make (i )-(vi ) be true. We’ll now argue that by

making ρ smaller, if required, (vi i ) also holds.

Let B1 = B
(
0, ρ∗

16
p

d

)
, B2 = B

(
3ρ∗
8
p

d
α, ρ∗

8
p

d

)
and consider the functions ϕ,ψ :Rd×d →R given by

ϕ(X ) = inf
w1∈B1,w2∈B2

{
min

1≤ j≤d

{
(X (w2 −w1)) j

}}
,

ψ(X ) = sup
w1∈B1

{
max

1≤ j≤d

{
(X w1) j

}}
.

Both of these functions are Lipschitz continuous with the metric induced by the ‖·‖2-norm on Rd×d with
Lipschitz constants smaller than ρ∗. To see this, observe that

|X (w2 −w1)−Y (w2 −w1)| ≤ ‖X −Y ‖2|w2 −w1| ≤ 9

16
ρ∗‖X −Y ‖2

for all w1 ∈ B1, w2 ∈ B2 and X ,Y ∈Rd×d . Also, simple algebra shows that
∣∣min1≤ j≤d {x j }−min1≤ j≤d {y j }

∣∣≤
|x − y | ∀ x, y ∈ Rd . From these assertions, one immediately gets the Lipschitz continuity of ϕ. Similar
arguments show the same for ψ.

Let Iα ∈ Rd×d be the diagonal matrix whose j ’th diagonal element is precisely α j . From Lemma A.3
it is seen that ϕ(Iα) = 3ρ∗

16
p

d
. On the other hand, it is immediately obvious that ψ(Iα) = ρ∗

16
p

d
. Using one

more time the continuity of ψ and ϕ and that the topology in Rd×d is the same as the topology of the
d-fold topological product of Rd , for each α ∈ {−1,1}d we can find rα for which Xβ = (x1, . . . , xd ) ∈ Rd×d

and |x j −α j e j | < rα for all j = 1, . . . ,d imply |ψ(X −1
β

)− ρ∗
16

p
d
| < ρ∗

32
p

d
and |ϕ(X −1

β
)− 3ρ∗

16
p

d
| < ρ∗

16
p

d
. It follows

that

inf
t≥1

w1∈B1,w2∈B2

{
min

1≤ j≤d

{(
X −1
β (w1 + t (w2 −w1))

) j
}}

≥ inf
t≥1

w1∈B1,w2∈B2

{
min

1≤ j≤d

{(
t X −1

β (w2 −w1)
) j

}}
− sup

w1∈B1

{
max

1≤ j≤d

{(
X −1
β w1

) j
}}

≥ ϕ(X −1
β )−ψ(X −1

β ) > ρ∗
8
p

d
− 3ρ∗

32
p

d
= ρ∗

32
p

d
> 0.

The proof is then finished by taking ρ ≤ minα∈{−1,1}d

{
rα∧ ρα

2

}
. �

A.2.2 Proof of Lemma 4.2

Assume again, without loss of generality, that r = 1. Lemma 4.1 (i i ) and (vi ) imply that xα j j , x−α j j ∈ {x ∈
Rd : 〈x,ξα〉 ≤ bα} for any j = 1, . . . ,n and any α ∈ {−1,1}d . It follows that, in addition to being convex,
∩α∈{−1,1}d {x ∈ Rd : 〈ξα, x〉 ≤ bα} contains {x±1, . . . , x±d } and hence it must contain K . For the other con-

tention, take x ∈∩α∈{−1,1}d {w ∈Rd : 〈ξα, w〉 ≤ bα} with x 6= 0 and any α ∈ {−1,1}d for which x ∈Rα. Then,
〈ξα, x〉 > 0 for otherwise we would have

κx ∈Rα \H +
α ∀ κ≥ 0
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which is impossible by (v) in Lemma 4.1. Thus, Jx = {α ∈ {−1,1}d : 〈ξα, x〉 > 0} 6= ; and we can define

rx = min
α∈Jx

{
bα

〈ξα, x〉
}

and αx = argmin
α∈Jx

{
bα

〈ξα, x〉
}

.

Note that rx ≥ 1. Since βαx is a basis, there is θ ∈Rd such that rx x = θ1xα1
x 1 + . . .+θd xαd

x d . But then,

bαx = 〈rx x,ξαx 〉 =
d∑

k=1
θk〈xαk

x k ,ξαx 〉 = bαx

d∑
k=1

θk

where the last equality follows from (i i ) of Lemma 4.1 and therefore θ1 + . . .+θd = 1. Now assume that

θ j < 0 for some j ∈ {1, . . . ,d} and set γx ∈ {−1,1}d with γk
x =αk

x for k 6= j and γ j
x =−α j

x . But then,
∑

k 6= j θ
k =

1−θ j > 1, 〈xαk
x k ,ξγx 〉 = bγx for k 6= j and 〈x

α
j
j j

,ξγx 〉 < 0 by (i i ) and (vi ) in Lemma 4.1. Therefore,

〈rx x,ξγx 〉 = θ j 〈x−α j
x j

,ξγx 〉+
∑
k 6= j

θk〈xαk
x k ,ξγx 〉 (45)

> ∑
k 6= j

θk〈xαk
x k ,ξγx 〉 > bγx (46)

which is impossible because it contradicts the definition of rx . Hence, θ ≥ 0 and we have rx x ∈Conv
(
βαx

)
.

Note that since 0 belongs in the interior of ∩α∈{−1,1}d {w ∈Rd : 〈ξα, w〉 ≤ bα}, there there is κ> 0 such that

−κx ∈ ∩α∈{−1,1}d {w ∈ Rd : 〈ξα, w〉 ≤ bα}. Applying the same arguments as before to −κx instead of x, we

can find r̃x > 0 and α̃x ∈ {−1,1}d such that −r̃x x ∈Conv
(
βα̃x

)
. It follows that −r̃x x,rx x ∈ K and therefore

0, x ∈ K since rx ≥ 1. Hence, we have proved (i ).
To prove (i i ), note that A :=∩α∈{−1,1}d {w ∈ Rd : 〈ξα, w〉 < bα} is open and, by (i ), it is contained in K .

Thus, A ⊂ K ◦. That K ◦ ⊂ A follows from the fact that if x ∈ K \ A, then 〈ξα, x〉 = bα for some α ∈ {−1,1}d ,
which implies that B(x,τ)∩Ext(K ) 6= ; for all τ> 0 and hence x ∉ K ◦.

It is then obvious that (i v) follows from the identity ∂K = K \ K ◦ and the fact that K is closed.
Pick any α ∈ {−1,1}d and observe that (i i ) and (vi ) from Lemma 4.1 imply that for any γ ∈ {−1,1}d we

have

〈ξγ, xαk k〉
{ = bγ if γk =αk

< 0 ≤ bγ if γk =−αk

which by (i v) of this lemma show that

xα j j ∈ {w ∈Rd : 〈ξα, w〉 = bα}∩
(
∩γ∈{−1,1}d {w ∈Rd : 〈ξγ, w〉 ≤ bγ}

)
for all α ∈ {−1,1}d and j = 1, . . . ,d . Since the sets on the right-hand side of the last display are all convex
we can conclude that

Conv
(
xα11, . . . , xα j j

)
⊂ {w ∈Rd : 〈ξα, w〉 = bα}∩

(
∩γ∈{−1,1}d {w ∈Rd : 〈ξγ, w〉 ≤ bγ}

)
for all α ∈ {−1,1}d . Thus,

⋃
α∈{−1,1}d Conv

(
xα11, . . . , xα j j

)
⊂ ∂K . Finally, take x ∈ ∂K . Then, there is αx ∈

{−1,1}d such that 〈ξαx , x〉 = bαx . Since βαx is a basis we can again find θ ∈Rd such that x = θ1xα1
x 1 + . . .+

θd xαd
x d . Just as before, 〈ξαx , x

α
j
x j
〉 = bαx implies that

∑
θ j = 1. And again, if θ j < 0 for some j , we can take

γx ∈ {−1,1}d with γk
x =αk

x for k 6= j and γ j
x =−α j

x and arrive at a contradiction with similar arguments to
those used in (45) and (46). This shows that x ∈ Conv

(
βαx

)
and completes the proof as (v) and (vi ) are

direct consequences of (i )− (i v) and Lemma 4.1. �
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A.2.3 Proof of Lemma 4.3

Let r ∈ (0, 1
d−2 ) if d ≥ 3 and r > 0 if d ≤ 2. Since the geometric properties of any rectangle depend only

on the direction and magnitude of the diagonal, we may assume without loss of generality that b > 0 and
that a = r

1+r b. This is because we can define b̃ = (1+ r )(b −a) > 0 and ã = a − r (b −a) to obtain [a,b] =
ã + [ r

r+1 b̃, b̃
]
. For any α ∈ {−1,1}d , define α j = α−2α j e j ∈ Rd and wα = zα+ r (zα− z−α). Additionally,

define the functions ψα,ϕα :Rd×d ×Rd →R by

ψα(Θ,θ) = 〈e,Θ(zα−θ)〉
ϕα(Θ,θ) = min

1≤ j≤d

{
(Θ(zα−θ)) j

}
.

ConsideringRd×d with the topology generated be the ‖·‖2 norm andRd×d×Rd with the product topology,
it is easily seen that both functions defined in the last display are continuous. Now, let Wα ∈Rd×d be the
matrix whose j ’th column is precisely wα j −wα. It is not difficult to see thatψα(W −1

α , wα) = dr
1+2r < 1 and

ϕα(W −1
α , wα) = r

1+2r > 0. For instance, one can check that forα=−e, one has wα = 0 and wα j = 1+2r
1+r b j e j

and the result is now evident. By symmetry, the same is true for any α ∈ {−1,1}d . Therefore, for any
α ∈ {−1,1}d there is ρα such that whenever |xα j −wα j | < ρα ∀ j = 1, . . . ,n and Xα is the matrix whose j ’th
column is xα j −xα, we get

ψα(X −1
α , xα) < 1, (47)

ϕα(X −1
α , xα) > 0. (48)

Letting ρ = minα∈{−1,1}d

{
ρα

}
completes the proof as (47) and (48) imply zα ∈Conv

(
xα, xα1 , . . . , xαd

)◦. �
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