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Abstract

Mahalanobis’s famous paper on Fractile Graphical Analysis introduced a
plethora of new statistical concepts and techniques [see Mahalanobis (1960)].
The method was originally proposed to compare two regression functions. We
discuss and re-interpret some of his work, highlighting his contributions and
some of the difficulties encountered. We develop a bootstrap based hypothesis
test to compare the fractile regression curves based on their isotonized estima-
tors. The proposed procedure does not depend on the choice of any tuning
parameter and is computationally simple. Through an extensive simulation
study, we illustrate the finite sample performance of our procedure. We also
discuss three real data applications that illustrate the scope of the methodology.

Keywords: Bootstrap, comparison of regression functions, fractile regression, iso-
tonic estimators, standardization of covariate.

1 Introduction

Fractile Graphical Analysis (FGA) was proposed and investigated by Prasanta
Chandra Mahalanobis in a series of papers and seminars during the period 1950-70
as a method to compare two regression functions. The procedure is graphical in
nature and can be thought of as the regression of the response variable on the ranks
of the predictor using non-parametric techniques; and thus the name FGA.

1.1 A Brief History of Fractile Graphical Analysis

Mahalanobis’s famous paper “A method of fractile graphical analysis” first appeared
in a special issue of Econometrica [see pages 325-351 in volume 35 of the journal,
published in the year 1960] that was brought out in honour of Ragnar Frisch, joint
winner of the first Nobel Prize in Economics, in the year of his sixty-fifth birthday.
The stage was indeed grand, and the issue had contributions from other real stars
in economics including Nobel laureates like Jan Tinbergen, Paul Samuelson, Ken-
neth Joseph Arrow and Robert Merton Solow. Mahalanobis in his paper provided
“some examples of the use of fractile graphical analysis”, which he described as “a
new method for the comparison of economic data relating to the same population
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over time or to any two populations that differ as to geographical region or in any
other way”. The paper instantly created a sense of excitement among statisticians
in India and abroad. Sankhyā in 1961 reprinted Mahalanobis’s original article along
with a series of other papers on this topic by Takeuchi (1961), Sethuraman (1961),
Parthasarathy and Bhattacharya (1961). The paper also generated some controversy
– Subramanian Swamy [see Swamy (1963)] wrote a paper in Econometrica criticiz-
ing Mahalanobis’s approach, and later Iyengar and Bhattacharya (1965) published
an article responding to Swamy’s paper. A nice summary of the developments on
FGA can be found in a collection of articles by Mahalanobis that was edited by P.
K. Bose and published in 1988 [Mahalanobis (1988)].

Although a somewhat forgotten statistical tool now, the developments made by Ma-
halanobis in this area remain extremely relevant as it can be said to have lead to
the inception of modern nonparametrics. We mention here some of his contribu-
tions in nonparametrics and allied areas. (a) FGA is one of the earliest works on
nonparametric regression. In fact Watson’s (1964) seminal paper on nonparametric
kernel regression cited and discussed fractile graphs. (b) Mahalanobis (1960) also
provided some guidelines for formally testing the equality of two regression curves
nonparametrically. (c) FGA used one of the earliest forms of resampling (subsam-
pling) techniques for carrying out statistical tests [see Hall (2003)]. (d) Mahalanobis
(1988) provides one of the earliest versions of a multivariate fractile/quantile trans-
formations. But the emphasis and “the aim of the method (FGA) is rather to
produce distribution-free tests” to compare the fractile graphs than to accurately
(nonparametrically) estimate the regression curves, as pointed out by Watson (1964)
in his seminal paper. We maintain the same spirit in our discussion, and investigate
nonparametric tests for the formal comparison of the fractile graphs.

Mahalanobis initially developed and used FGA to study the economic condition of
rural India on the basis of data collected on household consumption and expendi-
ture over two different time periods: the 7th (October 1953 to March 1954) and
the 9th (May to November 1955) rounds of the National Sample Survey of India.
It is obviously of great importance to policy makers of a country like India to un-
derstand the economic condition of the rural community. They would also like to
ascertain whether their policies have been able to improve the economic condition of
the rural population over a period of time. As a measure of the economic well-being
of the rural community, one may consider the fraction of total expenditure that is
spent on food articles to the total expenditure incurred. It is expected that lower
this proportion, the greater is the possibility of the rural community being better off.

Let X be the total expenditure per capita per 30 days in a household and Y be the
fraction of total expenditure on food articles per capita per 30 days in the household.
Mahalanobis wanted to perform a regression analysis of Y on X and was interested
in comparing the regression functions at two different time points. But due to in-
flation, the total expenditure (per capita per 30 days) for the two time points are
not comparable. Just comparing the regression functions for the two populations
did not make much sense. In fact, Mahalanobis was aware that the comparative
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study that he was interested in will be inadequate even if one uses inflation adjusted
figures for expenditures at the two different time points. So, he chose to compare
the means of the Y -variable in different fractile (rank) groups corresponding to the
X-variable. This approach leads to a novel way of standardizing the covariate X
so that comparison of the two regression functions over two different time periods
can be done in a more meaningful way. More precisely, FGA does this required
standardization by considering F (X) instead of X as the regressor, where F is the
distribution function of X.

Recently there has been a renewed interest in FGA, and several papers have been
written highlighting the usefulness and applicability of FGA in diverse settings;
see e.g., Nordhaus (2006), Hertz-Picciotto and Din-Dzietham (1998), Montes-Rojas
(2010), Bera and Ghosh (2006), Sen (2005) and Sen and Chaudhuri (2010). Nord-
haus (2006) shows fractile plots of key geographic variables (temperature, precipi-
tation, latitude, etc.) against the fractiles of log of “output density” while trying
to explore the linkage between economic activity and geography. Hertz-Picciotto
and Din-Dzietham (1998) compare the infant mortality using a “percentile based
method” of standardization for birthweight or gestational age. Their motivation un-
derlying the percentile-based method of standardization is that comparable health
for two population groups will be expressed as equal rates of disease or mortality
at equal percentiles in the distributions of either birthweight or gestational age.
Montes-Rojas (2010) considers nonparametric estimators of average and quantile
treatment effects, in applications arising in econometrics, using ideas from FGA.
Bera and Ghosh (2006) discuss FGA with some historical perspectives and consider
some relevant applications in Economics and Finance. The estimation and formal
testing of fractile graphs using smooth nonparametric estimators is considered in
Sen (2005). Sen and Chaudhuri (2010) investigate FGA when the covariate can be
multi-dimensional.

Our contribution goes beyond the aforementioned papers in the following ways. We
develop tests of hypotheses for the comparison of the fractile regression curves us-
ing isotonized nonparametric estimators. As mentioned before, this comparison is a
central issue in FGA, and Mahalanobis himself did not have very clear results in this
direction. In the process, we review and re-interpret some of the main ideas of FGA.
Although Sen (2005) addressed this comparison, the paper was restricted to the use
of smooth regression estimators. His approach, although conceptually simple, made
the formal comparison of the fractile regressions very ad-hoc as it depended on the
choice of many tuning parameters. In this paper, we propose tests of hypotheses
that do not depend on the choice of tuning parameters, and illustrate, through an
extensive simulation study, the remarkable finite sample properties of the method.
The proposed procedure can be implemented easily and is computationally fast.

In Section 2, we define and study some properties of the population version of frac-
tile regression. In Section 3, we introduce the nonparametric estimators of fractile
regression to be considered in the paper. In particular, we motivate the define the
isotonized estimators. The formal comparison of the fractile regression curves is con-
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sidered in Section 4. The finite sample performance of our method is investigated in
Section 5. Section 6 discusses application of FGA in three different examples. We
end with some concluding remarks, mentioning some of the open research problems
in this area and discuss possible extensions in Section 7.

2 Fractile Regression

In precise mathematical terms, FGA can be described as follows: consider two bi-
variate random vectors (X1, Y1) and (X2, Y2) and the associated regression functions
µ1 and µ2 where µ1(x) = E(Y1|X1 = x) and µ2(x) = E(Y2|X2 = x). Then the
fractile regression functions are defined as

m1(t) = E{Y1|F1(X1) = t} and m2(t) = E{Y2|F2(X2) = t}

for t ∈ (0, 1), where F1 and F2 are the distribution functions of X1 and X2 respec-
tively [see Mahalanobis (1960)]. Mahalanobis’s goal was to test the equality of the
fractile regression curves m1 and m2 nonparametrically. Note that the comparison
of m1(t) and m2(t) amounts to comparing the means of the responses Y1 and Y2 at
the t-th quantile of the covariates rather than the same value of the covariates, as
is done in usual regression.

Notice that the transformed covariates F1(X1) and F2(X2) both have a uniform
distribution on (0, 1). This achieves a distribution-free nonparametric standardiza-
tion of the covariates. The uniform distribution of the transformed covariate also
yields optimality properties of the estimated fractile regression function; see Sen
and Chaudhuri (2010). This standardization makes the fractile regression func-
tions invariant under all strictly increasing transformations of the covariate. In
other words, suppose that (X1, Y ) is a continuous bivariate random vector and if
X2 = φ(X1), where φ is any strictly increasing transformation, then E{Y |F1(X1)} =
E{Y |F2(X2)}, where F1 and F2 are the distribution functions of X1 and X2 respec-
tively. This is a crucial property and can be interpreted in the following way: the
fractile transformation makes the regression functions comparable even when the
covariate in the second population is any increasing transformation of that of the
first population.

In fact, it can be shown that if any transformation of the covariate achieves invari-
ance of the regression functions under the group of all strictly increasing functions of
the covariate then it must be a function of the fractile transform X1 7→ F1(X1). Fur-
thermore, if we impose the additional assumption of uniformity of the transformed
covariate distribution, then the fractile transformation is the only choice; see Sen
and Chaudhuri (2010) for a discussion and a proof of the results. This property is
very important while comparing regression functions, where the distributions of the
covariates are very different for the two populations under comparison.
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3 Estimation of Fractile Regression

Before we describe our procedure, let us first introduce Mahalanobis’s ideas. Con-
sider a random sample {(Xi, Yi)}n

i=1 from a bivariate population, where X1 ∼ F .
Suppose that the data points are ranked in the ascending order of X. The n data
points are divided into g fractile groups each of equal size n′ = n/g. On the x-axis,
g equidistant points 1, 2, . . . , g are marked to represent the g fractile groups, and the
corresponding means of the y-variable, labeled as y′1, y

′
2, . . . , y

′
g, are plotted. Each

pair of adjoining points y′i and y′i+1 for i = 1, 2, . . . , g− 1 are joined by straight lines
to get a polygonal curve called the fractile graph.

In this paper, we consider two kinds of nonparametric estimation techniques for the
fractile regression function

m(t) = E{Y1|F (X1) = t} for t ∈ [0, 1].

The first method uses smoothing techniques, whereas the second method relies heav-
ily on known “shape” constraints on the regression function (e.g., increasing, de-
creasing). Sen (2005) considered the estimation of fractile regression using kernel
smoothing methods in great detail, and we just summarize the main ideas below.

A general class of smoothed nonparametric estimators of fractile regression, called
linear smoothers [as proposed by Stone (1977)], can be expressed in the form:

m̂S
n(t) =

n∑

i=1

YiWn,i(t),

where Wn,i(t) is a proper weight function depending on the input data, prefer-
ably satisfying

∑n
i=1 Wn,i(t) = 1, for all t ∈ [0, 1]. If we use nonparametric ker-

nel regression procedures [see e.g., Muller (1988), Härdle (1990), Wand and Jones
(1995), Fan and Gijbels (1996)], the weight function can depend on the smooth-
ing bandwidth and can take the form Wn,i(t) = Wn,i(t, hn, Fn(X1), Fn(X2), . . . ,
Fn(Xn)), 1 ≤ i ≤ n, where Fn is the empirical distribution function of {Xi}n

i=1 (i.e.,
Fn(x) = 1

n

∑n
i=1 1{Xi≤x} for x ∈ R), and hn is the smoothing bandwidth based on a

sample of size n. Note that as we are regressing Y on the ranks of X, in a sense, we
can pretend that our observations are {(F (Xi), Yi)}n

i=1, where F is the distribution
function of X1. But as the distribution function F is not known, we work with the
empirical distribution function Fn, and it is used in the weight functions for the
fractile regression estimators.

Fractile regression can also be obtained as a transformation of the usual regression
function [see Bhattacharya and Muller (1993)] by observing that

mi(t) = µi ◦ F−1
i (t), for i = 1, 2.

This provides an alternative way of estimating fractile regression: first estimate the
usual regression function and then estimate the distribution function of the covariate
to obtain the final estimator. But this requires a smooth estimation of the distri-
bution function of the covariate, making it more difficult to implement; and in fact,
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Figure 1: (a) The scatter plot with the true regression function, (b) the fractile
regression function (in dashed black) along the smoothed (in solid red) and the shape
constrained increasing (in solid blue) nonparametric estimators.

our simulations showed that it had worse finite sample properties. Thus, we do not
explore this further.

The choice of the smoothing bandwidth hn is of crucial importance in the above
smoothing procedures. Although there are several methods proposed in the litera-
ture [e.g., see Rice (1984), Härdle (1990), Wand and Jones (1995), Fan and Gijbels
(1996)] for choosing the optimal bandwidth, in practice, the performance of most
bandwidth selectors is far from satisfactory. This motivates the use of “shape” con-
strained nonparametric estimators that are completely automated, and do not need
the choice of any tuning parameter.

Suppose that the usual regression function is known to be increasing (or decreas-
ing). In that case the fractile regression function m(·) will also be increasing (or
decreasing). As we will see, in most of the real applications considered in this pa-
per, such shape restrictions arise naturally. Representing the transformed data set
as {(i/n, Y[i:n])}n

i=1, where Y[i:n] denotes the concomitant of the i-th order statistic
of X, we can now define the isotonic (increasing) estimator of m as

m̂I
n = arg min

f∈C

n∑

i=1

{
Y[i:n] − f (i/n)

}2 (1)

where C denotes the class of all increasing real valued functions on [0, 1]; see Brunk
(1970) and Robertson et al. (1988). Thus, the isotonic estimator is obtained by
minimizing the least squares criterion over all increasing functions. A unique so-
lution to problem (1) exists and can be expressed as [see Robertson et al. (1988),
page 24]

m̂I
n (k/n) = max

i≤k
min
j≥k

Y[i:n] + . . . + Y[j:n]

j − i + 1
,
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for k = 1, . . . , n. The estimator can be easily computed using the pool adjacent vio-
lators algorithm (PAVA); see Barlow et al. (1972). If skillfully implemented, PAVA
has a computational complexity of O(n) [see Grotzinger and Witzgall (1984)]. There
is quite a large literature on isotonic regression. Barlow et al. (1972) is a classic
reference along with Robertson et al. (1988). A recent paper by de Leeuw at al.
(2009) gives an overview of the problem’s history and computational aspects.

Note that m̂I
n is only defined at the x-values i/n, but it can be defined on the en-

tire interval [0, 1] using a piece-wise constant (or linear) interpolation. The main
advantage of the isotonized estimator m̂I

n is that it avoids the specification of any
tuning parameter, and as we will see later, drastically simplifies the testing problem
considered in Section 4.

As an example of fractile regression, we demonstrate the smooth kernel based esti-
mator, the shape constrained (increasing) estimator in Figure 1 along with the true
fractile regression curve. We generated a random samples of size n = 100 from the
population Y = 1.0 + X + ε where ε ∼ N(0, 0.09) and X ∼ Exp(1). Although the
two estimators are quite similar, the kernel based method produces a very wiggly
function (a consequence of the chosen optimal bandwidth being too small). For our
smooth estimator, we have used the Nadaraya-Watson type weight function [see Sen
(2005)] with the standard normal kernel and optimal bandwidth obtained by the
method of least squares cross validation.

4 Comparison of Estimated Fractile Regression Func-
tions

Suppose that we have data {(X1i, Y1i)}n1
i=1 and {(X2i, Y2i)}n2

i=1 from two populations,
and we want to test the hypotheses

H0 : m1 = m2 vs. HA : m1 6= m2, (2)

where m1(t) = E(Y1i|F1(X1i) = t) and m2(t) = E(Y2i|F2(X2i) = t), and F1 and F2

are the continuous strictly increasing distribution functions of X1i and X2i respec-
tively.

Much effort has been devoted to the problem of comparing nonparametric regression
curves in the recent literature [e.g., see Delgado (1993); Munk and Dette (1998);
Dette and Neumeyer (2003)]. These authors considered the testing problem

H0 : g1 = g2 vs. HA : g1 6= g2, (3)

where g1 and g2 are the usual regression curves corresponding to two different pop-
ulations. Most authors concentrated on equal design points to develop tests for (3).
Kulasekera (1995) proposed a test for the hypotheses in (3) using quasi-residuals
which is applicable under the assumption of different design points for both the
samples. Kulasekera and Wang (1997) considered the selection of smoothing param-
eters to obtain optimal power in tests of regression curves. Munk and Dette (1998),
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Neumeyer and Dette (2003) considered the problem of the comparison of nonpara-
metric regression curves under a very general set-up. Delgado (1993), Kulasekera
(1995) and Kulasekera and Wang (1997) considered marked empirical processes to
develop tests for the hypotheses in (3).

All the above procedures use nonparametric smoothing techniques that involve the
choice of a number of tuning parameters and an optimal choice in finite samples
is indeed very difficult. In this section, we outline a resampling (bootstrap) based
hypothesis testing procedure that does not involve the choice of any tuning param-
eter and is completely automated. Our method is applicable in situations when the
fractile regression function is known to obey “shape” restrictions like monotonicity
(decreasing/increasing). Also, none of the above mentioned authors address the
problem of possible effects of transformations on the covariate for the two popula-
tions. Further, some of the usual methods for comparison of the regression curves
do not generalize in a straight forward manner in our setup as in fractile regression
the covariate Xi is replaced by Fn(Xi), and the Fn(Xi)’s are not independent even
if the Xi’s are so.

4.1 Mahalanobis’s Idea for Comparing two Fractile Graphs

The first sample of size n1 is obtained from the first bivariate population by draw-
ing two independent (“interpenetrating”) random half-samples each of size n1/2.
The first half-sample is then considered, and the fractile graph G(1) is constructed
from it [see Section 3 for Mahalanobis’s construction of the fractile graphs]. The
second half-sample is used to get the second fractile graph G(2). Clearly, the two
half-sample fractile graphs G(1) and G(2) have identical statistical distributions.

Mahalanobis’s idea was to mix the two half-samples to form the combined sample
of size n1 from the first population. The combined sample is again ranked according
to the X-values and divided into g fractile groups each containing n′1 (n′1 = n1/g)
units. The y-averages of the corresponding fractile groups are plotted to get the
combined fractile graph G(1, 2). The “error area” a(1, 2) associated with the com-
bined sample is defined as the area bounded between the two half-sample fractile
graphs G(1) and G(2) (i.e., a(1, 2) =

∫ |G(1)−G(2)|).

The second bivariate population is considered next from which a pair of indepen-
dent (“interpenetrating”) half-samples are drawn. The second set of fractile graphs
G′(1), G′(2) and G′(1, 2) are computed from the half-samples obtained from the sec-
ond population. The area bounded between G′(1) and G′(2) is called the second
“error area” associated with the second population and is denoted by a′(1, 2) (i.e.,
a′(1, 2) =

∫ |G′(1) − G′(2)|). The area between the two combined fractile graphs
G(1, 2) and G′(1, 2) is called the “separation area” and is denoted by S(1, 2) (i.e.,
S(1, 2) =

∫ |G(1, 2) − G′(1, 2)|). The statistical error E to be associated with the
“separation area” S(1, 2) is defined by the formula E =

√
a2(1, 2) + a′2(1, 2). The

significance of the observed value of S(1, 2) is tested by considering the test-statistic
S2(1, 2)/E2, which Mahalanobis thought would be distributed approximately like a
chi-square random variable. However, there does not appear to be any mathematical
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validity for this result. Interested readers are referred to Takeuchi (1961), Mitro-
fanova (1961) and Mahalanobis (1988) for some of the statistical properties of the
“error area” in FGA. Sethuraman (1961) introduced other measures of divergence
between fractile graphs and investigated their limit distributions.

The distribution of the test-statistic S2(1, 2)/E2 is not in general chi-square. The
implementation of the method also requires the choice of the “group” size g, a tuning
parameter. Mahalanobis’s idea of using the subsamples to approximate the null
distribution can, in light of modern developments in bootstrap and other resampling
techniques, be improved. In the following we propose a bootstrap based test that
uses the essential ideas of Mahalanobis and discuss its implementation.

4.2 A Resampling Based Test

After obtaining the estimates of fractile regression, m̂1,n1 and m̂2,n2 , for the two
populations, to test the hypotheses in (2), we might use the test statistic

T (p)
n1,n2

=
∫ 1

0
|m̂1,n1(t)− m̂2,n2(t)|pdt (4)

where p ≥ 1. When p = 1 this gives us the “separation area” between the two
fractile regression functions. Under the null hypothesis, we expect the test statistics
to be small, whereas large values of the test statistics would support the alternative
hypothesis. For mathematical and computational tractability, we recommend taking
p = 2, and use it in our data analysis. A major technical barrier in using the
test statistic T

(p)
n1,n2 is that its sampling distribution is analytically intractable. But

recently there has been progress in this direction, and Durot (2007) shows that under
appropriate conditions, when we use the shape restricted nonparametric estimators,

n
1/6
1

{
n

p/3
1

∫ 1

0
|m̂1,n1(t)−m1(t)|pdt−mp

}
→d N(0, σ2

p),

where mp and σp are unknown constants that depend in a complicated way on the
regression function and the error distribution. A similar result would also hold for
the estimator for the second sample. The use of the asymptotic normal distribution
is difficult as that involves estimating the nuisance parameters mp and σp. But this
suggests that an appropriate bootstrap [see e.g., Hall (1992) and Efron and Tibshi-
rani (1993)] based test may provide good approximation for the P-value of testing
the hypotheses in (2). In light of this, we propose a resampling based procedure
to test the hypotheses in (2). A complete theoretical justification of our method is
beyond the scope of the present paper, and will be the topic of future research.

We describe below the steps involved in computing the bootstrap estimates of the
P-values when Tn1,n2 ≡ T

(2)
n1,n2 is used as the test statistic.

• We transform the covariate X into its quantiles, i.e., we transform the data
set into {(i/n1, Y1[i:n1])}n1

i=1 and {(i/n2, Y2[i:n2])}n2
i=1, where Y1[i:n1] denotes the

concomitant of the i-th order statistic of X for the first sample [see e.g., David
and Nagaraja (2003)].
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• After transforming the covariate, we obtain the estimated isotonized fractile
regression functions m̂1,n1 and m̂2,n2 for the two samples as explained in Sec-
tion 3. We compute Tn1,n2 from the data. Note that we use the piece-wise
constant extension of m̂1,n1 and m̂2,n2 on the interval [0,1] which drastically
simplifies the computation of Tn1,n2 .

• To test the significance of the observed value of Tn1,n2 , we first compute the
pooled estimate of fractile regression m̂(·) combining the two data sets. This
is accomplished by defining

m̂ = arg min
f∈C

n1+n2∑

i=1

{
y[i:n1+n2] − f (i/(n1 + n2))

}2
wi (5)

where y[i:n1+n2] is the concomitant of the i-th order statistic of X for the
pooled sample, and wi = 1/n1 or 1/n2 depending on whether the i-th data
point is from the first or second sample. Note that (5) is the weighted version
of isotonic regression, and slightly different from (1). But invoking the PAVA
algorithm on the n1 + n2 response values in the pooled sample gives the so-
lution. From the definition of the weights wi, it is clear that the sum of the
weights for each sample is 1, and this ensures that both the samples get equal
weightage in calculating the pooled estimator, even though their sample sizes
might be different. Under the null hypothesis, m̂ acts as the surrogate for the
true fractile regression function.

• We compute the residual at each i/nj for 1 ≤ i ≤ nj and j = 1, 2 using the
pooled estimate m̂(·), i.e.,

ε̂ji = Yji − m̂(i/nj).

To construct the bootstrap samples of sizes n1 and n2, we draw from the
distribution of the residuals, to construct the bootstrap response values. If
we assume homoscedastic errors, this could be achieved by drawing a simple
random samples with replacement {ε∗ji : i = 1, 2, . . . , nj ; j = 1, 2} from the
residuals {ε̂ji}, and then defining

Y ∗
j[i:nj ]

= m̂(i/nj) + ε∗ji, for i = 1, 2, . . . , nj ; j = 1, 2.

To take care of heteroscedasticity, we use wild bootstrap to generate ε∗ji =
ε̂jiVji, where V11, . . . , V1n1 , V21, . . . , V2n2 are zero mean i.i.d. random variables
that are independent from the two samples [see e.g., page 257 of Mammen
(1993)]. In this paper we consider the Vji’s as i.i.d. random variables with
masses (

√
5 + 1)/(2

√
5) and (

√
5 − 1)/(2

√
5) at the points (1 − √

5)/2 and
(1 +

√
5)/2 (note that this distribution satisfies E(Vji) = 0;E[V 2

ji] = E[V 3
ji] =

1).

• Let T ∗, the bootstrap version of the test statistic, be defined as in (4), with
p = 2, based on the bootstrapped fractile regression curves obtained from the
bootstrapped samples {Y ∗

j[i:nj ]
}. These computations are repeated N times

(we have used N = 2000 in our numerical studies) to yield {T ∗i }N
i=1.
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n2 25 50 100 25 50 100 25 50 100
n1 Model µ1 vs. µ2 µ1 vs. µ3 µ1 vs. µ4

25 1 0.044 0.044 0.058 0.595 0.695 0.767 0.796 0.887 0.937
50 1 0.053 0.048 0.046 0.697 0.773 0.837 0.871 0.931 0.966
25 2 0.043 0.033 0.022 0.478 0.560 0.649 0.762 0.852 0.918
50 2 0.043 0.035 0.036 0.615 0.678 0.788 0.857 0.924 0.964
25 3 0.042 0.047 0.066 0.153 0.188 0.250 0.319 0.435 0.547
50 3 0.052 0.046 0.050 0.182 0.237 0.303 0.417 0.567 0.697
25 4 0.054 0.040 0.034 0.069 0.071 0.079 0.150 0.183 0.259
50 4 0.081 0.046 0.034 0.107 0.089 0.081 0.220 0.261 0.330
25 5 0.037 0.050 0.061 0.347 0.432 0.530 0.815 0.921 0.947
50 5 0.051 0.052 0.060 0.432 0.589 0.687 0.926 0.978 0.988
25 6 0.050 0.036 0.029 0.184 0.201 0.236 0.581 0.698 0.773
50 6 0.068 0.043 0.030 0.238 0.272 0.335 0.724 0.782 0.865

Table 1: Rejection probabilities of a wild bootstrap version of the test for various
sample sizes and the regression functions when the nominal level is α = 0.05.

• We compare the observed difference between the fractile regressions (i.e.,
Tn1,n2) with the empirical distribution of the test statistic T ∗i . The bootstrap
estimate of the P-value is the proportion of times T ∗i exceeds the observed
value of Tn1,n2 .

5 Simulation Study

To investigate the finite sample properties of our testing procedure, we consider two
samples obtained from the two regression models:

Y1i = µ1(X1i) + ε1i, and Y2i = µj(X2i) + ε2i,

for j = 2, 3, 4. We study three kinds of increasing regression functions – one linear
and two non-linear – with homoscedastic and heteroscedastic errors. We consider the
following regression models with X1i

iid∼ Exp(1), X2i
iid∼ Exp(1), and ε1i

iid∼ N(0, 0.09)
for sample sizes (n1, n2) = (25, 25), (25, 50), (25, 50), (50, 25), (50, 50), (50, 100):

1. µ1(x) = µ2(x) = 1; µ3(x) = 1 + 0.5x; µ4(x) = 1 + 2.0x; ε2i
iid∼ N(0, 0.09).

2. µ1(x) = µ2(x) = 1; µ3(x) = 1 + 0.5x; µ4(x) = 1 + 2.0x; ε2i ∼ N(0, 0.09X2i).

3. µ1(x) = µ2(x) = e−x; µ3(x) = e−1.5x; µ4(x) = e−2.0x; ε2i
iid∼ N(0, 0.09).

4. µ1(x) = µ2(x) = e−x; µ3(x) = e−1.5x; µ4(x) = e−2.0x; ε2i ∼ N(0, 0.09X2i).

5. µ1(x) = µ2(x) =
√

x + 1.0; µ3(x) =
√

x + 1.5; µ4(x) =
√

x + 2.0; ε2i
iid∼

N(0, 0.09).

6. µ1(x) = µ2(x) =
√

x + 1.0; µ3(x) =
√

x + 1.5; µ4(x) =
√

x + 2.0; ε2i ∼
N(0, 0.09X2i).
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n2 25 50 100 25 50 100 25 50 100
n1 Model µ1 vs. µ2 µ1 vs. µ3 µ1 vs. µ4

25 1 0.005 0.008 0.010 0.345 0.472 0.624 0.645 0.781 0.8720
50 1 0.004 0.004 0.009 0.568 0.698 0.781 0.790 0.882 0.952
25 2 0.002 0.003 0.002 0.211 0.286 0.391 0.558 0.698 0.831
50 2 0.004 0.004 0.004 0.391 0.517 0.644 0.720 0.847 0.933
25 3 0.006 0.008 0.012 0.037 0.068 0.084 0.120 0.204 0.298
50 3 0.010 0.005 0.009 0.060 0.096 0.149 0.188 0.357 0.505
25 4 0.006 0.006 0.007 0.011 0.007 0.022 0.035 0.068 0.117
50 4 0.011 0.006 0.007 0.024 0.019 0.022 0.078 0.090 0.145
25 5 0.005 0.010 0.014 0.126 0.191 0.303 0.601 0.786 0.882
50 5 0.005 0.008 0.011 0.199 0.330 0.492 0.808 0.930 0.975
25 6 0.004 0.004 0.003 0.054 0.067 0.082 0.365 0.461 0.586
50 6 0.012 0.006 0.005 0.070 0.105 0.136 0.503 0.620 0.737

Table 2: Rejection probabilities of a wild bootstrap version of the test for various
sample sizes and the regression functions when the nominal level is α = 0.01.

We use the wild bootstrap methodology to generate the bootstrap samples (as dis-
cussed in Section 4). Table 1 shows the rejection probabilities of the wild bootstrap
version of the test (i.e., the power of the statistical test) for various sample sizes and
the three different regression functions when the nominal level of the test (α) is fixed
at 0.05. We see that for testing µ1 versus µ2, the estimated rejection probabilities
are quite close to 0.05, and as we move further away from the null hypothesis, the
probabilities very rapidly move towards 1. Note that as the regression functions in
models 3 and 4 are quite similar the power of the test is comparatively low. Table
2 shows the rejection probabilities of the test for the same models when α = 0.01.
The test seems to be slightly conservative as most of the rejection probabilities are
less than 0.01 when the null hypothesis is true, but this could also be an artifact
of the relatively small number of replications consider. Note that to construct both
the tables we generate 2000 bootstrap samples per data set (to compute the cut-off
value for the test statistic) and repeat the analysis for 2000 data sets to compute
the rejection probabilities.

6 Some Real Data Illustrations

In this section, we describe three examples involving real data that illustrate the
scope and usefulness of FGA. We analyze the data sets as par the methodology
developed in the paper using isotonic methods to estimate the fractile regression
functions. See Sen and Chaudhuri (2010) for more details and another analysis of
these examples using smooth estimates of fractile regression.

Example 1: The Household Expenditure and Income Data for Transitional Economies
(HEIDE) database contains data from household survey maintained by the World
Bank Group; and it includes four countries in Eastern Europe and the former So-
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Figure 2: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for proportion of expenditure on food on total expenditure for Poland (in red,
solid line) and Bulgaria (in black, dashed line).

viet Union (see http://www.worldbank.org/ for more information). It was created
as part of a project analyzing poverty and existing social assistance programs in the
transitional economies. What immediately arrests attention is the startling drop
in income and increase in inequality accompanying the transition of these countries
to market economies. We investigate this inequality in income and compare the
economic condition of the transitional economies.

A simple measure of the economic well-being of a population can be taken as the
proportion of expenditure on food as a fraction of total expenditure per capita per
household (in USD). This proportion would be quite small for rich and wealthy
people, but for the poor it would be close to one. Thus it is known a priori that the
regression functions are decreasing. And by regressing this proportion on the total
expenditure, we can get a fair idea of the inequality in income and the economic
condition of the populations.

We consider data sets for two countries from the HEIDE database, namely Poland
(with 16051 data points) and Bulgaria (with 2466 data points), and estimate the
regression functions. Figure 2 shows the estimates of the usual regression functions
and that of the fractile regression curves with proportion of expenditure on food
as the response and total expenditure per capita per household (in USD) as the
predictor. Both the regression curves in Figure 2a clearly show the decreasing trend
as expected. The ranges of the covariates are somewhat different in the two popula-
tions even though both of them are measured in USD. This might be partly because
the data for the two populations were collected at different time points (Jan-Jun
1993 for Poland and Jan-Jun 1995 for Bulgaria). It might also be partly due to the
disparity in purchasing powers of 1 USD in the two countries at two different time
points. The crossing of the two regression functions for large covariate values is also
disturbing. To make the regression curves comparable, we need some standardiza-
tion of the covariates.
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Figure 3: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for profit (as a fraction of sales) against sales for the years 1997 (in dashed
black) and 2003 (in solid red).

We would really like to compare the mean proportion of food expenditure for the
poor (or the rich) in one population with that of the poor (or the rich) in the other
population. The fractile curves accomplish exactly this, enabling us to compare the
mean response values for fixed percentiles of total expenditure. The transformed
covariate values close to 0 correspond to the very poor people and values close to 1
correspond to the richest people in the populations if we take total expenditure as
a measure of economic condition. In Figure 2b, the two fractile regression functions
are properly aligned and it appears that the condition of households in Poland is
uniformly economically better than those of Bulgaria. A formal test of hypothesis
using the resampling procedure outlined in Section 4 yields a P-value very close to 0.

Example 2: The Reserve Bank of India keeps data on the sales (in Indian rupees)
and profit (as a fraction of sales) for non-government, non-financial public limited
companies in India over different years. The Reserve Bank of India is interested
in comparing the profitability of the companies against sales, at two time points.
This gives rise to a regression problem where one regresses profit (as a fraction of
sales) against sales. One would like to compare the two regression functions cor-
responding to two time points. But the comparison of usual regression functions
is not meaningful as, due to inflation and other economic changes over time, the
covariate values at two different time points happen to differ by several orders of
magnitude. Figure 3a shows the usual regression functions for the year 1997 (dashed
black) and 2003 (red solid) with 944 and 1243 data points respectively while Fig-
ure 3b shows the corresponding fractile regression functions. The uneven covariate
distribution leads to data sparsity in certain regions of the covariate space. Besides,
the large difference in the covariate values for the years 1997 and 2003 makes the
two regression functions virtually incomparable in Figure 3a. The estimated frac-
tile regression functions clearly show that the two functions are not equal and the
P-value obtained is 0.001.
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Figure 4: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for blood pressure against weight for the Bhutia (in dashed black) and Toto
(in solid red) tribes.

Example 3: The usefulness of FGA is not only restricted to financial/economic data
as is illustrated in this example. Data were collected on 258 individuals from the
Bhutia tribe and 305 individuals from the Toto tribe in India on blood pressure and
weight by the scientists of the Human Genetics Unit at Indian Statistical Institute,
Kolkata. It is of interest to compare the relationship of blood pressure with the
weight of an individual for the two populations. For example, a biologist might
want to compare the mean blood pressure for the two tribes with median weight
for the two populations. Such comparisons involving the notion of quantiles can be
accomplished by studying the fractile regression functions. We know from various
scientific considerations that the regression functions will be increasing in this case,
and the shape restricted function estimators for the two populations are plotted in
Figure 4a. The two usual regression functions are not comparable as the covariates
have very different distributions in the two populations. In fact, the ranges of the
covariates are quite different. The crossing of the two regression functions is also
disturbing. But the fractile regression functions in Figure 4b adequately resolve
these comparability issues. From the fractile regression function, it can be easily
seen that for the Bhutia tribe, blood pressure remains almost constant over the
entire domain of the weight variable, a feature not very apparent in Figure 4a. A
formal comparison of the two fractile regression functions yields a P-value very close
to 0.

7 Concluding Remarks

The comparison of two regression functions, when the distribution of the covariates
in the two populations are different, arises quite often in statistics and is the cen-
tral issue of FGA. In this paper, we have developed resampling based hypothesis
testing procedures to compare the fractile regression curves using their isotonized
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nonparametric estimators. Our procedure does not depend on the choice of any
tuning parameter, a major disadvantage of most of the earlier methods available in
the literature. In course of our research, we revisit some of Mahalanobis’s results
and provide a brief history of FGA. Our approach can also be extended to compare
k fractile regression curves, for k ≥ 2. We end with a brief discussion on some open
problems in this area.

The proposed procedure is computationally simple and has satisfactory finite sam-
ple performance. But the theoretical validity of the method is not investigated
adequately in the paper, although some heuristics are provided in Section 4. In-
deed, it is mathematically challenging and beyond the scope of the present article.
It will be a topic of future research. Throughout this paper we assumed that there
is prior knowledge on the shape (increasing/decreasing) of the regression function.
This helped us to use the isotonized estimators that are free from tuning parameters.
In certain applications, such restrictions might not be known, and might not be very
appropriate. In such situations, the comparison of the fractile curves is problematic
and requires further investigation. Sen (2005) discusses some of the issues in this
setup, and proposes hypothesis testing procedures that depend on certain tuning
parameters. A thorough theoretical study of the performance of these proposed
tests is unknown and would be an interesting problem for future research.

A natural extension of Mahalanobis’s ideas is to investigate FGA when the dimension
of the covariate can be greater than one. Such an extension is not immediate, as
in multi-dimension, there is no unique concept of rank or quantile. Mahalanobis
(1988) provided some ideas in this direction. Sen and Chaudhuri (2010) consider this
problem in greater detail and discuss examples that arise in diverse applications. But
they focus mainly only on the estimation of fractile regression. A formal comparison
of the fractile functions in such a setup is an open problem and deserves attention.
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