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Abstract

In this paper we study the covering numbers of the space of convex and uniformly bounded
functions in multi-dimension. We find optimal upper and lower bounds for the ε-covering
number M(C([a, b]d, B), ε;L1) in terms of the relevant constants, where d ≥ 1, a < b ∈
R, B > 0, and C([a, b]d, B) denotes the set of all convex functions on [a, b]d that are
uniformly bounded by B. We summarize previously known results on covering numbers
for convex functions and also provide alternate proofs of some known results. Our results
have direct implications in the study of rates of convergence of empirical minimization
procedures as well as optimal convergence rates in the numerous convexity constrained
function estimation problems.

Keywords: convexity constrained function estimation, empirical risk minimization, Haus-
dorff distance, Kolmogorov entropy, L1 metric, metric entropy, packing numbers.

1. Introduction

Ever since the work of Kolmogorov and Tihomirov (1961), covering numbers (and their
logarithms, known as metric entropy numbers) have been studied extensively in a variety
of disciplines. For a subset F of a metric space (X , ρ), the ε-covering number M(F , ε; ρ)
is defined as the smallest number of balls of radius ε whose union contains F . Covering
numbers capture the size of the underlying metric space and play a central role in a number
of areas in information theory and statistics, including nonparametric function estimation,
density estimation, empirical processes and machine learning.

In this paper we study the covering numbers of the space of convex and uniformly
bounded functions in multi-dimension. Specifically, we find optimal upper and lower bounds
for the ε-covering number M(C([a, b]d, B), ε;L1) in terms of the relevant constants, where
d ≥ 1, a, b ∈ R, B > 0, and C([a, b]d, B) denotes the set of all convex functions on [a, b]d

that are uniformly bounded by B. We also summarize previously known results on covering
numbers for convex functions. The special case of the problem when d = 1 has been recently
addressed in Dryanov (2009). Prior to Dryanov (2009), the only other result on the covering
numbers of convex functions is due to Bronshtein (1976) (also see (Dudley, 1999, Chapter
8)) who considered convex functions that are uniformly bounded and uniformly Lipschitz
with a known Lipschitz constant.

In recent years there has been an upsurge of interest in nonparametric function estima-
tion under convexity based constraints, especially in multi-dimension. In general function
estimation, it is well-known (see e.g., Birgé (1983); Le Cam (1973); Yang and Barron (1999);
Guntuboyina (2011b)) that the covering numbers of the underlying function space can be
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used to characterize optimal rates of convergence. They are also useful for studying the
rates of convergence of empirical minimization procedures (see e.g., Van de Geer (2000);
Birgé and Massart (1993)). Our results have direct implications in this regard in the context
of understanding the rates of convergence of the numerous convexity constrained function
estimators, e.g., the nonparametric least squares estimator of a convex regression function
studied in Seijo and Sen (2011); Hannah and Dunson (2011); the maximum likelihood es-
timator of a log-concave density in multi-dimension studied in Seregin and Wellner (2010);
Cule et al. (2010); Dümbgen et al. (2011). Also, similar problems that crucially use con-
vexity/concavity constraints to estimate sets have also received recent attention in the
statistical and machine learning literature, see e.g., Guntuboyina (2011a); Gardner et al.
(2006), and our results can be applied in such settings.

The paper is organized as follows. In Section 2, we set up notation, describe the previous
work on covering numbers of convex functions and provide motivation for our main result,
which is proved in Section 3. We conclude in Section 4 with a brief summary of the paper
and some open questions that remain. The appendix contains the proof of an auxiliary
result.

2. Motivation

The first result on covering numbers for convex functions was proved by Bronshtein (1976),
who considered convex functions defined on a cube in Rd that are uniformly bounded
and uniformly Lipschitz. Specifically, let C([a, b]d, B, L) denote the class of real-valued
convex functions defined on [a, b]d that are uniformly bounded in absolute value by B and
uniformly Lipschitz with constant L. In Theorem 6 of Bronshtein (1976), he proved that
for ε sufficiently small, the logarithm of M(C([a, b]d, B, L), ε;L∞) can be bounded from
above and below by a positive constant (not depending on ε) multiple of ε−d/2. Note
that the L∞ distance between two functions f and g on [a, b]d is defined as ||f − g||∞ :=
supx∈[a,b]d |f(x)− g(x)|.

Bronshtein’s proof of the upper bound on M(C([a, b]d, B, L), ε;L∞) is based on the
following result on covering numbers of convex sets proved in the same paper. For Γ > 0,
let Kd+1(Γ) denote the set of all compact, convex subsets of the ball in Rd+1 of radius Γ
centered at the origin. In Theorem 3 (and Remark 1) of Bronshtein (1976), he proved that
there exist positive constants c and ε0 depending only on d such that

logM(Kd+1(Γ), ε; `H) ≤ c
(

Γ

ε

)d/2
for ε ≤ Γε0, (1)

where `H denotes the Hausdorff distance defined by

`H(B,C) := max

(
sup
x∈B

inf
y∈C
|x− y|, sup

x∈C
inf
y∈B
|x− y|

)
for B,C ∈ Kd+1(Γ).

A more detailed account of Bronshtein’s proof of (1) can be found in Section 8.4 of Dudley
(1999).

Bronshtein proved the upper bound on M(C([a, b]d, B, L), ε;L∞) by relating the L∞
distance between two functions in C([a, b]d, B, L) to the Hausdorff distance between their
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L1 Covering Numbers for Uniformly Bounded Convex Functions

epigraphs, which allowed him to use (1). However, he did not state the dependence of the
upper bound on the constants a, b, B and L. We state Bronshtein’s upper bound result
below showing the explicit dependence on the constants a, b, B and L. The proof of the
result can be found in the Appendix.

Theorem 1 There exist positive constants c and ε0, depending only on the dimension d,
such that, for every B,L > 0 and b > a, we have, for every ε ≤ ε0(B + L(b− a)),

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(
ε

B + L(b− a)

)−d/2
.

Note that Bronshtein worked with the class C([a, b]d, B, L) where the functions are uni-
formly Lipschitz. However, in convexity-based function estimation problems, one usually
does not have a known uniform Lipschitz bound on the unknown function class. This leads
to difficulties in the analysis of empirical minimization procedures via Bronshtein’s result.
To the best of our knowledge, there does not exist any other result on the covering numbers
of convex functions that deals with all d ≥ 1 and does not require the Lipschitz constraint.

In the absence of the uniformly Lipschitz constraint (i.e., if one works with the class
C([a, b]d, B) instead of C([a, b]d, B, L)), the covering numbers under the L∞ metric are in-
finite. In other words, the space C([a, b]d, B) is not totally bounded under the L∞ metric.
This can be seen, for example, by noting that the functions

fj(t) := max
(
0, 1− 2jt

)
, for t ∈ [0, 1],

are in C([0, 1], 1), for all j ≥ 1, and satisfy

||fj − fk||∞ ≥ |fj(2−k)− fk(2−k)| = 1− 2j−k ≥ 1/2,

for all j < k.
This motivated us to study the covering numbers of the class C([a, b]d, B) under a differ-

ent metric, namely the L1 metric. We recall that under the L1 metric, the distance between
two functions f and g on [a, b]d is defined as

||f − g||1 :=

∫
x∈[a,b]d

|f(x)− g(x)|dx.

Our main result in this paper shows that if one works with the L1 metric as opposed to
L∞, then the covering numbers of C([a, b]d, B) are finite. Moreover, their logarithms are
bounded from above and below by constant multiples of ε−d/2 for sufficiently small ε.

The special case of our main result for d = 1 has been recently established by Dryanov
(2009) who actually proved it for every Lp metric with 1 ≤ p <∞. Dryanov’s proof of the
upper bound for M(C([a, b], B), ε;Lp) is based on the application of Bronshtein’s bound for
covering numbers of C([c, d], B, L) for suitable subintervals [c, d] ⊂ (a, b) and for suitable
values of L. Unfortunately, his selection of these subintervals is rather complicated. In
contrast, our proofs for both the upper and lower bounds work for all d ≥ 1 and are much
simpler than Dryanov’s. The disadvantage with our approach, however, is that our proof
of the upper bound result only works for the L1 metric and does not generalize to the
Lp metric, 1 < p < ∞. Our lower bound argument, on the other hand, is valid for all
1 ≤ p <∞.
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3. L1 - covering number bounds for C([a, b]d, B)

In this section, we prove upper and lower bounds for the ε-covering number of C([a, b]d, B)
under the L1 metric. Let us start by noting a simple scaling identity that allows us to take
a = 0, b = 1 and B = 1 without loss of generality. For each f ∈ C([a, b]d, B), let us define f̃
on [0, 1]d by f̃(x) := f(a1+(b−a)x)/B, where 1 = (1, . . . , 1) ∈ Rd. Clearly f̃ ∈ C([0, 1]d, 1)
and, for 1 ≤ p <∞,

Bp

∫
x∈[0,1]d

∣∣∣f̃(x)− g(x)
∣∣∣p dx = (b− a)−d

∫
y∈[a,b]d

∣∣∣∣f(y)−Bg
(
y − a1
b− a

)∣∣∣∣p dy.
It follows that covering f to within ε in the Lp metric on [a, b]d is equivalent to covering f̃
to within (b− a)−d/pε/B in the Lp metric on [0, 1]d. Therefore, for 1 ≤ p <∞,

M(C([a, b]d, B), ε;Lp) = M(C([0, 1]d, 1), (b− a)−d/pε/B,Lp). (2)

3.1. Upper Bound for M(C([a, b]d, B), ε;L1)

Theorem 2 There exist positive constants c and ε0, depending only on the dimension d,
such that, for every B > 0 and b > a, we have,

logM
(
C([a, b]d, B), ε;L1

)
≤ c

(
ε

B(b− a)d

)−d/2
,

for every ε ≤ ε0B(b− a)d.

Proof [Proof of Theorem 2] The scaling identity (2) lets us take a = 0, b = 1 and B = 1.
For f ∈ C([0, 1]d, 1), we define its (bounded) epigraph Vf ⊆ Rd+1 to be the compact, convex
set defined by

Vf =
{

(x1, . . . , xd, xd+1) : (x1, . . . , xd) ∈ [0, 1]d and f(x1, . . . , xd) ≤ xd+1 ≤ 1
}
. (3)

For every (x1, . . . , xd+1) ∈ Vf , we clearly have x21 + · · · + x2d+1 ≤ d + 1. As a result,

Vf ∈ Kd+1(
√
d+ 1).

In the following lemma, we relate the L1 distance between the functions f and g to the
Hausdorff distance between Vf and Vg. The proof of the lemma is provided at the end of
this proof.

Lemma 3 For every pair of functions f and g in C([0, 1]d, 1), we have

||f − g||1 ≤ (1 + 20d)`H(Vf , Vg), (4)

where Vf and Vg are defined as in (3).

Inequality (4), along with a simple relationship between covering numbers and packing
numbers, see e.g., Theorem 1.2.1 of Dudley (1999), implies that

M
(
C([0, 1]d, 1), ε;L1

)
≤M

(
Kd+1(

√
d+ 1),

ε

2(1 + 20d)
; `H

)
.
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L1 Covering Numbers for Uniformly Bounded Convex Functions

Thus from (1), we deduce the existence of two positive constants c and ε0, depending only
on d, such that

logM
(
C([0, 1]d, 1), ε;L1

)
≤ cε−d/2 whenever ε ≤ ε0,

which completes the proof of the theorem.

Proof [Proof of Lemma 3] For f ∈ C([0, 1]d, 1) and x ∈ (0, 1)d, let mf (x) denote any
subgradient of the convex function f at x. Fix two functions f and g in C([0, 1]d, 1) with
`H(Vf , Vg) = ρ > 0. Our first step is to observe that

|f(x)− g(x)| ≤ ρ (1 + ||mf (x)||+ ||mg(x)||) for every x ∈ (0, 1)d, (5)

where ||mf (x)|| denotes the Euclidean norm of the subgradient vector mf (x) ∈ Rd. To
see this, fix x ∈ (0, 1)d with f(x) 6= g(x). We assume, without loss of generality, that
f(x) < g(x). Clearly (x, f(x)) ∈ Vf and because `H(Vf , Vg) = ρ, there exists (x′, y′) ∈ Vg
with ||(x, f(x))−(x′, y′)|| ≤ ρ. Since f(x) < g(x), the point (x, f(x)) lies outside the convex
set Vg and we can thus take y′ = g(x′). By the definition of the subgradient, we have

g(x′) ≥ g(x) +
〈
mg(x), x′ − x

〉
.

Therefore,

0 ≤ g(x)− f(x) = g(x)− g(x′) + g(x′)− f(x)

≤
〈
mg(x), x− x′

〉
+ |g(x′)− f(x)|

≤ ||mg(x)||||x− x′||+ |g(x′)− f(x)|

≤
√
||mg(x)||2 + 1||(x, f(x))− (x′, y′)||

≤ ρ
√
||mg(x)||2 + 1 ≤ ρ(1 + ||mg(x)||).

Note that the Cauchy-Schwarz inequality has been used twice in the above chain of inequal-
ities. We have thus shown that g(x)−f(x) ≤ ρ(1+ ||mg(x)||) in the case when f(x) < g(x).
One would have a similar inequality in the case when f(x) > g(x). Combining these two,
we obtain (5).

As a consequence of (5), we get

||f − g||1 =

∫
[0,1]d\[ρ,1−ρ]d

|f(x)− g(x)|dx+

∫
[ρ,1−ρ]d

|f(x)− g(x)|dx

≤ 2
(

1− (1− 2ρ)d
)

+ ρ

(
1 +

∫
[ρ,1−ρ]d

||mf (x)||dx+

∫
[ρ,1−ρ]d

||mg(x)||dx

)

≤ ρ

(
1 + 4d+

∫
[ρ,1−ρ]d

||mf (x)||dx+

∫
[ρ,1−ρ]d

||mg(x)||dx

)
,

where we have used the inequality (1− 2ρ)d ≥ 1− 2dρ.
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To complete the proof of (4), we show that
∫
[ρ,1−ρ]d ||mf (x)||dx ≤ 8d for every f ∈

C([0, 1]d, 1). We write mf (x) = (mf (x)(1), . . . ,mf (x)(d)) ∈ Rd and use the definition of the
subgradient to note that for every x ∈ [ρ, 1− ρ]d and 1 ≤ i ≤ d,

f(x+ tei)− f(x) ≥ t mf (x)(i) (6)

for t > 0 sufficiently small, where ei is the unit vector in the ith coordinate direction
i.e., ei(j) := 1 if i = j and 0 otherwise. Dividing both sides by t and letting t ↓ 0, we
would get mf (x)(i) ≤ f ′(x; ei) (we use f ′(x; v) to denote the directional derivative of f in
the direction v; directional derivatives exist as f is convex). Using (6) for t < 0, we get
mf (x)(i) ≥ −f ′(x;−ei). Combining these two inequalities, we get

|mf (x)(i)| ≤ |f ′(x; ei)|+ |f ′(x;−ei)| for i = 1, . . . , d.

As a result,∫
[ρ,1−ρ]d

||mf (x)||dx ≤
d∑
i=1

∫
[ρ,1−ρ]d

|mf (x)(i)|dx

≤
d∑
i=1

(∫
[ρ,1−ρ]d

|f ′(x; ei)|dx+

∫
[ρ,1−ρ]d

|f ′(x;−ei)|dx

)
.

We now show that for each i, both the integrals
∫
[ρ,1−ρ]d |f

′(x; ei)| and
∫
[ρ,1−ρ]d |f

′(x;−ei)|
are bounded from above by 4. Assume, without loss of generality, that i = 1 and notice∫

[ρ,1−ρ]d
|f ′(x; e1)|dx ≤

∫
(x2,...,xd)∈[ρ,1−ρ]d−1

(∫ 1−ρ

ρ
|f ′(x; e1)|dx1

)
dx2 . . . dxd. (7)

We fix (x2, . . . , xd) ∈ [ρ, 1−ρ]d−1 and focus on the inner integral. Let v(z) := f(z, x2, . . . , xd)
for z ∈ [0, 1]. Clearly v is a convex function on [0, 1] and its right derivative, v′r(x1) at the
point z = x1 ∈ (0, 1) equals f ′(x; e1) where x = (x1, . . . , xd). The inner integral thus equals∫ 1−ρ
ρ |v′r(z)|dz. Because of the convexity of v, its right derivative v′r(z) is non-decreasing

and satisfies

v(y2)− v(y1) =

∫ y2

y1

v′r(z)dz for 0 < y1 < y2 < 1.

Consequently, ∫ 1−ρ

ρ
|v′r(z)|dz ≤ sup

ρ≤c≤1−ρ

(
−
∫ c

ρ
v′r(z)dz +

∫ 1−ρ

c
v′r(z)dz

)
= sup

ρ≤c≤1−ρ
(v(ρ) + v(1− ρ)− 2v(c)) .

The function v(z) = f(z, x2, . . . , xd) clearly satisfies |v(z)| ≤ 1 because f ∈ C([0, 1]d, 1).
This implies that

∫ 1−ρ
ρ |v′r(z)|dz ≤ 4(1− 2ρ) ≤ 4. The inequality (7) therefore gives∫

[ρ,1−ρ]d
|f ′(x; e1)|dx ≤

∫
(x2,...,xd)∈[ρ,1−ρ]d−1

(∫ 1−ρ

ρ
|v′r(z)|dz

)
dx2 . . . dxd ≤ 4.
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L1 Covering Numbers for Uniformly Bounded Convex Functions

Similarly, by working with left derivatives as opposed to right, we can prove that∫
[ρ,1−ρ]d

|f ′(x;−e1)|dx ≤ 4.

Therefore,∫
[ρ,1−ρ]d

||mf (x)||dx ≤
d∑
i=1

(∫
[ρ,1−ρ]d

|f ′(x; ei)|dx+

∫
[ρ,1−ρ]d

|f ′(x;−ei)|dx

)
≤ 8d,

thereby completing the proof of Lemma 3.

Remark 4 The proof of Theorem 2 is crucially based on Lemma 3 which bounds the L1

distance between two functions in C([0, 1]d, 1) by a constant multiple of the Hausdorff dis-
tance between their epigraphs. This is not true if L1 is replaced by Lp for p > 1. Indeed, if
d = 1 and fα(x) := max(0, 1− (x/α)) for 0 < α ≤ 1 and g(x) := 0 for all x ∈ [0, 1], then it
can be easily checked that for 1 ≤ p <∞,

||fα − g||p :=
α1/p

(1 + p)1/p
and `H(Vfα , Vg) :=

α√
1 + α2

.

As α can be arbitrarily close to zero, this clearly rules out any inequality of the form (4)
with the L1 metric replaced by Lp for 1 < p ≤ ∞. Therefore, our proof of Theorem 2 will
break down for the Lp metric with p > 1. However, Theorem 2 does indeed hold for all
1 ≤ p < ∞. The proof requires different techniques and can be found in Guntuboyina and
Sen (2012).

3.2. Lower bound for M(C([a, b]d, B), ε;L1)

Theorem 5 There exist positive constants c and ε0, depending only on the dimension d,
such that for every B > 0 and b > a, we have

logM
(
C([a, b]d, B), ε;L1

)
≥ c

(
ε

B(b− a)d

)−d/2
,

for ε ≤ ε0B(b− a)d.

Proof As before, by the scaling identity (2), we take a = 0, b = 1 and B = 1. We prove
that for ε sufficiently small, there exists an ε-packing subset of C([0, 1]d, 1) of log-cardinality
larger than a constant multiple of ε−d/2. By a packing subset of C([0, 1]d, 1), we mean a
subset F satisfying ||f − g||1 ≥ ε whenever f, g ∈ F with f 6= g.

Fix 0 < η ≤ 4(2 +
√
d− 1)−2 and let k := k(η) be the positive integer satisfying

k ≤ 2η−1/2

2 +
√
d− 1

< k + 1 ≤ 2k. (8)

Consider the intervals I(i) = [u(i), v(i)] for i = 1, . . . , k, such that
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1. 0 ≤ u(1) < v(1) ≤ u(2) < v(2) ≤ · · · ≤ u(k) < v(k) ≤ 1,

2. v(i)− u(i) =
√
η, for i = 1, . . . , k,

3. u(i+ 1)− v(i) = 1
2

√
η(d− 1) for i = 1, . . . , k − 1.

Let S denote the set of all d-dimensional cubes of the form I(i1) × · · · × I(id) where
i1, . . . , id ∈ {1, . . . , k}. The cardinality of S, denoted by |S|, is clearly kd.

For each S ∈ S with S = I(i1)× · · · × I(id) where I(ij) = [u(ij), v(ij)], let us define the
function hS : [0, 1]d → R as

hS(x) = hS(x1, . . . , xd) :=
1

d

d∑
j=1

[
u2(ij) + {v(ij) + u(ij)}{xj − u(ij)}

]
= f0(x) +

1

d

d∑
j=1

{xj − u(ij)}{v(ij)− xj}, (9)

where f0(x) := 1
d

(
x21 + · · ·+ x2d

)
, for x ∈ [0, 1]d. The functions hS , S ∈ S have the following

four key properties:

1. hS is affine and hence convex.

2. For every x ∈ [0, 1]d, we have hS(x) ≤ hS(1, . . . , 1) ≤ 1.

3. For every x ∈ S, we have hS(x) ≥ f0(x). This is because whenever x ∈ S, we have
u(ij) ≤ xj ≤ v(ij) for each j, which implies {xj − u(ij)}{v(ij)− xj} ≥ 0.

4. Let S, S′ ∈ S with S 6= S′. For every x ∈ S′, we have hS(x) ≤ f0(x). To see this, let
S′ = I(i′1) × · · · × I(i′d) with I(i′j) = [u(i′j), v(i′j)]. Let x ∈ S′ and fix 1 ≤ j ≤ d. If
I(ij) = I(i′j), then xj ∈ I(ij) = [u(ij), v(ij)] and hence

{xj − u(ij)}{v(ij)− xj} ≤
{v(ij)− u(ij)}2

4
=
η

4
.

If I(ij) 6= I(i′j) and u(i′j) < v(i′j) < u(ij) < v(ij), then

{xj − u(ij)}{v(ij)− xj} ≤ −{u(ij)− v(i′j)}2 ≤ −
d− 1

4
η.

The same above bound holds if u(ij) < v(ij) < u(i′j) < v(i′j). Because S 6= S′, at
least one of ij and i′j will be different. Consequently,

hS(x) = f0(x) +
∑
j

{xj − u(ij)}{v(ij)− xj}

≤ f0(x) +
∑
j:ij=i′j

η

4
−
∑
j:ij 6=i′j

(d− 1)
η

4
≤ f0(x).
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L1 Covering Numbers for Uniformly Bounded Convex Functions

Let {0, 1}S denote the collection of all {0, 1}-valued functions on S. The cardinality of
{0, 1}S clearly equals 2|S| (recall that |S| = kd).

For each θ ∈ {0, 1}S , let

gθ(x) := max

(
max

S∈S:θ(S)=1
hS(x), f0(x)

)
.

The first two properties of hS , S ∈ S ensure that gθ ∈ C([0, 1]d, 1). The last two properties
imply that

gθ(x) = hS(x)θ(S) + f0(x)(1− θ(S)) for x ∈ S.

We now bound from below the L1 distance between gθ and gθ′ for θ, θ′ ∈ {0, 1}S . Because
the interiors of the cubes in S are all disjoint, we can write

||gθ − gθ′ ||1 ≥
∑
S∈S

∫
x∈S
|gθ(x)− gθ′(x)| dx =

∑
S∈S

{
θ(S) 6= θ′(S)

}∫
x∈S
|hS(x)− f0(x)|dx.

Note that from (9) and by symmetry, that the value of integral

ζ :=

∫
x∈S
|hS(x)− f0(x)|dx

is the same for all S ∈ S. We have thus shown that

||gθ − gθ′ ||1 ≥ ζΥ(θ, θ′) for all θ, θ′ ∈ {0, 1}S , (10)

where Υ(θ, θ′) :=
∑

S∈S {θ(S) 6= θ′(S)} denotes the Hamming distance.
The quantity ζ can be computed in the following way. Let S = I(i1)× · · ·× I(id) where

I(ij) = [u(ij), v(ij)]. We write

ζ =

∫ v(i1)

u(i1)
. . .

∫ v(id)

u(id)

1

d

d∑
j=1

{xj − u(ij)}{v(ij)− xj}dxd . . . dx1.

By the change of variable yj = {xj − u(ij)}/{v(ij)− u(ij)} for j = 1, . . . , d, we get

ζ =
d∏
j=1

{v(ij)− u(ij)}
∫
[0,1]d

1

d

d∑
j=1

{v(ij)− u(ij)}2yj(1− yj)dy.

Recalling that v(i) − u(i) =
√
η for all i = 1, . . . , k, we get ζ = ηd/2η/6. Thus, from (10),

we deduce
||gθ − gθ′ ||1 ≥ ηd/2ηΥ(θ, θ′)/6 for all θ, θ′ ∈ {0, 1}S . (11)

We now use the Varshamov-Gilbert lemma (see e.g., Massart (2007, Lemma 4.7)) which
asserts the existence of a subset W of {0, 1}S with cardinality, |W | ≥ exp(|S|/8) such that
Υ(τ, τ ′) ≥ |S|/4 for all τ, τ ′ ∈ W with τ 6= τ ′. Thus, from (11) and (8), we get that for
every τ, τ ′ ∈W with τ 6= τ ′,

||gθ − gθ′ ||1 ≥ ηd/2η
|S|
24

=
1

24
ηd/2ηkd ≥ c1η

9



where c1 := (2 +
√
d− 1)−d/24. Taking ε := c1η, we have obtained for ε ≤ ε0 := 4c1(2 +√

d− 1)−2, an ε-packing subset of C([0, 1]d, 1) of size M := |W | where

logM ≥ |S|
8

=
kd

8
≥ (2 +

√
d− 1)−d

8
η−d/2 =

c
d/2
1

8(2 +
√
d− 1)d

ε−d/2 = cε−d/2,

where c depends only on the dimension d. This completes the proof.

Remark 6 The explicit packing subset constructed in the above proof consists of functions
that can be viewed as perturbations of the quadratic function f0. Previous lower bounds
on the covering numbers of convex functions in (Bronshtein, 1976, Proof of Theorem 6)
and (Dryanov, 2009, Section 2) (for d = 1) are based on perturbations of a function whose
graph is a subset of a sphere; a more complicated convex function than f0. The perturbations
of f0 in the above proof can also be used to simplify the lower bound arguments in those
papers.

Remark 7 For functions defined on [0, 1]d, the Lp metric, p > 1, is larger than L1. Thus,
when a = 0, b = 1, the conclusion of Theorem 5 also holds for the Lp metric with p > 1.
The scaling identity (2) then gives the following inequality for arbitrary a < b: There exist
positive constants c and ε0, depending only on the dimension d, such that for every p ≥ 1,
B > 0 and b > a, we have

logM
(
C([a, b]d, B), ε;Lp

)
≥ c

(
ε

B(b− a)d/p

)−d/2
,

for ε ≤ ε0B(b− a)d/p.

4. Concluding remarks

In this paper we have studied the covering numbers of C([a, b]d, B), the class of all uniformly
bounded convex functions, defined on the hypercube [a, b]d, under the L1 metric, 1 ≤ p ≤ ∞.
Our main result shows that we can forgo the assumption of a uniform Lipschitz norm for
the underlying class of convex functions (as was assumed in Bronshtein (1976)) and still
show that the logarithm of the ε-covering number grows at the same order ε−d/2, under
the L1 metric. Specifically, we prove that the logarithm of the ε-covering number under
the L1 metric is bounded from both above and below by a constant multiple of ε−d/2. Our
proof of the upper bound in Theorem 2 is based on Lemma 3 which bounds the L1 distance
between two convex functions by a constant multiple of the Hausdorff distance between their
epigraphs. Our proof of the lower bound in Theorem 5 is based on an explicit construction of
a finite packing subset of the space of uniformly bounded convex functions. In the Appendix,
we provide a slightly improved proof of the known upper bound result (Bronshtein, 1976,
Theorem 6) for the class of all uniformly bounded (by B) convex functions with a uniform
Lipschitz norm L that explicitly shows the dependence of the covering numbers on a, b, B, L.

After the submission of this paper, we managed to extend the results to the case of the
Lp metric, for all 1 ≤ p <∞. These results, which required more involved arguments, can
be found in Guntuboyina and Sen (2012).
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Appendix A. Proof of the Theorem 1

We mostly follow the proof of Theorem 6 in Bronshtein (1976) but are more careful and use
a scaling argument in the end so that the dependence on the various constants involved is
maintained. For each f ∈ C([a, b]d, B, L), let us define f̃ on [0, 1]d by f̃(x) := f(a1+(b−a)x),
where 1 = (1, 1, . . . , 1) ∈ Rd. Clearly f̃ ∈ C([0, 1]d, B, L(b − a)) and covering f̃ to within ε
in the L∞ metric is equivalent to covering f . Thus,

M
(
C([a, b]d, B, L), ε;L∞

)
= M

(
C([0, 1]d, B, L(b− a)), ε;L∞

)
. (12)

We can thus take, without loss of generality, a = 0 and b = 1. Note that, unlike the proof
of Theorem 2, we may not take B = 1 or L = 1 here. For every f ∈ C([0, 1]d, B, L), we
define the compact, convex set Vf ⊆ Rd+1 by

Vf :=
{

(x1, . . . , xd, xd+1) : (x1, . . . , xd) ∈ [0, 1]d and f(x1, . . . , xd) ≤ xd+1 ≤ B
}
.

For every (x1, . . . , xd+1) ∈ Vf , we have

x21 + · · ·+ x2d + x2d+1 ≤ 1 + . . . 1 +B2 = d+B2,

which implies that Vf ∈ Kd+1(
√
d+B2). We now show that

||f − g||∞ ≤ (
√

1 + L2)`H(Vf , Vg), (13)

for all f, g ∈ C([0, 1]d, B, L). To see this, fix f, g ∈ C([0, 1]d, B, L) and let `H(Vf , Vg) = ρ.
Fix x ∈ [0, 1]d with f(x) 6= g(x). Suppose, without loss of generality, that f(x) < g(x).
Now (x, f(x)) ∈ Vf and because `H(Vf , Vg) = ρ, there exists (x′, y′) ∈ Vg with ||(x, f(x))−
(x′, y′)|| ≤ ρ. As f(x) < g(x), the point (x, f(x)) lies outside the convex set Vg which lets
us take y′ = g(x′). Therefore,

0 ≤ g(x)− f(x) = g(x)− g(x′) + g(x′)− f(x)

≤ L||x− x′||+ |g(x′)− f(x)|
≤

√
L2 + 1

√
||x− x′||2 + |g(x′)− f(x)|2 (14)

=
√
L2 + 1||(x, f(x))− (x′, y′)|| ≤ (

√
L2 + 1)ρ,

where (14) follows from Cauchy-Schwarz inequality. Therefore (13) follows as x ∈ [0, 1]d is
arbitrary in the above argument.

We now use (13) to deduce that

M
(
C([0, 1]d, B, L), ε;L∞

)
≤M

(
Kd+1(

√
d+B2),

ε

2
√

1 + L2
; `H

)
.
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Thus from (1), we deduce the existence of two positive constants c and ε0, depending only
on d, such that

logM
(
C([0, 1]d, B, L), ε;L∞

)
≤ c

(√
(d+B2)(1 + L2)

ε

)d/2
,

if ε ≤ ε0
√

(d+B2)(1 + L2). By the scaling identity (12), we obtain

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(√
(d+B2)(1 + L2(b− a)2)

ε

)d/2

if ε ≤ ε0
√

(d+B2)(1 + L2(b− a)2). By another scaling argument, it follows that, for every
Γ > 0,

M
(
C([a, b]d, B, L), ε;L∞

)
= M

(
C([a, b]d, B/Γ, L/Γ), ε/Γ;L∞

)
and, as a consequence, we get,

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(√
(dΓ2 +B2)(1 + L2(b− a)2/Γ2)

ε

)d/2
.

if ε ≤ ε0
√

(dΓ2 +B2)(1 + L2(b− a)2/Γ2). Choosing (by differentiation)

Γ4 =
B2L2(b− a)2

d
,

we deduce finally that, for ε ≤ ε0
(
B + L(b− a)

√
d
)

,

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(
B + L(b− a)

√
d

ε

)d/2
.

The
√
d term above can be absorbed in the constants c and ε0.
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