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In this paper, we investigate the (in)-consistency of different bootstrap
methods for constructing confidence intervals in the class of estimators that
converge at rate n1/3. The Grenander estimator, the nonparametric maxi-
mum likelihood estimator of an unknown nonincreasing density function f

on [0,∞), is a prototypical example. We focus on this example and explore
different approaches to constructing bootstrap confidence intervals for f (t0),
where t0 ∈ (0,∞) is an interior point. We find that the bootstrap estimate,
when generating bootstrap samples from the empirical distribution function
Fn or its least concave majorant F̃n, does not have any weak limit in probabil-
ity. We provide a set of sufficient conditions for the consistency of any boot-
strap method in this example and show that bootstrapping from a smoothed
version of F̃n leads to strongly consistent estimators. The m out of n boot-
strap method is also shown to be consistent while generating samples from
Fn and F̃n.

1. Introduction. If X1,X2, . . . ,Xn
ind∼ f are a sample from a nonincreasing

density f on [0,∞), then the Grenander estimator, the nonparametric maximum
likelihood estimator (NPMLE) f̃n of f [obtained by maximizing the likelihood∏n

i=1 f (Xi) over all nonincreasing densities], may be described as follows: let
Fn denote the empirical distribution function (EDF) of the data, and F̃n its least
concave majorant. Then the NPMLE f̃n is the left-hand derivative of F̃n. This
result is due to Grenander (1956) and is described in detail by Robertson, Wright
and Dykstra (1988), pages 326–328. Prakasa Rao (1969) obtained the asymptotic
distribution of f̃n, properly normalized: let W be a two-sided standard Brownian
motion on R with W(0) = 0 and

C = arg max
s∈R

[W(s) − s2].
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If 0 < t0 < ∞ and f ′(t0) �= 0, then

n1/3{f̃n(t0) − f (t0)} ⇒ 2
∣∣1

2f (t0)f
′(t0)

∣∣1/3
C,(1.1)

where ⇒ denotes convergence in distribution. There are other estimators that
exhibit similar asymptotic properties; for example, Chernoff’s (1964) estimator
of the mode, the monotone regression estimator [Brunk (1970)], Rousseeuw’s
(1984) least median of squares estimator, and the estimator of the shorth [An-
drews et al. (1972) and Shorack and Wellner (1986)]. The seminal paper by Kim
and Pollard (1990) unifies n1/3-rate of convergence problems in the more general
M-estimation framework. Tables and a survey of statistical problems in which the
distribution of C arises are provided by Groeneboom and Wellner (2001).

The presence of nuisance parameters in the limiting distribution (1.1) compli-
cates the construction of confidence intervals. Bootstrap intervals avoid the prob-
lem of estimating nuisance parameters and are generally reliable in problems with√

n convergence rates. See Bickel and Freedman (1981), Singh (1981), Shao and
Tu (1995) and its references. Our aim in this paper is to study the consistency of
bootstrap methods for the Grenander estimator with the hope that the monotone
density estimation problem will shed light on the behavior of bootstrap methods in
similar cube-root convergence problems.

There has been considerable recent interest in this question. Kosorok (2008)
show that bootstrapping from the EDF Fn does not lead to a consistent estima-
tor of the distribution of n1/3{f̃n(t0) − f (t0)}. Lee and Pun (2006) explore m out
of n bootstrapping from the empirical distribution function in similar nonstandard
problems and prove the consistency of the method. Léger and MacGibbon (2006)
describe conditions for a resampling procedure to be consistent under cube root
asymptotics and assert that these conditions are generally not met while bootstrap-
ping from the EDF. They also propose a smoothed version of the bootstrap and
show its consistency for Chernoff’s estimator of the mode. Abrevaya and Huang
(2005) show that bootstrapping from the EDF leads to inconsistent estimators in
the setup of Kim and Pollard (1990) and propose corrections. Politis, Romano and
Wolf (1999) show that subsampling based confidence intervals are consistent in
this scenario.

Our work goes beyond that cited above as follows: we show that bootstrapping
from the NPMLE F̃n also leads to inconsistent estimators, a result that we found
more surprising, since F̃n has a density. Moreover, we find that the bootstrap es-
timator, constructed from either the EDF or NPMLE, has no limit in probability.
The finding is less than a mathematical proof, because one step in the argument
relies on simulation; but the simulations make our point clearly. As described in
Section 5, our findings are inconsistent with some claims of Abrevaya and Huang
(2005). Also, our way of tackling the main issues differs from that of the exist-
ing literature: we consider conditional distributions in more detail than Kosorok
(2008), who deduced inconsistency from properties of unconditional distributions;
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we directly appeal to the characterization of the estimators and use a continu-
ous mapping principle to deduce the limiting distributions instead of using the
“switching” argument [see Groeneboom (1985)] employed by Kosorok (2008) and
Abrevaya and Huang (2005); and at a more technical level, we use the Hungarian
Representation theorem whereas most of the other authors use empirical process
techniques similar to those described by van der Vaart and Wellner (2000).

Section 2 contains a uniform version of (1.1) that is used later on to study the
consistency of different bootstrap methods and may be of independent interest.
The main results on inconsistency are presented in Section 3. Sufficient conditions
for the consistency of a bootstrap method are presented in Section 4 and applied
to show that bootstrapping from smoothed versions of F̃n does produce consistent
estimators. The m out of n bootstrapping procedure is investigated, when gener-
ating bootstrap samples from Fn and F̃n. It is shown that both the methods lead
to consistent estimators under mild conditions on m. In Section 5, we discuss our
findings, especially the nonconvergence and its implications. The Appendix, pro-
vides the details of some arguments used in proving the main results.

2. Uniform convergence. For the rest of the paper, F denotes a distribution
function with F(0) = 0 and a density f that is nonincreasing on [0,∞) and con-
tinuously differentiable near t0 ∈ (0,∞) with nonzero derivative f ′(t0) < 0. If
g : I → R is a bounded function, write ‖g‖ := supx∈I |g(x)|. Next, let Fn be distri-
bution functions with Fn(0) = 0, that converge weakly to F and, therefore,

lim
n→∞‖Fn − F‖ = 0.(2.1)

Let Xn,1,Xn,2, . . . ,Xn,mn

ind∼ Fn, where mn ≤ n is a nondecreasing sequence of
integers for which mn → ∞; let Fn,mn denote the EDF of Xn,1,Xn,2, . . . ,Xn,mn ;
and let

�n := m1/3
n {f̃n,mn(t0) − fn(t0)},

where f̃n,mn(t0) is the Grenander estimator computed from Xn,1,Xn,2, . . . ,Xn,mn

and fn(t0) is the density of Fn at t0 or a surrogate. Next, let Im = [−t0m
1/3,∞)

and

Zn(h) := m2/3
n {Fn,mn(t0 + m−1/3

n h) − Fn,mn(t0) − fn(t0)m
−1/3
n h}(2.2)

for h ∈ Imn and observe that �n is the left-hand derivative at 0 of the least concave
majorant of Zn. It is fairly easy to obtain the asymptotic distribution of Zn. The
asymptotic distribution of �n may then be obtained from the Continuous Mapping
theorem. Stochastic processes are regarded as random elements in D(R), the space
of right continuous functions on R with left limits, equipped with the projection
σ -field and the topology of uniform convergence on compacta. See Pollard (1984),
Chapters IV and V for background.
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2.1. Convergence of Zn. It is convenient to decompose Zn into the sum of
Zn,1 and Zn,2 where

Zn,1(h) := m2/3
n {(Fn,mn − Fn)(t0 + m−1/3

n h) − (Fn,mn − Fn)(t0)},
Zn,2(h) := m2/3

n {Fn(t0 + m−1/3
n h) − Fn(t0) − fn(t0)m

−1/3
n h}.

Observe that Zn,2 depends only on Fn and fn; only Zn,1 depends on Xn,1, . . . ,

Xn,mn . Let W1 be a standard two-sided Brownian motion on R with W1(0) = 0,
and Z1(h) = W1[f (t0)h].

PROPOSITION 2.1. If

lim
n→∞m1/3

n |Fn(t0 + m−1/3
n h) − Fn(t0) − f (t0)m

−1/3
n h| = 0(2.3)

uniformly on compacts (in h), then Zn,1 ⇒ Z1; and if there is a continuous function
Z2 for which

lim
n→∞ Zn,2(h) = Z2(h)(2.4)

uniformly on compact intervals, then Zn ⇒ Z := Z1 + Z2.

PROOF. The Hungarian Embedding theorem of Kómlos, Major and Tus-
nády (1975) is used. We may suppose that Xn,i = F #

n (Ui), where F #
n (u) =

inf{x :Fn(x) ≥ u} and U1,U2, . . . are i.i.d. Uniform(0,1) random variables. Let Un

denote the EDF of U1, . . . ,Un, En(t) = √
n[Un(t) − t], and Vn = √

mn(Fn,mn −
Fn). Then Vn = Emn ◦ Fn. By Hungarian Embedding, we may also suppose that
the probability space supports a sequence of Brownian Bridges {B0

n}n≥1 for which

sup
0≤t≤1

|En(t) − B
0
n(t)| = O

[
log(n)√

n

]
a.s.,(2.5)

and a standard normal random variable η that is independent of {B0
n}n≥1. Define a

version Bn of Brownian motion by Bn(t) = B
0
n(t) + ηt , for t ∈ [0,1]. Then

Zn,1(h) = m1/6
n {Emn[Fn(t0 + m−1/3

n h)] − Emn[Fn(t0)]}
(2.6)

= m1/6
n {Bmn[Fn(t0 + m−1/3

n h)] − Bmn[Fn(t0)]} + Rn(h),

where

|Rn(h)| ≤ 2m1/6
n sup

0≤t≤1
|Emn(t) − B

0
mn

(t)|

+ m1/6
n |η||Fn(t0 + m−1/3

n h) − Fn(t0)| → 0

uniformly on compacta w.p. 1 using (2.3) and (2.5). Let

Xn(h) := m1/6
n {Bmn[Fn(t0 + m−1/3

n h)] − Bmn[Fn(t0)]}
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and observe that Xn is a mean zero Gaussian process defined on Imn with indepen-
dent increments and covariance kernel

Kn(h1, h2) = m1/3
n |Fn[t0 + sign{h1}m−1/3

n (|h1| ∧ |h2|)] − Fn(t0)|1{h1h2 > 0}.
It now follows from Theorem V.19 in Pollard (1984) and (2.3) that Xn(h) con-
verges in distribution to W1[f (t0)h] in D([−c, c]) for every c > 0, establishing
the first assertion of the proposition. The second then follows from Slutsky’s theo-
rem. �

2.2. Convergence of �n. Unfortunately, �n is not quite a continuous func-
tional of Zn. If f : I → R, write f |J to denote the restriction of f to J ⊆ I ; and if
I and J are intervals and f is bounded, write LJ f for the least concave majorant
of the restriction. Thus, F̃n = L[0,∞)Fn in the Introduction.

LEMMA 2.2. Let I be a closed interval; let f : I → R be a bounded upper
semi-continuous function on I ; and let a1, a2, b1, b2 ∈ I with b1 < a1 < a2 < b2.
If 2f [1

2(ai + bi)] > LIf (ai) + LIf (bi), i = 1,2, then LIf (x) = L[b1,b2]f (x) for
a1 ≤ x ≤ a2.

PROOF. This follows from the proof of Lemmas 5.1 and 5.2 of Wang and
Woodroofe (2007). In that lemma continuity was assumed, but only upper semi-
continuity was used in the (short) proof. �

Recall Marshall’s lemma: if I is an interval, f : I → R is bounded, and g : I →
R is concave, then ‖LIf − g‖ ≤ ‖f − g‖. See, for example, Robertson, Wright
and Dykstra [(1988), page 329] for a proof. Write F̃n,mn = L[0,∞)Fn,mn .

LEMMA 2.3. If δ > 0 is so small that F is strictly concave on [t0 −2δ, t0 +2δ]
and (2.1) holds then F̃n,mn = L[t0−2δ,t0+2δ]Fn,mn on [t0 − δ, t0 + δ] for all large n

w.p. 1.

PROOF. Since F is strictly concave on [t0 −2δ, t0 +2δ],2F(t0 ± 3
2δ) > F(t0 ±

δ) + F(t0 ± 2δ). Then

‖F̃n,mn − F‖ ≤ ‖Fn,mn − F‖
≤ ‖Fn,mn − Fn‖ + ‖Fn − F‖
≤ 1√

mn

‖Emn‖ + ‖Fn − F‖ → 0 w.p. 1

by Marshall’s lemma, (2.1) and the Glivenko–Cantelli theorem. Thus, 2Fn,mn(t0 ±
3
2δ) > F̃n,mn(t0 ±δ)+ F̃n,mn(t0 ±2δ), for all large n w.p. 1, and Lemma 2.3 follows
from Lemma 2.2. �
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PROPOSITION 2.4. (i) Suppose that (2.1) and (2.3) hold and given γ > 0,
there are 0 < δ < 1 and C > 0 for which∣∣Fn(t0 + h) − Fn(t0) − fn(t0)h − 1

2f ′(t0)h2∣∣ ≤ γ h2 + Cm−2/3
n(2.7)

and

|Fn(t0 + h) − Fn(t0)| ≤ C(|h| + m−1/3
n )(2.8)

for |h| ≤ δ and for all large n. If J is a compact interval and ε > 0, then there is a
compact K ⊇ J , depending only on ε, J,C,γ , and δ, for which

P [LImn
Zn = LKZn on J ] ≥ 1 − ε(2.9)

for all large n.
(ii) Let Y be an a.s. continuous stochastic process on R that is a.s. bounded

above. If lim|h|→∞ Y(h)/|h| = −∞ a.e., then the compact K ⊇ J can be chosen
so that

P [LRY = LKY on J ] ≥ 1 − ε.(2.10)

PROOF. For a fixed sequence (Fn ≡ F ) (2.9) would follow from the assertion
in Example 6.5 of Kim and Pollard (1990), and it is possible to adapt their argu-
ment to a triangular array using (2.7) and (2.8) in place of Taylor series expansion.
A different proof is presented in the Appendix. �

We will use the following easily verified fact. In its statement, the metric space
X is to be endowed with the projection σ -field. See Pollard (1984), page 70.

LEMMA 2.5. Let {Xn,c}, {Yn}, {Wc} and Y be sets of random elements taking
values in a metric space (X ,d), n = 0,1, . . . , and c ∈ R. If for any δ > 0,

(i) limc→∞ lim supn→∞ P {d(Xn,c, Yn) > δ} = 0,
(ii) limc→∞ P {d(Wc,Y ) > δ} = 0,

(iii) Xn,c ⇒ Wc as n → ∞ for every c ∈ R,

then Yn ⇒ Y as n → ∞.

COROLLARY 2.6. If (2.9) and (2.10) hold, and Zn ⇒ Y, then LImn
Zn ⇒ LRY

in D(R) and �n ⇒ (LRY)′(0).

PROOF. It suffices to show that LImn
Zn|J ⇒ LRY|J in D(J ), for every com-

pact interval J ⊆ R. Given J and ε > 0, there exists Kε , a compact, Kε ⊇ J ,
such that (2.9) and (2.10) hold. This verifies (i) and (ii) of Lemma 2.5 with
c = 1/ε, Xn,c = LKεZn, Yn = LImn

Zn, Wc = LKεY, Y = LRY and d(x, y) =
supt∈J |x(t) − y(t)|. Clearly, LKεZn|J ⇒ LKεY|J in D(J ), by the Continuous
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Mapping theorem, verifying condition (iii). Thus, LImn
Zn ⇒ LRY in D(R). An-

other application of the Continuous Mapping theorem [via the lemma on page 330
of Robertson, Wright and Dykstra (1988)] in conjunction with (2.9), (2.10) and
Lemma 2.5 then shows that �n = (LImn

Zn)
′(0) ⇒ (LRY)′(0). �

COROLLARY 2.7. If (2.1), (2.3), (2.4), (2.7) and (2.8) hold and

lim|h|→∞ Z(h)/|h| = −∞,

then LImn
Zn ⇒ LRZ in D(R) and �n ⇒ (LRZ)′(0); and if Z2(h) = f ′(t0)h2/2,

then �n ⇒ 2|1
2f (t0)f

′(t0)|1/3
C, where C has Chernoff’s distribution.

PROOF. The convergence follows directly from Proposition 2.4 and Corol-
lary 2.6. Note that if Z2(h) = f ′(t0)h2/2, then (2.9) and (2.10) hold and Corol-
lary 2.6 can be applied. That (LRZ)′(0) is distributed as 2|1

2f (t0)f
′(t0)|1/3

C when
Z2(h) = f ′(t0)h2/2 follows from elementary properties of Brownian motion via
the “switching” argument of Groeneboom (1985). �

2.3. Remarks on the conditions. If Fn ≡ F and fn ≡ f , then clearly (2.1),
(2.3), (2.4), (2.7) and (2.8) all hold with Z2(h) = f ′(t0)h2/2 for some 0 < δ < 1
and C ≥ f (t0 − δ) by a Taylor expansion of F and the continuity of f and f ′
around t0.

COROLLARY 2.8. If there is a δ > 0 for which Fn has a continuously differ-
entiable density fn on [t0 − δ, t0 + δ], and

lim
n→∞

[
‖Fn − F‖ + sup

|t−t0|<δ

(|fn(t) − f (t)| + |f ′
n(t) − f ′(t)|)] = 0,(2.11)

then (2.1), (2.3), (2.4), (2.7) and (2.8) hold with Z2(h) = f ′(t0)h2/2, and �n ⇒
2|1

2f (t0)f
′(t0)|1/3

C.

PROOF. The result can be immediately derived from Taylor expansion of Fn

and the continuity of f and f ′ around t0. To illustrate the idea, we show that (2.7)
holds. Let γ > 0 be given. Clearly,∣∣∣∣Fn(t0 + h) − Fn(t0) − fn(t0)h − 1

2
h2f ′(t0)

∣∣∣∣
(2.12)

≤ 1

2
h2 sup

|s|≤|h|
|f ′

n(t0 + s) − f ′(t0)|.

Let δ > 0 be so small that |f ′(t) − f ′(t0)| ≤ γ for |t − t0| < δ, and let n0 be so
large that sup|t−t0|≤δ|f ′

n(t) − f ′(t)| ≤ γ for n ≥ n0. Then the last line in (2.12) is
at most γ h2 for |h| ≤ δ and n ≥ n0. �
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Another useful remark, used below, is that if limn→∞ m
1/3
n ‖Fmn −F‖ = 0, then

(2.1), (2.3) and (2.8) hold.
In the next three sections, we apply Proposition 2.1 and Corollary 2.6 to boot-

strap samples drawn from the EDF, its LCM, and smoothed versions thereof. Thus,

let X1,X2, . . .
ind∼ F ; let Fn be the EDF of X1, . . . ,Xn; and let F̃n be its LCM. If

Fn = Fn, then (2.1), (2.3) and (2.8) hold almost surely by the above remark, since

‖Fn − F‖ = O

[√
log log(n)

n

]
a.s.(2.13)

by the Law of the Iterated Logarithm for the EDF, which may be deduced from
Hungarian Embedding; and the same is true if Fn = F̃n since ‖F̃n − F‖ ≤ ‖Fn −
F‖, by Marshall’s lemma.

If mn = n and fn = f̃n, then (2.4) is not satisfied almost surely or in probability
by either Fn or F̃n. For either choice, (2.7) is satisfied in probability if fn = f .

PROPOSITION 2.9. Suppose that mn = n and that fn = f . If Fn is either the
EDF Fn or its LCM F̃n, then for any γ, ε > 0, there are C > 0 and 0 < δ < 1 for
which (2.7) holds with probability at least 1 − ε for all large n.

The proof is included in the Appendix.

3. Inconsistency and nonconvergence of the bootstrap. We begin with a
brief discussion of the bootstrap.

3.1. Generalities. Now, suppose that X1,X2, . . .
ind∼ F are defined on a proba-

bility space (�, A,P ). Write Xn = (X1, . . . ,Xn) and suppose that the distribution
function, Hn say, of the random variable Rn(Xn,F ) is of interest. The bootstrap
methodology can be broken into three simple steps:

(i) Construct an estimator F̂n of F from Xn;

(ii) let X∗
1, . . . ,X∗

mn

ind∼ F̂n be conditionally i.i.d. given Xn;
(iii) then let X∗

n = (X∗
1, . . . ,X∗

mn
) and estimate Hn by the conditional distribu-

tion function of R∗
n = R(X∗

n, F̂n) given Xn; that is

H ∗
n (x) = P ∗{R∗

n ≤ x},
where P ∗{·} is the conditional probability given the data Xn, or equivalently, the
entire sequence X = (X1,X2, . . .).

Choices of F̂n considered below are the EDF Fn, its least concave majorant F̃n,
and smoothed versions thereof.

Let d denote the Levy metric or any other metric metrizing weak convergence of
distribution functions. We say that H ∗

n is weakly, respectively, strongly, consistent
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if d(Hn,H
∗
n )

P→ 0, respectively, d(Hn,H
∗
n ) → 0 a.s. If Hn has a weak limit H ,

then consistency requires H ∗
n to converge weakly to H , in probability; and if H is

continuous, consistency requires

sup
x∈R

|H ∗
n (x) − H(x)| P→ 0 as n → ∞.

There is also the apparent possibility that H ∗
n could converge to a random limit;

that is, that there is a G :� × R → [0,1] for which G(ω, ·) is a distribution func-

tion for each ω ∈ �, G(·, x) is measurable for each x ∈ R, and d(G,H ∗
n )

P→ 0.
This possibility is only apparent, however, if F̂n depends only on the order statis-
tics. For if h is a bounded continuous function on R, then any limit in probability
of

∫
R

h(x)H ∗
n (ω;dx) must be invariant under finite permutations of X1,X2, . . .

up to equivalence, and thus, must be almost surely constant by the Hewitt–Savage
zero–one law [Breiman (1968)]. Let Ḡ(x) = ∫

� G(ω;x)P (dω). Then Ḡ is a distri-
bution function and

∫
R

h(x)G(ω;dx) = ∫
R

h(x)Ḡ(dx) a.s. for each bounded con-
tinuous h, and therefore for any countable collection of bounded continuous h.
It follows that G(ω;x) = Ḡ(x) a.e. ω for all x by letting h approach indicator
functions.

Now let

�n = n1/3{f̃n(t0) − f (t0)} and �∗
n = m1/3

n {f̃ ∗
n,mn

(t0) − f̂n(t0)},
where f̂n(t0) is an estimate of f (t0), for example, f̃n(t0), and f̃ ∗

n,mn
(t0) is the

Grenander estimator computed from the bootstrap sample X∗
1, . . . ,X∗

mn
. Then

weak (strong) consistency of the bootstrap means

sup
x∈R

|P ∗[�∗
n ≤ x] − P [�n ≤ x]| → 0(3.1)

in probability (almost surely), since the limiting distribution (1.1) of �n is contin-
uous.

3.2. Bootstrapping from the NPMLE F̃n. Consider now the case in which
mn = n, F̂n = F̃n, and f̂n(t0) = f̃n(t0). Let

Z
∗
n(h) := n2/3{F∗

n(t0 + n−1/3h) − F
∗
n(t0) − f̃n(t0)n

−1/3h}
for h ∈ In = [−n1/3t0,∞), where F

∗
n is the EDF of the bootstrap sample

X∗
1, . . . ,X∗

n ∼ F̃n. Then Z
∗
n = Z

∗
n,1 + Zn,2, where

Z
∗
n,1(h) = n2/3{(F∗

n − F̃n)(t0 + n−1/3h) − (F∗
n − F̃n)(t0)},(3.2)

Zn,2(h) = n2/3{F̃n(t0 + hn−1/3) − F̃n(t0) − f̃n(t0)n
−1/3h}.(3.3)
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Further, let W1 and W2 be two independent two-sided standard Brownian motions
on R with W1(0) = W2(0) = 0,

Z1(h) = W1[f (t0)h],
Z

0
2(h) = W2[f (t0)h] + 1

2f ′(t0)h2,

Z2(h) = LRZ
0
2(h) − LRZ

0
2(0) − (LRZ

0
2)

′(0)h,

Z = Z1 + Z2.

Then �∗
n equals the left derivative at h = 0 of the LCM of Z

∗
n. It is first shown

that Z
∗
n converges in distribution to Z but the conditional distributions of Z

∗
n do

not have a limit. The following two lemmas are needed.

LEMMA 3.1. Let Wn and W ∗
n be random vectors in R

l and R
k , respectively;

let Q and Q∗ denote distributions on the Borel sets of R
l and R

k ; and let Fn be
sigma-fields for which Wn is Fn-measurable. If the distribution of Wn converges to
Q and the conditional distribution of W ∗

n given Fn converges in probability to Q∗,
then the joint distribution of (Wn,W

∗
n ) converges to the product measure Q × Q∗.

PROOF. The above lemma can be proved easily using characteristic functions.
Kosorok (2008) includes a detailed proof. �

The next lemma uses a special case of the Convergence of Types theorem
[Loève (1963), page 203]: let V,W,Vn be random variables and bn be constants;
if V has a nondegenerate distribution, Vn ⇒ V as n → ∞, and Vn +bn ⇒ W , then
b = limn→∞ bn exists and W has the same distribution as V + b.

LEMMA 3.2. Let X∗
n be a bootstrap sample generated from the data Xn. Let

Yn := ψn(Xn) and Zn := φn(Xn,X∗
n) where ψn : Rn → R and φn : R2n → R are

measurable functions; and let Kn and Ln be the conditional distribution functions
of Yn +Zn and Zn given Xn, respectively. If there are distribution functions K and

L for which L is nondegenerate, d(Kn,K)
P→ 0 and d(Ln,L)

P→ 0 then there is a

random variable Y for which Yn
P→ Y .

PROOF. If {nk} is any subsequence, then there exists a further subse-
quence {nkl

} for which d(Knkl
,K) → 0 a.s. and d(Lnkl

,L) → 0 a.s. Then Y :=
liml→∞ Ynkl

exists a.s. by the Convergence of Types theorem, applied condition-
ally given X := (X1,X2, . . .) with bl = Ynkl

. Note that Y does not depend on the
subsequence nkl

, since two such subsequences can be joined to form another sub-
sequence using which we can argue the uniqueness. �

THEOREM 3.1. (i) The conditional distribution of Z
∗
n,1 given X = (X1,X2,

. . .) converges a.s. to the distribution of Z1.
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(ii) The unconditional distribution of Zn,2 converges to that of Z2 and the
unconditional distributions of (Z∗

n,1,Zn,2), and Z
∗
n converge to those of (Z1,Z2)

and Z.
(iii) The unconditional distribution of �∗

n converges to that of (LRZ)′(0), and
(3.1) fails.

(iv) Conditional on X, the distribution of Z
∗
n does not have a weak limit in

probability.
(v) If the conditional distribution function of �∗

n converges in probability, then
(LRZ)′(0) and Z2 must be independent.

PROOF. (i) The conditional convergence of Z
∗
n,1 follows from Proposition 2.1

with mn = n, Fn = F̃n, Fn,mn = F
∗
n, applied conditionally given X. It is only nec-

essary to show that (2.3) holds a.s., and this follows from the Law of the Iterated
Logarithm for Fn and Marshall’s lemma, as explained in Section 2.3. The uncon-
ditional limiting distribution of Z

∗
n,1 must also be that of Z1.

(ii) Let

Z
0
n,2(h) = n2/3[Fn(t0 + n−1/3h) − Fn(t0) − f (t0)n

−1/3h]
and observe that

Zn,2(h) = LInZ
0
n,2(h) − [LInZ

0
n,2(0) + (LInZ

0
n,2)

′(0)h].
The unconditional convergence of Z

0
n,2 and LInZ

0
n,2 follow from Corollary 2.7

applied with Fn ≡ F , as explained in Section 2.3. The convergence in distribution
of Zn,2 now follows from the Continuous Mapping theorem, using Lemma 2.5 and
arguments similar to those in the proof of Corollary 2.6.

It remains to show that Z
∗
n,1 and Z

0
n,2 are asymptotically independent, for ex-

ample, the joint limit distribution of Z
∗
n,1 and Z

0
n,2 is the product of their mar-

ginal limit distributions. For this, it suffices to show that (Z∗
n,1(t1), . . . ,Z

∗
n,1(tk))

and (Z0
n,2(s1), . . . ,Z

0
n,2(sl)) are asymptotically independent, for all choices −∞ <

t1 < · · · < tk < ∞ and −∞ < s1 < · · · < sl < ∞. This is an easy conse-
quence of Lemma 3.1 applied with W ∗

n = (Z∗
n,1(t1), . . . ,Z

∗
n,1(tk)) and Wn =

(Z0
n,2(s1), . . . ,Z

0
n,2(sl)), and Fn = σ(X1,X2, . . . ,Xn).

(iii) We will appeal to Corollary 2.6 to find the unconditional distribution of �∗
n.

We already know that Z
∗
n converges in distribution to Z. That (2.10) holds for the

limit Z can be directly verified from the definition of the process. We only have to
show that (2.9) holds unconditionally with Zn = Z

∗
n.

Let ε > 0 and γ > 0 be given. By Proposition 2.9, there exists δ > 0 and C > 0
such that P(An) ≥ 1 − ε for all n > N0, where

An := {∣∣F̃n(t0 + h) + F̃n(t0) − f (t0)h − 1
2f ′(t0)h2∣∣ ≤ γ h2 + Cn−2/3,∀|h| ≤ δ

}
.
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We can also assume that |F(t0 + h) + F(t0) − f (t0)h − (1/2)f ′(t0)h2| ≤ γ h2

for |h| ≤ δ. Let Y
∗
n(h) = n2/3[F∗

n(t0 + n−1/3h) − F
∗
n(t0) − f (t0)n

−1/3h], so that
Z

∗
n(h) = Y

∗
n(h) − �nh for all h ∈ In, and

LKZ
∗
n = LKY

∗
n − �nh

for all h ∈ K for any interval K ⊆ In.
Let Gn = F̃n1An + F1Ac

n
and let P ∞

Gn
denote the probability when generating

the bootstrap samples from Gn. Then Gn satisfies (2.1), (2.3), (2.7) and (2.8) a.s.
with mn = n, Fn = Gn, Fn,mn = F

∗
n1An + Fn1Ac

n
and fn = f . Let J be a compact

interval. By Proposition 2.4, applied conditionally, there exists a compact interval
K (not depending on ω, by the remark near the end of the proof of Proposition 2.4)
such that K ⊇ J and

P ∞
Gn

[LInY
∗
n = LKY

∗
n on J ](ω) ≥ 1 − ε

for n ≥ N(ω) for a.e. ω. As N(·) is bounded in probability, there exists N1 > 0
such that P(B) ≥ 1 − ε, where B := {ω :N(ω) ≤ N1}. By increasing N1 if neces-
sary, let us also suppose that N1 ≥ N0. Then

P [LImn
Z

∗
n = LKZ

∗
n on J ] = P [LImn

Y
∗
n = LKY

∗
n on J ]

≥
∫
An

P ∗[LImn
Y

∗
n = LKY

∗
n on J ](ω)dP (ω)

=
∫
An

P ∞
Gn

[LImn
Y

∗
n = LKY

∗
n on J ](ω)dP (ω)

≥
∫
An∩B

P ∞
Gn

[LImn
Y

∗
n = LKY

∗
n on J ](ω)dP (ω)

≥
∫
An∩B

(1 − ε) dP (ω) ≥ 1 − 3ε for all n ≥ N1

as P(An ∩ B) ≥ 1 − 2ε for n ≥ N1. Thus, (2.9) holds and Corollary 2.6 gives
�∗

n ⇒ (LRZ)′(0).
If (3.1) holds in probability, then the unconditional limit distribution of �∗

n

would be that of 2|1
2f (t0)f

′(t0)|1/3
C, which is different from the distribution of

(LRZ)′(0), giving rise to a contradiction.
(iv) We use the method of contradiction. Let Zn := Z

∗
n,1(h0) and Yn := Zn,2(h0)

for some fixed h0 > 0 (say h0 = 1) and suppose that the conditional distribution
function of Zn + Yn = Z

∗
n(h0) converges in probability to the distribution func-

tion G. By Proposition 2.1, the conditional distribution of Zn converges in prob-
ability to a normal distribution, which is obviously nondegenerate. Thus, the as-

sumptions of Lemma 3.2 are satisfied and we conclude that Yn
P→ Y , for some

random variable Y . It then follows from the Hewitt–Savage zero–one law that Y

is a constant, say Y = c0 w.p. 1. The contradiction arises since Yn converges in
distribution to Z2(h0) which is not a constant a.s.
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FIG. 1. Scatter plot of 10,000 random draws of ((LRZ)′(0), (LRZ
0
2)′(0)) when f (t0) = 1 and

f ′(t0) = −2.

(v) We can show that the (unconditional) joint distribution of (�∗
n,Z

0
n,2) con-

verges to that of ((LRZ)′(0),Z
0
2). But �∗

n and Z
0
n,2 are asymptotically independent

by Lemma 3.1 applied to Wn = (Z0
n,2(t1),Z

0
n,2(t2), . . . ,Z

0
n,2(tl)), where ti ∈ R,

W ∗
n = �∗

n and Fn = σ(X1,X2, . . . ,Xn). Therefore, (LRZ)′(0) and Z
0
2 are inde-

pendent. The proposition follows directly since Z2 is a measurable function of Z
0
2.
�

If the conditional distribution of �∗
n converges in probability, as a consequence

of (v) of Theorem 3.1, (LRZ)′(0) and (LRZ
0
2)

′(0) must also be independent. Fig-
ure 1 shows the scatter plot of (LRZ)′(0) and (LRZ

0
2)

′(0) obtained from a simu-
lation study with 10,000 samples, f (t0) = 1 and f ′(t0) = −2. The correlation co-
efficient obtained −0.2999 is highly significant (p-value < 0.0001). Thus, when
combined with simulations, (v) of Theorem 3.1 strongly suggests that the condi-
tional distribution of �∗

n does not converge in probability.

3.3. Bootstrapping from the EDF. A similar, slightly simpler pattern arises
if the bootstrap sample is drawn from F̂n = Fn. Define Z

∗
n as before, and

let Z
∗
n,1(h) = n2/3{(F∗

n − Fn)(t0 + n−1/3h) − (F∗
n − Fn)(t0)} and Zn,2(h) =

n2/3{Fn(t0 + hn−1/3) − Fn(t0) − f̃n(t0)n
−1/3h}. Then Z

∗
n = Z

∗
n,1 + Zn,2. Recall

the definition of the processes W1, W2, Z1, Z
0
2 in Section 3.2. Define

Z2(h) = Z
0
2(h) − (LRZ

0
2)

′(0)h.

THEOREM 3.2. (i) The conditional distribution of Z
∗
n,1 given X = (X1,X2,

. . .) converges a.s. to the distribution of Z1.
(ii) The unconditional distribution of Zn,2 converges to that of Z2 and the

unconditional distributions of (Z∗
n,1,Zn,2), and Z

∗
n converge to those of (Z1,Z2)

and Z.
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(iii) The unconditional distribution of �∗
n converges to that of (LRZ)′(0), and

(3.1) fails.
(iv) Conditional on X, the distribution of Z

∗
n does not have a weak limit in

probability.
(v) If the conditional distribution function of �∗

n converges in probability, then
(LRZ)′(0) and Z2 must be independent.

REMARK. The proof of this theorem runs along similar lines to that of Theo-
rem 3.1. We briefly highlight the differences.

(i) The conditional convergence of Z
∗
n,1 follows from Proposition 2.1 with

mn = n, Fn = Fn, Fn,mn = F
∗
n, applied conditionally given X. It is only necessary

to show that (2.3) is satisfied almost surely, and this follows from the Law of the
Iterated Logarithm for Fn, as explained in Section 2.3. Then the unconditional
limiting distribution of Z

∗
n,1 must also be that of Z1.

(ii) The proof is similar to that of (ii) of Theorem 3.1, except that now
Zn,2(h) = Z

0
n,2(h) − (LInZ

0
n,2)

′(0)h.

The proofs of (iii)–(v) are very similar to that of (iii)–(v) of Theorem 3.1.

3.4. Performance of the bootstrap methods in finite samples. In this subsec-
tion, we illustrate the poor finite sample performance of the two inconsistent boot-
strap schemes, namely, bootstrapping from the EDF Fn and the NPMLE F̃n. Ta-
ble 1 shows the estimated coverage probabilities of nominal 95% confidence inter-
vals for f (1) using the two bootstrap methods for different sample sizes, when the
true distribution is assumed to be Exponential(1) and |Normal(0,1)|, respectively.
We used 1000 bootstrap samples to compute each confidence interval and then
constructed 1000 such confidence intervals to estimate the actual coverage proba-
bilities. As is clear from the table the coverage probabilities fall well short of the
nominal 0.95 value. Leger and MacGibbon (2006) also illustrate such a discrep-
ancy in the nominal and actual coverage probabilities while bootstrapping from
the EDF for the Chernoff’s estimator of the mode.

TABLE 1
Estimated coverage probabilities of nominal 95% confidence intervals for f (1) while bootstrapping
from the EDF Fn and NPMLE F̃n, with varying sample size n for the two models: Exponential(1)

(left) and |Z| where Z ∼ Normal(0,1) (right)

n EDF NPMLE n EDF NPMLE

50 0.747 0.720 50 0.761 0.739
100 0.776 0.755 100 0.778 0.757
200 0.802 0.780 200 0.780 0.762
500 0.832 0.797 500 0.788 0.755
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FIG. 2. Histograms of the exact distribution of �n (left panel) and the two bootstrap distributions
while drawing bootstrap samples from Fn (middle panel) and F̃n (right panel) for n = 500.

Figure 2 shows the histograms (computed from 10,000 bootstrap samples) of
the two inconsistent bootstrap distributions obtained from a single sample of 500
Exponential(1) random variables along with the histogram of the exact distribution
of �n (obtained from simulation). The bootstrap distributions are skewed and have
very different shapes and supports compared to that on the left panel of Figure 2.
The histograms illustrate the inconsistency of the bootstrap procedures.

The estimated coverage probabilities in Table 1 are unconditional [see (iii) of
Theorems 3.1 and 3.2] and do not provide direct evidence to suggest that the con-
ditional distribution of �∗

n does not converge in probability. Figure 3 shows the
estimated 0.95 quantile of the bootstrap distribution for two independent data se-
quences as the sample size increases from 500 to 10,000, for the two bootstrap pro-
cedures, and for both the models (exponential and normal). The bootstrap quantile
fluctuates enormously even at very large sample sizes and shows signs of noncon-
vergence. If the bootstrap were consistent, the estimated quantiles should converge
to 0.6887 (0.8269), the 0.95 quantile of the limit distribution of �n, indicated by
the solid line in Figure 3. From the left panel of Figure 3, we see that the esti-
mated bootstrap 0.95 quantiles (obtained from the two procedures) for one data

FIG. 3. Estimated 0.95 quantile of the bootstrap distribution while generating the bootstrap sam-
ples from Fn (dashed lines) and F̃n (solid-dotted lines) for two independent data sequences along
with the 0.95 quantile of the limit distribution of �n (solid line) for the two models: Exponential(1)

(left panel) and |Z| where Z ∼ Normal(0,1) (right panel).
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sequence stays below 0.6887, while for the other, the 0.95 quantiles stay above
0.6887, indicating the strong dependence on the sample path. Note that if the boot-
strap distributions had a limit, then Figure 3 suggests that the limit varies with
the sample path, and that is impossible as explained in Section 3.1. This provides
evidence for the nonconvergence of the bootstrap estimator.

4. Consistent bootstrap methods. The main reason for the inconsistency of
bootstrap methods discussed in the previous section is the lack of smoothness of
the distribution function from which the bootstrap samples are generated. The EDF
Fn does not have a density, and F̃n does not have a differentiable density, whereas
F is assumed to have a nonzero differentiable density at t0. At a more technical
level, the lack of smoothness manifests itself through the failure of (2.4).

The results from Section 2 may be directly applied to derive sufficient con-
ditions on the smoothness of the distribution from which the bootstrap samples

are generated. Let X1,X2, . . .
ind∼ F ; let F̂n be an estimate of F computed from

X1, . . . ,Xn; and let f̂n be the density of F̂n or a surrogate, as in Section 3.

THEOREM 4.1. If (2.1), (2.3), (2.4), (2.7) and (2.8) hold a.s. with Fn = F̂n

and fn = f̂n, then the bootstrap estimate is strongly consistent, for example, (3.1)
holds w.p. 1. In particular, the bootstrap estimate is strongly consistent if there is a
δ > 0 for which F̂n has a continuously differentiable density f̂n on [t0 − δ, t0 + δ],
and (2.11) holds a.s. with Fn = F̂n and fn = f̂n.

PROOF. That �∗
n converges weakly to the distribution on the right-hand side

of (1.1) a.s. follows from Corollary 2.7 applied conditionally given X with Fn = F̂n

and fn = f̂n. The second assertion follows similarly from Corollary 2.8. �

4.1. Smoothing F̃n. We show that generating bootstrap samples from a suit-
ably smoothed version of F̃n leads to a consistent bootstrap procedure. To avoid
boundary effects and ensure that the smoothed version has a decreasing density
on (0,∞), we use a logarithmic transformation. Let K be a twice continuously
differentiable symmetric density for which∫ ∞

−∞
[K(z) + |K ′(z)| + |K ′′(z)|]eη|z| dz < ∞(4.1)

for some η > 0. Let

Kh(x,u) = 1

hx
K

[
1

h
log

(
u

x

)]
and

(4.2)
f̌n(x) =

∫ ∞
0

Kh(x,u)f̃n(u) du =
∫ ∞

0
Kh(1, u)f̃n(xu)du.
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Thus, eyf̌n(e
y) = ∫ ∞

−∞ h−1K[h−1(y − z)]f̃n(e
z)ez dz. Integrating and using capi-

tal letters to denote distribution functions,

F̌n(e
y) =

∫ y

−∞
f̌n(e

s)es ds

=
∫ y

−∞

∫ ∞
−∞

1

h
K

(
s − v

h

)
f̃n(e

v)ev dv ds

=
∫ ∞
−∞

K(z)F̃n(e
y−hz) dz.

Alternatively, integrating (4.2) by parts yields

f̌n(x) = −
∫ ∞

0

∂

∂u
Kh(x,u)F̃n(u) du.

The proof of (3.1) requires showing that F̌n and its derivatives are sufficiently
close to those of F , and it is convenient to separate the estimation error F̌n − F

into sampling and approximation error. Thus, let

F̄h(e
y) =

∫ ∞
−∞

K(z)F (ey−hz) dz.(4.3)

We denote the first and second derivatives of F̄h by f̄h and f̄ ′
h, respectively. Recall

that F is assumed to have a nonincreasing density on (0,∞) that is continuously
differentiable near t0.

LEMMA 4.1. limh→0‖F̄h − F‖ = 0, and there is a δ > 0 for which

lim
h→0

sup
|x−t0|≤δ

[|f̄h(x) − f (x)| + |f̄ ′
h(x) − f ′(x)|] = 0.(4.4)

PROOF. First, observe that

F̄h(e
y) − F(ey) =

∫ ∞
−∞

K(z)[F(ey−hz) − F(ey)]dz

by (4.3). That limh→0 F̄h(x) = F(x) for all x ≥ 0 follows easily from the Domi-
nated Convergence theorem, and uniform convergence then follows from Polya’s
theorem. This establishes the first assertion of the lemma. Next, consider (4.4).
Given t0 > 0, let y0 = log(t0) and let δ > 0 be so small that eyf (ey) is continu-
ously differentiable (in y) on [y0 − 2δ, y0 + 2δ]. Then

f̄h(x) − f (x) =
∫ ∞
−∞

K(z)[f (xehz) − f (x)]ehz dz

+ f (x)

∫ ∞
−∞

(ehz − 1)K(z) dz
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and thus

sup
|x−t0|≤δ

|f̄h(x) − f (x)| ≤
∫ ∞
−∞

sup
|x−t0|≤δ

|f (xehz) − f (x)|ehzK(z) dz + O(h2)

for any 0 < δ < t0. For sufficiently small δ, the integrand approach zero as h → 0;
and it is bounded by sup|x−t0|≤δ(e

−hz/x + f (x))ehzK(z), since f (x) ≤ 1/x for
all x > 0. So the right-hand side approaches zero as h → 0 by the Dominated
Convergence theorem. That sup|x−t0|≤δ|f̄ ′

h(x) − f ′(x)| → 0 may be established
similarly. �

THEOREM 4.2. Let K be a twice continuously differentiable, symmetric den-
sity for which (4.1) holds. If

h = hn → 0 and h2
n

√
n

log log(n)
→ ∞,

then the bootstrap estimator is strongly consistent; that is, (3.1) holds a.s.

PROOF. By Theorem 4.1, it suffices to show that (2.11) holds a.s. with F̂n =
F̌n and f̂n = f̌n; and this would follow from

‖F̌n − F̄h‖ + sup
|x−t0|≤δ

[|f̌n(x) − f̄h(x)| + |f̌ ′
n(x) − f̄ ′

h(x)|] → 0 a.s.

for some δ > 0 and Lemma 4.1. Clearly, using (4.3),

F̌n(e
y) − F̄h(e

y) = 1

h

∫ ∞
−∞

[F̃n(e
t ) − F(et )]K

(
y − t

h

)
dt(4.5)

for all y, so that

‖F̌n − F̄h‖ ≤ ‖F̃n − F‖ ≤ ‖Fn − F‖ = O
[√

log log(n)/n
]

a.s.

by Marshall’s lemma and the Law of the Iterated Logarithm. Differentiating (4.5)
gives

f̌n(e
y) − f̄h(e

y) = e−y

h2

∫ ∞
−∞

[F̃n(e
t ) − F(et )]K ′

(
y − t

h

)
dt.

Differentiating (4.5) again and then taking absolute values and considering 0 <

h ≤ 1, we get

sup
|x−t0|≤δ

{|f̌n(x) − f̄h(x)| + |f̌ ′
n(x) − f̄ ′

h(x)|}

≤ M

h3 sup
|x−t0|≤δ

∫ ∞
−∞

|F̃n(e
t ) − F(et )|

[∣∣∣∣K ′
(

logx − t

h

)∣∣∣∣ +
∣∣∣∣K ′′

(
logx − t

h

)∣∣∣∣
]
dt

≤ M

h2 ‖Fn − F‖
∫ ∞
−∞

[|K ′(z)| + |K ′′(z)|]dz → 0 a.s.

for a constant M > 0, as h2
n

√
n/ log log(n) → ∞, where Marshall’s lemma and the

Law of Iterated Logarithm have been used again. �
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4.2. m out of n bootstrap. In Section 3, we showed that the two most intu-
itive methods of bootstrapping are inconsistent. In this section, we show that the
corresponding m out of n bootstrap procedures are weakly consistent.

THEOREM 4.3. If F̂n = Fn, f̂n = f̃n, and mn = o(n) then the bootstrap pro-
cedure is weakly consistent, for example, (3.1) holds in probability.

PROOF. Conditions (2.1), (2.3) and (2.8) hold a.s. from (2.13), as explained
in Section 2.3. To verify (2.7), let γ > 0 be given. From the proof of Proposi-
tion 2.4 [also see Kim and Pollard (1990), page 218], there exists δ > 0 such
that |Fn(t0 + h) − Fn(t0) − F(t0 + h) − F(t0)| ≤ γ h2 + Cnn

−2/3, for |h| ≤ δ,
where Cn’s are random variables of order OP (1). We can also assume that
|F(t0 +h)+F(t0)−f (t0)h− (1/2)f ′(t0)h2| ≤ (1/2)γ h2 for |h| ≤ δ. Then, using
the inequality 2|ab| ≤ γ a2 + b2/γ ,∣∣∣∣Fn(t0 + h) − Fn(t0) − hf̃n(t0) − 1

2
h2f ′(t0)

∣∣∣∣
≤

∣∣∣∣Fn(t0 + h) − Fn(t0) − hf (t0) − 1

2
h2f ′(t0)

∣∣∣∣ + |h||f̃n(t0) − f (t0)|
(4.6)

≤
{
γ h2 + Cnn

−2/3 + 1

2
γ h2

}
+

{
1

2
γ h2 + 1

2γ
|f̃n(t0) − f (t0)|2

}

≤ 2γ h2 + Cnn
−2/3 + OP (n−2/3) ≤ 2γ h2 + oP (m−2/3

n ).

For (2.4), write

m2/3
n {Fn(t0 + m−1/3

n h) − Fn(t0) − m−1/3
n f̃n(t0)h}

= m2/3
n {(Fn − F)(t0 + m−1/3

n h) − (Fn − F)(t0)}
(4.7)

+ m1/3
n [f (t0) − f̃n(t0)]h + 1

2f ′(t0)h2 + o(1)

P→ 1
2f ′(t0)h2

uniformly on compacts using Hungarian Embedding to bound the second line and
(1.1) (and a two-term Taylor expansion) in the third.

Given any subsequence {nk} ⊂ N, there exists a further subsequence {nkl
} such

that (4.6) and (4.7) hold a.s. and Theorem 4.1 is applicable. Thus, (3.1) holds for
the subsequence {nkl

}, thereby showing that (3.1) holds in probability. �

Next consider bootstrapping from F̃n. We will assume slightly stronger condi-
tions on F , namely, conditions (a)–(d) mentioned in Theorem 7.2.3 of Robertson,
Wright and Dykstra (1988):

(a) α1(F ) = inf{x :F(x) = 1} < ∞,
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(b) F is twice continuously differentiable on (0, α1(F )),

(c) γ (F ) = sup0<x<α1(F )|f ′(x)|
inf0<x<α1(F ) f 2(x)

< ∞,

(d) β(F ) = inf0<x<α1(F )|−f ′(x)

f 2(x)
| > 0.

THEOREM 4.4. Suppose that (a)–(d) hold. If F̂n = F̃n, f̂n = f̃n, and mn =
o[n(logn)−3/2] then (3.1) holds in probability.

PROOF. Conditions (2.1), (2.3) and (2.8) again follow from (2.13), as ex-
plained in Section 2.3. The verification of (2.7) is similar to the argument in
the proof of Theorem 4.3. We show that (2.4) holds. Adding and subtracting
m

2/3
n [Fn(t0 + m

−1/3
n h) − Fn(t0)] from Zn,2(h) and using (4.7) and the result of

Kiefer and Wolfowitz (1976)

sup
|h|≤c

∣∣∣∣Zn,2(h) − 1

2
f ′(t0)h2

∣∣∣∣ ≤ 2m2/3
n ‖F̃n − Fn‖ + oP (1)

≤ 2m2/3
n ‖F̃n − Fn‖ + oP (1)

= OP [m2/3
n n−2/3 log(n)] + oP (1)

for any c > 0 from which (2.4) follows easily. �

5. Discussion. We have shown that bootstrap estimators are inconsistent
when bootstrap samples are drawn from either the EDF Fn or its least concave ma-
jorant F̃n but consistent when the bootstrap samples are drawn from a smoothed
version of F̃n or an m out of n bootstrap is used. We have also derived neces-
sary conditions for the bootstrap estimator to have a conditional weak limit, when
bootstrapping from either Fn or F̃n and presented compelling numerical evidence
that these conditions are not satisfied. While these results have been obtained for
the Grenander estimator, our results and findings have broader implications for the
(in)-consistency of the bootstrap methods in problems with an n1/3 convergence
rate.

To illustrate the broader implications, we contrast our finding with those of
Abrevaya and Huang (2005), who considered a more general framework, as in
Kim and Pollard (1990). For simplicity, we use the same notation as in Abrevaya
and Huang (2005). Let Wn := rn(θn −θ0) and Ŵn := rn(θ̂n −θn) be the sample and
bootstrap statistics of interest. In our case rn = n1/3, θ0 = f (t0), θn = f̃n(t0) and
θ̂n = f̃ ∗

n (t0). When specialized to the Grenander estimator, Theorem 2 of Abrevaya
and Huang (2005) would imply [by calculations similar to those in their Theorem 5
for the NPMLE in a binary choice model] that

Ŵn ⇒ arg max Ẑ(t) − arg maxZ(t)
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conditional on the original sample, in P ∞-probability, where Z(t) = W(t) − ct2

and Ẑ(t) = W(t) + Ŵ (t) − ct2, W and Ŵ are two independent two sided Brown-
ian motions on R with W(0) = Ŵ (0) = 0 and c is a positive constant depending
on F . We also know that Wn ⇒ arg maxZ(t) unconditionally. By (v) of Theo-
rem 3.1, this would force the independence of arg maxZ(t) and arg max Ẑ(t) −
arg maxZ(t); but, there is overwhelming numerical evidence that these random
variables are correlated.

APPENDIX

LEMMA A.1. Let � : R → R be a function such that �(h) ≤ M for all h ∈ R,
for some M > 0, and

lim|h|→∞
�(h)

|h| = −∞.(A.1)

Then for any b > 0, there exists c0 > b such that for any c ≥ c0, LR�(h) =
L[−c,c]�(h) for all |h| ≤ b.

PROOF. Note that for any c > 0, LR�(h) ≥ L[−c,c]�(h) for all h ∈ [−c, c].
Given b > 0, consider c > b and �c(h) = L[−c,c]�(h) for h ∈ [−b, b], and let
�c be the linear extension of L[−c,c]�|[−b,b] outside [−b, b]. We will show that
there exists c0 > b + 1 such that �c0 ≥ � . Then �c0 will be a concave function
everywhere greater than � , and thus �c0 ≥ LR� . Hence, LR�(h) ≤ �c0(h) =
L[−c0,c0]�(h) for h ∈ [−b, b], yielding the desired result.

For any c > b+1, �c(h) = �c(b)−�′
c(b)+�′

c(b)(h−b+1) for h ≥ b. Using
the min–max formula,

�′
c(b) = min−c≤s≤b

max
b≤t≤c

�(t) − �(s)

t − s

≥ min−c≤s≤b

�(b + 1) − �(s)

(b + 1) − s

≥ �(b + 1) − M =: B0 ≤ 0.

Thus,

�c(h) = �c(b) − �′
c(b) + �′

c(b)(h − b + 1)

≥ {�(b) − �′
c(b)} + �′

c(b)(h − b + 1)

≥ �(b) + (h − b)B0

for h ≥ b+1. Observe that B0 does not depend on c. Combining this with a similar
calculation for h < −(b + 1), there are K0 ≥ 0 and K1 ≥ 0, depending only on b,
for which �c(h) ≥ K0 −K1|h| for |h| ≥ b + 1. From (A.1), there is c0 > b + 1 for
which �(h) ≤ K0 − K1|h| for all |h| ≥ c0 in which case �(h) ≤ �c0(h) for all h.
It follows that LR� ≤ �c0(h) for |h| ≤ b. �
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LEMMA A.2. Let B be a standard Brownian motion. If a, b, c > 0, a3b = 1,
then

P

[
sup
t∈R

|B(t)|
a + bt2 > c

]
= P

[
sup
s∈R

|B(s)|
1 + s2 > c

]
.(A.2)

PROOF. This follows directly from rescaling properties of Brownian motion
by letting t = a2s. �

PROOF OF PROPOSITION 2.4. Let J = [a1, a2] and ε > 0 be as in the state-
ment of the proposition; let γ = |f ′(t0)|/16; and recall (2.5) and (2.6) from the
proof of Proposition 2.1. Then there exists 0 < δ < 1, C ≥ 1, and n0 ≥ 1 for
which (2.7) and (2.8) hold for all n ≥ n0. Let I ∗

mn
:= [−δm

1/3
n , δm

1/3
n ]. By mak-

ing δ smaller, if necessary, and using Lemma 2.3, LImn
Zn(h) = LI∗

mn
Zn(h) for

|h| ≤ δm
1/3
n /2 for all but a finite number of n w.p. 1. By increasing the values of C

and n0, if necessary, we may suppose that the right-hand side of (A.2) (with c = C)
is less than ε/3, that P [|η| > C]+P [sup0≤t≤1 m

1/6
n |Emn(t)−B

0
mn

(t)| > C] ≤ ε/3,

and that LImn
Zn = LI∗

mn
Zn on [−1

2δm
1/3
n , 1

2δm
1/3
n ] with probability at least 1−ε/3

for all n ≥ n0. We can also assume that α := 8C3/γ > 1. Then, using Lemma A.2
with a = αm

−1/6
n and b = a−3, the following relations hold simultaneously with

probability at least 1 − ε for n ≥ n0:

|Bmn[Fn(t0) + s] − Bmn[Fn(t0)]| ≤ C
(
αm−1/6

n + α−3√mns
2)

for all s,

LImn
Zn = LI∗

mn
Zn on

[
−δ

2
m1/3

n ,
δ

2
m1/3

n

]
, |η| ≤ C,

and

sup
0≤t≤1

m1/6
n |Emn(t) − B

0
mn

(t)| ≤ C.

Let Bn be the event that these four conditions hold. Then P(Bn) ≥ 1−ε for n ≥ n0,
and from (2.6), Bn implies

|Zn,1(h)| ≤ C{α + α−3m2/3
n [Fn(t0 + m−1/3

n h) − Fn(t0)]2} + 2C

+ Cm1/6
n |Fn(t0 + m−1/3

n h) − Fn(t0)|(A.3)

≤ 4C{α + α−1m2/3
n [Fn(t0 + m−1/3

n h) − Fn(t0)]2}
using the inequalities |Fn(t0 + m

−1/3
n h) − Fn(t0)| ≤ αm

−1/6
n + α−1m

1/6
n [Fn(t0 +

m
−1/3
n h) − Fn(t0)]2 and α > 1. For sufficiently large n, using (2.8), we have

|Zn,1(h)| ≤ 4C[α + α−1C2m2/3
n (m−1/3

n |h| + m−1/3
n )2]

≤ 4C[α + 2α−1C2(h2 + 1)](A.4)

= γ h2 + C
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for |h| ≤ δm
1/3
n with C = 4Cα + 8C3α−1. Also, we can show that |Zn,2(h) −

f ′(t0)h2/2| ≤ γ h2 + C for all |h| ≤ δm
1/3
n by (2.7). Let b2 > a2 be such that

−5γ (a2 + b2)
2 + 6γ (a2

2 + b2
2) − 8C > 0.

Recalling that γ = −f ′(t0)/16, Bn implies

−10γ h2 − 2C ≤ Zn(h) = Zn,1(h) + Zn,2(h) ≤ −6γ h2 + 2C

for |h| ≤ δm
1/3
n and sufficiently large n. Since the right-hand side is concave, Bn

also implies LI∗
mn

Zn(h) ≤ −6γ h2 +2C for |h| ≤ δm
1/3
n . Therefore, for sufficiently

large n, using the upper bound on LI∗
mn

Zn, the lower bound on Zn obtained above,

and LImn
Zn(h) = LI∗

mn
Zn(h) for |h| ≤ δm

1/3
n /2 on Bn, and [a2, b2] ⊂ I ∗

mn
, we

have

2Zn

(
a2 + b2

2

)
− [LImn

Zn(a2) + LImn
Zn(b2)]

≥ −5γ (a2 + b2)
2 + 6γ (a2

2 + b2
2) − 8C > 0

with probability at least 1 − ε. Thus, Bn implies 2Zn[1
2(a2 + b2)] > LImn

Zn(a2)+
LImn

Zn(b2) with probability at least 1 − ε. Similarly, Bn implies that there is a
b1 < a1 for which 2Zn[1

2(a1 + b1)] > LImn
Zn(a1) + LImn

Zn(b1) with probability
at least 1 − ε. Relation (2.9) then follows from Lemma 2.2. It is worth noting as a
remark that b1, b2 do not depend on the sequence Fn.

Next, consider (2.10). Given a compact J = [−b, b], let c0(ω) be the smallest
positive integer such that for any c ≥ c0, LRZ(h) = L[−c,c]Z(h) for h ∈ J . That c0
exists and is finite w.p. 1 follows from Lemma A.1. Defining Wc := L[−c,c]Z and
Y = LRZ, the event {Wc �= Y on J } ⊂ {co > c}. Now given any ε > 0, there exist
c such that P [co ≤ c] > 1 − ε. Therefore,

P
[
LRZ = L[−c,c]Z on J

] ≥ P [co ≤ c] > 1 − ε. �

PROOF OF PROPOSITION 2.9. First, consider Fn. Let 0 < γ < |f ′(t0)|/2 be
given. There is a 0 < δ < 1

2 t0 such that∣∣F(t0 + h) − F(t0) − f (t0)h − 1
2f ′(t0)h2∣∣ ≤ 1

2γ h2(A.5)

for |h| ≤ 2δ. From the proof of Proposition 2.4, using arguments similar to deriving
(A.3) and (A.4), we can show that

|(Fn − F)(t0 + h) − (Fn − F)(t0)| < 1
2γ h2 + Cn−2/3

for |h| ≤ 2δ with probability at least 1 − ε for sufficiently large n. Therefore, by
adding and subtracting F(t0 + h) − F(t0) and using (A.5),∣∣Fn(t0 + h) − Fn(t0) − f (t0)h − 1

2f ′(t0)h2∣∣ ≤ γ h2 + Cn−2/3(A.6)

for |h| ≤ 2δ with probability at least 1 − ε for large n.
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Next, consider F̃n. Let Bn denote the event that (A.6) holds. Then P(Bn) is
eventually larger than 1 − ε and on Bn, we have

Fn(t0 + h) − Fn(t0) − f (t0)h ≤ {
γ − 1

2 |f ′(t0)|}h2 + Cn−2/3

for |h| ≤ 2δ. Let En be the event that F̃n(h) = L[t0−2δ,t0+2δ]Fn(h) for h ∈ [t0 −
δ, t0 + δ]. Then by Lemma 2.3, P(En) ≥ 1 − ε, for all sufficiently large n. Taking
concave majorants on either side of the above display for |h| ≤ 2δ and noting
that the right-hand side of the display is already concave, we have: F̃n(t0 + h) −
Fn(t0) − f (t0)h ≤ {γ − 1

2 |f ′(t0)|}h2 + Cn−2/3, for |h| ≤ δ on Bn ∩ En. Setting
h = 0 shows that on En ∩Bn, F̃n(t0)−Fn(t0) ≤ Cn−2/3. Now, as Fn(t0) ≤ F̃n(t0),
it is also the case that on En ∩ Bn, for |h| ≤ δ,

F̃n(t0 + h) − F̃n(t0) − f (t0)h ≤ {
γ − 1

2 |f ′(t0)|}h2 + Cn−2/3.(A.7)

Furthermore on En ∩ Bn,

F̃n(t0 + h) − F̃n(t0) − f (t0)h − 1
2f ′(t0)h2

≥ Fn(t0 + h) − {Fn(t0) + Cn−2/3} − f (t0)h − 1
2f ′(t0)h2(A.8)

≥ −γ h2 − 2Cn−2/3.

Therefore, combining (A.7) and (A.8),∣∣F̃n(t0 + h) − F̃n(t0) − f (t0)h − 1
2f ′(t0)h2∣∣ ≤ γ h2 + 2Cn−2/3

for |h| ≤ δ with probability at least 1 − 2ε for large n. �
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MR0267677
ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order Restricted Statistical Infer-

ence. Wiley, New York. MR0961262
ROUSSEEUW, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.

MR0770281
SHAO, J. and TU, D. (1995). The Jackknife and Bootstrap. Springer, New York. MR1351010
SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.

Wiley, New York. MR0838963
SINGH, K. (1981). On asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187–1195.

MR0630102
VAN DER VAART, A. W. and WELLNER, J. A. (2000). Weak Convergence and Empirical Processes.

Springer, New York.
WANG, X. and WOODROOFE, M. (2007). A Kiefer Wolfowitz comparison theorem for Wicksell’s

problem. Ann. Statist. 35 1559–1575. MR2351097

B. SEN

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

1255 AMSTERDAM AVENUE

NEW YORK, NEW YORK 10027
USA
E-MAIL: bs2528@columbia.edu
URL: http://www.stat.columbia.edu/~bodhi

M. BANERJEE

M. WOODROOFE

DEPARTMENT OF STATISTICS

UNIVERSITY OF MICHIGAN

1085 SOUTH UNIVERSITY

ANN ARBOR, MICHIGAN 48109-1107
USA
E-MAIL: moulib@umich.edu

michaelw@umich.edu
URL: http://www.stat.lsa.umich.edu/~moulib

http://www.stat.lsa.umich.edu/~michaelw

http://www.ams.org/mathscinet-getitem?mr=1041391
http://www.ams.org/mathscinet-getitem?mr=0375412
http://www.ams.org/mathscinet-getitem?mr=2462212
http://www.ams.org/mathscinet-getitem?mr=2328306
http://www.ams.org/mathscinet-getitem?mr=2267708
http://www.ams.org/mathscinet-getitem?mr=0203748
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.stat.yale.edu/~pollard/1984book/pollard1984.pdf
http://www.ams.org/mathscinet-getitem?mr=0762984
http://www.ams.org/mathscinet-getitem?mr=0267677
http://www.ams.org/mathscinet-getitem?mr=0961262
http://www.ams.org/mathscinet-getitem?mr=0770281
http://www.ams.org/mathscinet-getitem?mr=1351010
http://www.ams.org/mathscinet-getitem?mr=0838963
http://www.ams.org/mathscinet-getitem?mr=0630102
http://www.ams.org/mathscinet-getitem?mr=2351097
mailto:bs2528@columbia.edu
http://www.stat.columbia.edu/~bodhi
mailto:moulib@umich.edu
mailto:michaelw@umich.edu
http://www.stat.lsa.umich.edu/~moulib
http://www.stat.lsa.umich.edu/~michaelw
http://www.stat.yale.edu/~pollard/1984book/pollard1984.pdf

	Introduction
	Uniform convergence
	Convergence of Zn
	Convergence of Deltan
	Remarks on the conditions

	Inconsistency and nonconvergence of the bootstrap
	Generalities
	Bootstrapping from the NPMLE Fn
	Bootstrapping from the EDF
	Performance of the bootstrap methods in finite samples

	Consistent bootstrap methods
	Smoothing Fn
	m out of n bootstrap

	Discussion
	Appendix
	References
	Author's Addresses

