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Abstract

In this paper we study the consistency of different bootstrap procedures
for constructing confidence intervals (CIs) for the unique jump discontinuity
(change-point) in an otherwise smooth regression function in a stochastic de-
sign setting. This problem exhibits nonstandard asymptotics and we argue
that the standard bootstrap procedures in regression fail to provide valid
confidence intervals for the change-point. We propose a version of smoothed
bootstrap, illustrate its remarkable finite sample performance in our simu-
lation study, and prove the consistency of the procedure. The m out of n
bootstrap procedure is also considered and shown to be consistent. We also
provide sufficient conditions for any bootstrap procedure to be consistent in
this scenario.

1 Introduction

Change-point models may arise when a stochastic system is subject to sudden

external influences and are encountered in almost every field of science. In the

simplest form the model considers a random vector X = (Y, Z) satisfying the

following relation:

Y = α01Z≤ζ0 + β01Z>ζ0 + ε, (1)

where Z is a continuous random variable, α0 6= β0 ∈ R, ζ0 ∈ [a, b] ⊂ R and ε is

a continuous random variable, independent of Z with zero expectation and finite

variance σ2 > 0. The parameter of interest is ζ0, the change-point.

Despite its simplicity, model (1) captures the inherent “non-standard” nature of

the problem: The least squares estimator of the change-point ζ0 converges at a

rate of n−1 to a minimizer of a two-sided, compound Poisson process that de-

pends crucially on the entire error distribution, the marginal density of Z, among

other nuisance parameters; see Pons (2003), Kosorok (2008b) (Section 14.5.1, pages
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271–277) or Koul et al. (2003). Therefore, it is not practical to use this limiting

distribution to build CIs for ζ0. Bootstrap methods bypass the estimation of nui-

sance parameters and are generally reliable in
√
n-convergence problems. In this

paper we investigate the performance (both theoretically and through simulation)

of different bootstrap schemes in building CIs for ζ0. We hope that the analysis

of the bootstrap procedures employed in this paper will help illustrate the issues

that arise when the bootstrap is applied in such non-standard problems.

The problem of estimating a jump-discontinuity (change-point) in an otherwise

smooth curve has been under study for at least the last forty years. More recently, it

has been extensively studied in the nonparametric regression and survival analysis

literature; see for instance Gijbels et al. (1999), Dempfle and Stute (2002), Pons

(2003), Kosorok and Song (2007), Lan et al. (2009) and the references therein.

Bootstrap techniques have also been applied in many instances in change point

models. Dümbgen (1991) proposed asymptotically valid confidence regions for

the change-point by inverting bootstrap tests in a one-sample problem. Hǔsková

and Kirch (2008) considered bootstrap CIs for the change-point of the mean in a

time series context. Kosorok and Song (2007) use a form of parametric bootstrap

to estimate the distribution of the estimated change-point in a stochastic design

regression model that arises in survival analysis. Gijbels et al. (2004), in a slightly

different setting, suggested a bootstrap procedure for model (1), but did not give

a complete proof of its validity.

Our work goes beyond those cited above as follows: We present strong theoretical

and empirical evidence to suggest the inconsistency of the two most natural boot-

strap procedures in a regression setup – the usual nonparametric bootstrap (i.e.,

sampling from the empirical cumulative distribution function (ECDF) of (Y, Z),

often also called as bootstrapping “pairs”) and the “residual” bootstrap. The

bootstrap estimators built by both of these methods are the smallest maximizers

of certain stochastic processes. We show that these processes do not have any

weak limit in probability. This fact strongly suggests not only inconsistency but

also the absence of any weak limit for the bootstrap estimators. In addition, we

prove that independent sampling from a smooth approximation to the marginal

of Z and the centered ECDF of the residuals, and the m out of n bootstrap from

the ECDF of (Y, Z) yield asymptotically valid CIs for ζ0. The finite sample per-

formance of the different bootstrap methods shows the superiority of the proposed

smoothed bootstrap procedure. We also develop a series of convergence results

which generalize those obtained in Kosorok (2008b) to triangular arrays of ran-
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dom vectors and can be used to validate the consistency of any bootstrap scheme

in this setup. Moreover, in the process of achieving this we develop convergence

results for stochastic processes with a three-dimensional parameter which are con-

tinuous on the first two arguments and cádlág on the third. In particular, we

prove a version of the argmax continuous mapping theorem for these processes

which may be of independent interest (see Section A.1.1).

Although we develop our results in the setting of (1), our conclusions have broader

implications (as discussed in Section 7). They extend immediately to regression

functions with parametrically specified models on either side of the change-point.

The smoothed bootstrap procedure can also be modified to work in more general

nonparametric settings. Gijbels et al. (1999) consider jump-point estimation in the

more general setup of non-parametric regression and develop two-stage procedures

to build CI for the change-point. In the second stage of their procedure, they

localize to a neighborhood of the change-point and reduce the problem to exactly

that of (1). Lan et al. (2009) consider a two-stage adaptive sampling procedure

to estimate the jump discontinuity. The second stage of their method relies on an

approximate CI for the change-point, and the bootstrap methods developed in this

paper can be immediately used in their context.

The paper is organized in the following manner: In Section 2 we describe the prob-

lem in greater detail, introduce the bootstrap schemes and describe the appropriate

notion of consistency. In Section 3, we prove a series of convergence results that

generalize those obtained in Kosorok (2008b). These results will constitute the

general framework under which the bootstrap schemes will be analyzed. In Sec-

tion 4 we study the inconsistency of the standard bootstrap methods, including

the ECDF and residual bootstraps. In Section 5 we propose two bootstrap proce-

dures and show their consistency. We compare the finite sample performance of

the different bootstrap methods through a simulation study in Section 6. Finally,

in Section 7 we discuss the consequences of our analysis in more general change-

point regression models. Additionally, we include an Appendix with the proofs

and some necessary lemmas and results.

2 The problem and the bootstrap schemes

Assume that we are given an i.i.d. sequence of random vectors {Xn = (Yn, Zn)}∞n=1

defined on a probability space (Ω,A,P) having a common distribution P satisfying

(1) for some parameter θ0 := (α0, β0, ζ0) ∈ Θ := R2 ∪ [a, b]. This is a semi-
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parametric model with an Euclidean parameter θ0 and two infinite-dimensional

parameters – the distributions of Z and ε. We are interested in estimating ζ0, the

change-point. For technical reasons, we will also assume that P(|ε|3) < ∞. Here,

and in the remaining of the paper, we take the convention that for any probability

distribution µ, we will denote the expectation operator by µ(·). In addition, we

suppose that Z has a uniformly bounded, strictly positive density f (with respect

to the Lebesgue measure) on [a, b] such that inf |z−ζ0|≤η f(z) > κ > 0 for some η > 0

and that P(Z < a) ∧ P(Z > b) > 0. For θ = (α, β, ζ) ∈ Θ, x = (y, z) ∈ R2 write

mθ (x) := − (y − α1z≤ζ − β1z>ζ)2 , (2)

Pn for the empirical measure defined by X1, . . . , Xn,

Mn (θ) := Pn (mθ) = − 1

n

n∑
i=1

(Yi − α1Zi≤ζ + β1Zi>ζ)
2 , (3)

and M (θ) := P (mθ). The function Mn is strictly concave in its first two coordi-

nates but càdlàg (right continuous with left limits) in the third; in fact, piecewise

constant and with n jumps (w.p. 1). Thus, Mn has unique maximizing values of

α and β, but an entire interval of maximizers for ζ. For this reason, we define the

least squares estimator of θ0 to be the maximizer of Mn over Θ with the smallest

ζ, and denote it by

θ̂n := (α̂n, β̂n, ζ̂n) = sargmax
θ∈Θ

{Mn(θ)} ,

where sargmax stands for the smallest argmax. At this point we would like to

clarify what we mean by a maximizer: if W is a càdlàg process on an interval I,

a point x ∈ I is said to be a maximizer if W (x) ∨W (x−) = sup {W (s) : s ∈ I}.
In the context of our problem, (α, β, ζ) is a maximizer of Mn if Mn (α, β, ζ) ∨
Mn (α, β, ζ−) = sup {Mn(θ) : (θ) ∈ Θ}.
The asymptotic properties of this least squares estimator are well known. It is

shown in Kosorok (2008b), pages 271–277, that
√
n(α̂n − α0) = OP (1),

√
n(β̂n −

β0) = OP (1) and n(ζ̂n − ζ0) = OP (1). It is also shown that the asymptotic

distribution of n(ζ̂n − ζ0) is that of the smallest argmax of a two-sided compound

Poisson process. However, the limiting process depends on the distribution of ε

and the value of the density of Z at ζ0. Thus, there is no straightforward way to

build CIs for ζ0 using this limiting distribution. In this connection we investigate

the performance of bootstrap procedures for constructing CIs for ζ0.

4



2.1 Bootstrap

We start with a brief review of the bootstrap. Given a sample Wn = {W1,W2, . . . ,

Wn}
iid∼ L from an unknown distribution L, suppose that the distribution func-

tion Hn of some random variable Rn ≡ Rn(Wn, L) is of interest; Rn is usually

called a root and it can in general be any measurable function of the data and the

distribution L. The bootstrap method can be broken into three simple steps:

(i) Construct an estimator L̂n of L from Wn.

(ii) Generate W∗
n = {W ∗

1 , . . . ,W
∗
mn}

iid∼ L̂n given Wn.

(iii) Estimate Hn by Ĥn, the conditional CDF of Rn(W∗
n, L̂n) given Wn.

Let d denote the Prokhorov metric or any other metric metrizing weak convergence

of probability measures. We say that Ĥn is weakly consistent if d(Hn, Ĥn)
P→ 0;

if Hn has a weak limit H, this is equivalent to Ĥn converging weakly to H in

probability. Similarly, Ĥn is strongly consistent if d(Hn, Ĥn)
a.s.→ 0.

The choice of L̂n mostly considered in the literature is the ECDF. Intuitively,

an L̂n that mimics the essential properties (e.g., smoothness) of the underlying

distribution L can be expected to perform well. Despite being a good estimator in

most situations, the ECDF can fail to capture some properties of L that may be

crucial for the problem under consideration. This is especially true for nonstandard

problems. In Section 4 we illustrate this phenomenon (the inconsistency of the

ECDF bootstrap) when n(ζ̂n − ζ0) is the random variable (root) of interest.

We denote by X = σ ((Xn)∞n=1) the σ-algebra generated by the sequence (Xn)∞n=1

and write PX (·) = P (· |X) and EX (·) = E (· |X). We approximate the CDF

of ∆n = n(ζ̂n − ζ0) by PX (∆∗n ≤ x), the conditional distribution function of

∆∗n = mn(ζ∗n − ζ̂n) and use this to build a CI for ζ0, where ζ∗n is the least squares

estimator of ζ0 obtained from the bootstrap sample. In the following we introduce

four bootstrap schemes that arise naturally in this problem and investigate their

consistency properties in Sections 4 and 5.

Scheme 1 (ECDF bootstrap): Draw a bootstrap sample (Y ∗n,1, Z
∗
n,1), . . . , (Y ∗n,n, Z

∗
n,n)

from the ECDF of (Y1, Z1), . . . , (Yn, Zn); probably the most widely used bootstrap

scheme.

Scheme 2 (Bootstrapping residuals): This is another widely used bootstrap

procedure in regression models. We first obtain the residuals

ε̂n,j := Yj − α̂n1Zj≤ζ̂n − β̂n1Zj>ζ̂n for j = 1, . . . , n,
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from the fitted model. Note that these residuals are not guaranteed to have mean

0, so we work with the centered residuals, ε̂n,1 − ε̄n, . . . , ε̂n,n − ε̄n, where ε̄n =∑n
j=1 ε̂n,j/n. Letting Pεn denote the empirical measure of the centered residuals,

we obtain the bootstrap sample (Y ∗n,1, Z1), . . . , (Y ∗n,n, Zn) as:

1. Sample ε∗n,1, . . . , ε
∗
n,n independently from Pεn.

2. Fix the predictors Zj, j = 1, . . . , n, and define the bootstrapped responses

at Zj as Y ∗n,j = α̂n1Zj≤ζ̂n + β̂n1Zj>ζ̂n + ε∗n,j.

Scheme 3 (Smoothed bootstrap): Notice that in (1), Z is assumed to have a

density and it also arises in the limiting distribution of ∆n. A successful bootstrap

scheme must mimic this underlying assumption, and we accomplish this in the

following:

1. Choose an appropriate nonparametric smoothing procedure (e.g., kernel den-

sity estimation) to build a distribution F̂n with a density f̂n such that

‖F̂n − F‖∞
a.s.→ 0 and f̂n → f uniformly on some open interval around ζ0

w.p. 1, where f is the density of Z.

2. Get i.i.d. replicates Z∗n,1, . . . , Z
∗
n,n from F̂n and sample, independently, ε∗n,1, . . . , ε

∗
n,n

from Pεn.

3. Define Y ∗n,j = α̂n1Z∗n,j≤ζ̂n
+ β̂n1Z∗n,j>ζ̂n

+ ε∗n,j for all j = 1, . . . , n.

Scheme 4 (m out of n bootstrap): A natural alternative to the usual nonpara-

metric bootstrap (i.e., generating bootstrap samples from the ECDF) considered

widely in non-regular problems is to use the m out of n bootstrap. We choose

a nondecreasing sequence of natural numbers {mn}∞n=1 such that mn = o(n) and

mn → ∞ and generate the bootstrap sample (Y ∗n,1, Z
∗
n,1), . . . , (Y ∗n,mn , Z

∗
n,mn) from

the ECDF of (Y1, Z1), . . . , (Yn, Zn). Although there are a number of methods avail-

able for choosing the mn in applications, there is no satisfactory solution to this

problem and the obtained CIs usually vary with changing mn.

We will use the framework established by our convergence theorems in Section 3 to

prove that schemes 3 and 4 above yield consistent bootstrap procedures for building

CIs for ζ0. We will also give strong empirical and theoretical evidence for the in-

consistency of schemes 1 and 2. Note that schemes 1 and 2 are the two most widely

used resampling techniques in regression models (see pages 35-36 of Efron (1982);
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also see Freedman (1981) and Wu (1986)). Thus in this change–point scenario, a

typical nonstandard problem, we see that the two standard bootstrap approaches

fail. The failure of the usual bootstrap methods in nonstandard situations is not

new and has been investigated in the context of M-estimation problems by Bose

and Chatterjee (2001) and in situations giving rise to n1/3 asymptotics by Abrevaya

and Huang (2005) and Sen et al. (2008). But the change-point problem considered

in this paper is indeed quite different from the nonstandard problems considered

by the above authors – one key distinction being that compound Poisson processes,

as opposed to Gaussian processes, form the backbone of the asymptotic distribu-

tions of the estimators – and thus demands an independent investigation. We will

also see later that the performance of scheme 3 clearly dominates that of the m

out of n bootstrap procedure (scheme 4), the general recipe proposed in situations

where the usual bootstrap does not work (see Lee and Pun (1981) for applications

of the m out of n bootstrap procedure in some nonstandard problems). Also note

that the performance of the m out of n bootstrap scheme crucially depends on m

(see e.g., Bickel et al. (1997)) and the choice of this tuning parameter is tricky in

applications.

3 A uniform convergence result

In this section we generalize the results obtained in Kosorok (2008b), pages 271–

277, to a triangular array of random variables. Consider the triangular array

{Xn,k = (Yn,k, Zn,k)}n∈N
1≤k≤mn defined on a probability space (Ω,A,P), where (mn)∞n=1

is a nondecreasing sequence of natural numbers such that mn → ∞. Throughout

the entire paper we will always denote by E the expectation operator with respect

to P. Furthermore, assume that for each n ∈ N, (Xn,1, . . . , Xn,mn) constitutes a

random sample from an arbitrary bivariate distribution Qn with Qn(Y 2
n,1) <∞ and

let Mn(θ) := Qn(mθ) for all θ ∈ Θ, where mθ is defined in (2). Let P be a bivariate

distribution satisfying (1). Recall that M(θ) := P(mθ) and θ0 := sargmaxM(θ).

Let θn := (αn, βn, ζn) be given by

θn = sargmax
θ∈Θ

{Qn(mθ)}.

Note that Qn need not satisfy model (1) with (αn, βn, ζn). The existence of θn

is guaranteed as Qn(mθ) is a quadratic function in α and β (for a fixed ζ) and

bounded and cádlág as a function in ζ. For each n, let P∗n be the empirical measure

produced by the random sample (Xn,1, . . . , Xn,mn), and define the least squares
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estimator θ∗n = (α∗n, β
∗
n, ζ
∗
n) ∈ Θ to be the smallest argmax of M∗

n(θ) := P∗n(mθ). If

Q is a signed Borel measure on R2 and F is a class of (possibly) complex-valued

functions defined on R2, write ‖Q‖F := sup {|Q(f)| : f ∈ F}. If g : K ⊂ R3 → R
is a bounded function, write ‖g‖K := supx∈K |g(x)|. Also, for (z, y) ∈ R2 and

n ∈ N we write

ε̃n := ε̃n (z, y) = y − αn1z≤ζn − βn1z>ζn . (4)

Let M > 0 be such that |αn| ≤ M for all n. We define the following three classes

of functions from R2 into R:

F := {1I (z) : I ⊂ R is an interval} ,

G := {yf(z) : f ∈ F} ∪ {|y + α|f(z) : f ∈ F , |α| ≤M} ,

H := {y2f(z) : f ∈ F}.

In what follows, we will derive conditions on the distributions Qn that will guar-

antee consistency and weak convergence of θ∗n.

3.1 Consistency and the rate of convergence

We provide first a consistency result for the least squares estimator, whose proof

we include in the Appendix (see Section A.2.1). To this end, we consider the

following set of assumptions:

(I) ‖Qn − P‖F → 0,

(II) ‖Qn − P‖G → 0,

(III) ‖Qn − P‖H → 0,

(IV) θn → θ0.

Proposition 3.1 Assume that (I)-(IV) hold. Then, θ∗n
P−→ θ0.

To guarantee the right rate of convergence, we need to assume stronger regularity

conditions. In addition to those of Proposition 3.1, we require the following:

(V) There are η, ρ, L > 0 with the property that for any δ ∈ (0, η), there is N > 0
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such that the following inequalities hold for any n ≥ N :

inf
1√
mn
≤|ζ−ζn|<δ2

{
1

|ζ − ζn|
Qn(1ζ∧ζn<Z≤ζ∨ζn)

}
> ρ, (5)

sup
|ζ−ζn|<δ2

{|Qn(ε̃n1ζ∧ζn<Z≤ζ∨ζn)|} ≤ Lδ
√
mn

, (6)

sup
|ζ−ζn|<δ2

{|Qn(ε̃n1Z≤ζ∧ζn)|+ |Qn(ε̃n1Z>ζ∨ζn)|} ≤ L
√
mn

. (7)

With the aid of these conditions, Proposition 3.1 and Theorem 3.4.1, page 322, of

Van der Vaart and Wellner (1996) we can now state and prove (see Section A.2.2)

the rate of convergence result.

Proposition 3.2 Assume that (I)-(V) hold. Then
√
mn(α∗n − αn) = OP (1),

√
mn(β∗n − βn) = OP (1) and mn(ζ∗n − ζn) = OP (1).

Propositions 3.1 and 3.2 provide sufficient conditions on the measures Qn, the

distribution of each element in the nth row of the triangular array, to achieve the

same rate of convergence as the original least squares estimators. We would like

to highlight that we are not assuming that each Qn satisfy the model (1) with

(αn, βn, ζn); all we need is that Qn and θn approach P and θ0 respectively, in a

suitable manner.

3.2 Weak Convergence and asymptotic distribution

We start with some additional set of assumptions:

(VI) For any function ψ : R→ C which is either of the form ψ(x) = eiξx for some

ξ ∈ R or defined by ψ(x) = |x|p for p = 1, 2, we have:

mnQn

(
ψ(ε̃n)1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ f(ζ0)(δ + η)P (ψ(ε)) ∀ η, δ > 0.

(VII)
√
mnQn(ε̃n1Z≤ζn)→ 0 and

√
mnQn(ε̃n1Z>ζn)→ 0.

(VIII) limn→∞Qn(|ε̃n|3) <∞.

Observe that condition (VI) implies, for all η, δ > 0, and p = 1, 2,

√
mnQn

(
|ε̃n|p1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ 0, (8)

√
mnQn

(
1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ 0. (9)
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For h = (h1, h2, h3) ∈ R3, let ϑn,h := θn +
(

h1√
mn
, h2√

mn
, h3

mn

)
and

Ên(h) := mnP∗n
[
mϑn,h −mθn

]
.

We will argue that

h∗n := sargmin
h∈R3

Ên(h) = (
√
mn(α∗n − αn),

√
mn(β∗n − βn),mn(ζ∗n − ζn))

converges in distribution to the smallest argmax of some process involving two

independent normal random variables and a two-sided, compound Poisson process

(independent of the normal variables).

We derive the asymptotic distribution of the process Ên and then apply continuous

mapping techniques to obtain the limiting distribution of h∗n. We consider these

stochastic processes as random elements in the space DK , for a given compact

rectangle K ⊂ R3, of all functions W : K → R having “quadrant limits” (as

defined in Neuhaus (1971)), being continuous from above (again, in the terminology

of Neuhaus (1971)) and such that W (·, ·, ζ) is continuous for all ζ and W (α, β, ·)
is càdlàg (right continuous having left limits) for all (α, β). Write D = DR3 . For

any compact interval I ⊂ R let

ΛI = {λ : I → I |λ is strictly increasing, surjective and continuous}

and write

‖λ‖ := sup
s 6=t∈I

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ .
Then, for any set of the form K = A×I with A ⊂ R2 define the Skorohod topology

as the topology given by the metric

dK (Ψ,Γ) := inf
λ∈ΛI

{
sup

(α,β,ζ)∈K
{|Ψ (α, β, ζ)− Γ (α, β, λ(ζ))|}+ ‖λ‖

}

for Γ,Ψ ∈ DK . Endowed with this metric, DK becomes a Polish space (it is a

closed subspace of the Polish spaces Dk defined in Neuhaus (1971)) and thus the

existence of conditional probability distributions for its random elements is ensured

(see Dudley (2002), Theorem 10.2.2 page 345). Also, let D̃I , I ⊂ R, denote the

space of real valued càdlàg functions on I. We refer the reader to Section A.1 for

some results about the Skorohod space.
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We express the process Ên as the sum of the four terms Ân, B̂n, Ĉn and D̂n where

Ân(h1, h3) := 2h1

√
mnP∗n

(
ε̃n1Z≤ζn∧(ζn+

h3
mn

)

)
− h2

1P∗n
(
1
Z≤ζn∧(ζn+

h3
mn

)

)
,

B̂n(h2, h3) := 2h2

√
mnP∗n

(
ε̃n1Z>ζn∨(ζn+

h3
mn

)

)
− h2

2P∗n
(
1
Z>ζn∨(ζn+

h3
mn

)

)
,

Ĉn(h2, h3) := −2mn

(
αn − βn +

h2√
mn

)
P∗n
(
ε̃n1ζn+

h3
mn

<Z≤ζn

)
− mn

(
αn − βn +

h2√
mn

)2

P∗n
(
1
ζn+

h3
mn

<Z≤ζn

)
,

D̂n(h1, h3) := −2mn

(
βn − αn +

h1√
mn

)
P∗n
(
ε̃n1ζn<Z≤ζn+

h3
mn

)
− mn

(
βn − αn +

h1√
mn

)2

P∗n
(
1
ζn<Z≤ζn+

h3
mn

)
.

We define another process E∗n := A∗n +B∗n + C∗n +D∗n where

A∗n(h1) := 2h1

√
mnP∗n (ε̃n1Z≤ζn)− h2

1P∗n (1Z≤ζn) ,

B∗n(h2) := 2h2

√
mnP∗n (ε̃n1Z>ζn)− h2

2P∗n (1Z>ζn) ,

C∗n(h3) := −2mn(αn − βn)P∗n
(
ε̃n1ζn+

h3
mn

<Z≤ζn

)
− mn(αn − βn)2P∗n

(
1
ζn+

h3
mn

<Z≤ζn

)
,

D∗n(h3) := −2mn(βn − αn)P∗n
(
ε̃n1ζn<Z≤ζn+

h3
mn

)
− mn(βn − αn)2P∗n

(
1
ζn<Z≤ζn+

h3
mn

)
.

We work with E∗n instead of Ên as their difference approaches uniformly to 0

in probability, as shown in the next lemma (proved in Section A.2.3), and the

asymptotic distribution of E∗n is easier to derive.

Lemma 3.1 Let K ⊂ R3 be a compact rectangle. If conditions (I)-(IV) and (8)

and (9) hold, then ∥∥∥E∗n − Ên∥∥∥
K

P−→ 0.

Therefore, E∗n − Ên
P−→ 0 as random elements of DK. In particular, this result is

true under conditions (I)-(IV) and (VI).

As a first step to finding the asymptotic distribution of (E∗n)∞n=1, we show that

the random sequence is tight in the Skorohod space DK for any compact rectangle

K ⊂ R3. The proof of the next result is given in Section A.2.4.
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Lemma 3.2 Let I ⊂ R be a compact interval and assume that conditions (I)-

(VIII) hold. Then, the sequence of R6-valued processes

Ξn(t) :=



√
mnP∗n(ε̃n1Z≤ζn)
√
mnP∗n(ε̃n1Z>ζn)

mnP∗n(1ζn+ t
mn

<Z≤ζn)

mnP∗n(ε̃n1ζn+ t
mn

<Z≤ζn)

mnP∗n(1ζn<Z≤ζn+ t
mn

)

mnP∗n(ε̃n1ζn<Z≤ζn+ t
mn

)


(10)

is uniformly tight in R2×D̃4
I . Also, if K ⊂ R3 is a compact rectangle, the sequence

(E∗n)∞n=1 is uniformly tight in DK.

It now suffices to show convergence of the finite-dimensional distributions of the

processes E∗n to the finite dimensional distributions of some process E∗ ∈ DK to

conclude that E∗n converges weakly to E∗ (and thus Ên too). With this objective

in mind, we make the following definitions: Let Z1 ∼ N (0, σ2P(Z ≤ ζ0)) and Z2 ∼
N (0, σ2P(Z > ζ0)) be two independent normal random variables; ν1 and ν2 be,

respectively, left-continuous and right-continuous, homogeneous Poisson processes

with rate f(ζ0) > 0; u = (un)∞n=1 and v = (vn)∞n=1 two sequences of i.i.d. random

variables having the same distribution as ε under P. Assume, in addition, that

Z1, Z2, ν1, ν2, v and u are all mutually independent. Then, define the process

Ξ = (Ξ(1), . . . ,Ξ(6))′ as

Ξ(t) :=



Z1

Z2

ν1(−t)1t<0∑
0<j≤ν1(−t) vj1t<0

ν2(t)1t≥0∑
0<j≤ν2(t) uj1t≥0


(11)

and let E∗ be given by

E∗(h) := 2h1Ξ(1)(h3)− h2
1P(Z ≤ ζ0) + 2h2Ξ(2)(h3)− h2

2P(Z > ζ0)

+ 2(β0 − α0)Ξ(4)(h3)− (α0 − β0)2Ξ(3)(h3)

+ 2(α0 − β0)Ξ(6)(h3)− (α0 − β0)2Ξ(5)(h3) (12)

for h = (h1, h2, h3) ∈ R3.

12



We will now prove weak convergence of the sequence of processes (Ên)∞n=1 to E∗,

and then use a continuous mapping theorem for the smallest argmax functional (see

Lemma A.3) to obtain weak convergence of h∗n := sargmax Ên(h). The application

of Lemma A.3 requires the weak convergence of processes (Ên)∞n=1 to E∗ and also

the weak convergence of their associated jump processes. Let S be the class of all

piecewise constant, cádlág functions ψ̃ : R→ R that are continuous on the integers

with ψ̃(0) = 0; ψ̃ has jumps of size 1, and ψ̃(−t) and ψ̃(t) are nondecreasing on

(0,∞). For an interval I containing 0 in its interior, we write SI = {f |I : f ∈ S}.
Define the S–valued (pure jump) processes Ĵn, J∗n and J∗ as

J∗n(t) = Ĵn(t) := mnP∗n(1ζn+ t
mn

<Z≤ζn) +mnP∗n(1ζn<Z≤ζn+ t
mn

),

J∗(t) := ν1(−t)1t<0 + ν2(t)1t≥0.

Lemma 3.3 Let I ⊂ R be a compact interval and K = A×B× I ⊂ R3 a compact

rectangle. If (I)-(VIII) hold, we have

(i) Ξn  Ξ in R2 × D̃4
I ,

(ii) (E∗n, J
∗
n) (E∗, J∗) in DK × SI ,

(iii) (Ên, Ĵn) (E∗, J∗) in DK × SI ,

where  denotes weak convergence.

For a proof of the convergence result, see Section A.2.5.

To apply the argmax continuous mapping theorem we first show that the the

smallest argmax of E∗ is well defined. The proof of the next lemma is provided in

Section A.2.6.

Lemma 3.4 Consider the process E∗ defined in (12). Then, for almost every

sample path of E∗, φ∗ = (φ∗1, φ
∗
2, φ
∗
3) := sargmax

h∈R3

{E∗(h)} is well-defined. Moreover,

φ∗1, φ∗2 and φ∗3 are independent; and φ∗1 and φ∗2 are distributed as normal random

variables with mean 0 and variances σ2/P(Z ≤ ζ0) and σ2/P(Z > ζ0), respectively.

We now state the distributional convergence result for the sequence of least squares

estimator θ∗n. For a proof, we refer the reader to Section A.2.7.
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Proposition 3.3 With the notation of Lemma 3.4, if conditions (I)-(VIII) hold,

then

h∗n =


√
mn(α∗n − αn)
√
mn(β∗n − βn)

mn(ζ∗n − ζn)

 sargmax
h∈R3

{E∗(h)}.

If we take Qn = P and mn = n ∀n ∈ N, it is easily seen that θn = θ0 and conditions

(I)-(VIII) hold. Hence, we immediately get the following corollary.

Corollary 3.1 (Asymptotic distribution of the least squares estimators)

For the least squares estimators (α̂n, β̂n, ζ̂n) based on an i.i.d. sequence (Xn)∞n=1

satisfying (1), we have

(
√
n(α̂n − α0),

√
n(β̂n − β0), n(ζ̂n − ζ0))′  sargmax

h∈R3

{E∗(h)}.

4 Inconsistency of the bootstrap

In this section we argue the inconsistency of the two most common bootstrap pro-

cedures in regression: the ECDF bootstrap (scheme 1) and the residual bootstrap

(scheme 2). Recall the notation and definitions in the beginning of Section 2. In

particular, note that we have i.i.d. random vectors {Xn = (Yn, Zn)}∞n=1 from (1)

with parameter θ0 defined on a probability space (Ω,A,P) and let Pn be the em-

pirical distribution of the first n data points. We start by stating two results that

will be used in the sequel. We first show that the least squares estimator θ̂n of θ0

is strongly consistent. This is an improvement of the result obtained in Kosorok

(2008b) and we refer the reader to Section A.2.8 for a complete proof. The proof

of the second lemma can be found in Section A.2.9.

Lemma 4.1 Let K ⊂ Θ be any compact rectangle. Then,

(i) ‖Mn −M‖K
a.s.−→ 0,

(ii) Mn
a.s.−→M in DK,

(iii) θ̂n
a.s.−→ θ0.

Lemma 4.2 Let K ⊂ R be a compact interval and (mn)∞n=1 be an increasing

sequence of natural numbers such that mn →∞ and mn = O(n). Then,

(i) mγ
n

∥∥∥Pn(ζ̂n + (·)
mn

< Z ≤ ζ̂n)
∥∥∥
K

P−→ 0 for any γ < 1, and
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(ii) mγ
n

∥∥∥Pn (|ε̃n|p1ζ̂n+
(·)
mn

<Z≤ζ̂n

)∥∥∥
K

P−→ 0 for any γ < 1, and p = 1,2.

These statements are still true if 1
ζ̂n+

(·)
mn

<Z≤ζ̂n is replaced by 1
ζ̂n<Z≤ζ̂n+

(·)
mn

.

We introduce some notation. Let (X, d) be a metric space and consider the X-valued

random elements V and (Vn)∞n=1 defined on (Ω,A,P). We say that Vn converges

conditionally in probability to V , almost surely, and write Vn
PX−→
a.s. V , if

PX(d(Vn, V ) > ε)
a.s.−→ 0 ∀ ε > 0. (13)

Similarly, we write Vn
PX−→
P V and say that Vn converges conditionally in probability

to V , in probability, if the left–hand side of (13) converges in probability to 0.

4.1 Scheme 1 (Bootstrapping from ECDF)

Consider the notation and definitions of Section 2.1. To translate this scheme into

the framework of Propositions 3.1, 3.2 and 3.3, we set mn = n, Qn = Pn and

consider the triangular array
{
X∗n,k = (Y ∗n,k, Z

∗
n,k)
}n∈N

1≤k≤n. Moreover, from Lemma

4.1 we know that θ̂n
a.s.−→ θ0, so we can also take θn = θ̂n. We first prove that the

bootstrapped estimators converge conditionally in probability to the true value of

the parameters, almost surely.

Proposition 4.1 For the ECDF bootstrap, we have θ∗n
PX−→
a.s. θ0.

Proof: Since Y has a second moment under P, it is straightforward to see that

F , G and H are VC-subgraph classes with integrable envelopes 1, |Y |+M and Y 2,

respectively. It follows that all these classes are Glivenko–Cantelli and therefore

conditions (I)-(III) hold w.p. 1. Also, note that, from Lemma 4.1 (iii) condition

(IV) holds a.s. The result then follows from Proposition 3.1. �

Let P∗n be the ECDF of X∗n,1, . . . , X
∗
n,n and recall the definition of the processes

Ân, B̂n, Ĉn, D̂n, Ên, A∗n, B∗n, C∗n, D∗n and E∗n. We then have the following result.

Lemma 4.3 Let K ⊂ R3 be any compact rectangle. Then

Ên − E∗n
PX−→
P 0 in DK .

Proof: We already know that conditions (I)-(IV) hold w.p. 1 under this bootstrap

scheme. But Lemma 4.2 implies that (8) and (9) hold in probability. Hence, this
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result follows by arguing through subsequences and applying Lemma 3.1. �

It is evident that condition (VI) doesn’t hold in this situation as we know that

nPn(ζ0 −
η

n
< Z ≤ ζ0 +

δ

n
) Poisson

(
f(ζ0)(δ + η)

)
. (14)

Hence, we cannot use Proposition 3.3 to derive the limit behavior of h∗n.

We will now argue that E∗n, and therefore Ên, does not have any weak limit in

probability. This statement should be thought in terms of the Prokhorov metric

(or any other metric metrizing weak convergence on DK). If we denote by ρK

the Prokhorov metric on the space of probability measures on DK and by µn the

conditional distribution of E∗n given X, to say that (E∗n)∞n=1 has no weak limit in

probability means that there is no probability measure µ defined on DK such that

ρK (µn, µ)
P−→ 0.

The following lemma (proved in Section A.2.10) will help us show that the (con-

ditional) characteristic functions corresponding to the finite dimensional distribu-

tions of E∗n fail to have a limit in probability, which would, in particular, imply

that E∗n does not have a weak limit in probability.

Lemma 4.4 The following statements hold:

(i) For any two real numbers s < t,
{
nPn(ζ0 + s

n
< Z ≤ ζ0 + t

n
)
}∞
n=1

does not

converge in probability.

(ii) There is h∗ > 0 such that for any h ≥ h∗, the sequences{
nPn(ζ̂n < Z ≤ ζ̂n + h

n
)
}∞
n=1

and
{
nPn(ζ̂n − h

n
< Z ≤ ζ̂n)

}∞
n=1

do not con-

verge in probability.

(iii) For any two real numbers s < t and any measurable function φ : R → R,{
nPn(φ(Y )1ζ0+ s

n
<Z≤ζ0+ t

n
)
}∞
n=1

does not converge in probability.

(iv) Let φ be a measurable function which is either nonnegative or nonpositive

and such that φ(ε+α0) and φ(ε+β0) are nonconstant random variables with

finite second moment. Then, there is h∗ > 0 such that for any h ≥ h∗{
nPn(φ(Y )1ζ̂n<Z≤ζ̂n+ h

n
)
}∞
n=1

and
{
nPn(φ(Y )1ζ̂n− hn<Z≤ζ̂n

)
}∞
n=1

do not con-

verge in probability.

With the aid of Lemma 4.4 we are now able to state our main result.

Lemma 4.5 There is a compact rectangle K ⊂ R3 such that neither Ên nor E∗n

has a weak limit in probability in DK.
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Proof: Since Lemma 4.3 and Slutsky’s lemma show that Ên has a weak limit

in probability if and only if E∗n has a weak limit in probability, it suffices to argue

that the statement is true for E∗n. To prove this, it is enough to show that there is

some h3 such that E∗n(0, 0, h3) does not converge in distribution. Pick h3 > 0 and

observe that

E∗n(0, 0, h3) = (α̂n − β̂n)
(
nP∗n

[
(2ε̃n − α̂n + β̂n)1

ζ̂n<Z≤ζ̂n+
h3
n

])
.

Since α̂n − β̂n
a.s.−→ α0 − β0 6= 0 we see that E∗n(0, 0, h3) will converge weakly

in probability if and only if Λn := nP∗n
[
(2ε̃n − α̂n + β̂n)1

ζ̂n<Z≤ζ̂n+
h3
n

]
converges

weakly in probability.

The conditional characteristic function of Λn is given by

EX

(
eiξΛn

)
=

(
1 +

1

n
nPn

(
(eiξ(2ε̃n+β̂n−α̂n) − 1)1

ζ̂n<Z≤ζ̂n+
h3
n

))n
, (15)

which converges in probability if and only if so does

nPn
(

(eiξ(2ε̃n+β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
.

. But note that

nPn
(

(eiξ(2ε̃n+β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
= nPn

(
(eiξ(2Y−β̂n−α̂n) − 1)1

ζ̂n<Z≤ζ̂n+
h3
n

)
.

It is easily seen that (14) and the fact that n(ζ̂n − ζ0) = OP(1) imply that

nPn
(
1
ζ̂n<Z≤ζ̂n+

h3
n

)
= OP(1).

Hence,∣∣∣nPn
(

(eiξ(2Y−β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
− nPn

(
(eiξ(2Y−β0−α0) − 1)1

ζ̂n<Z≤ζ̂n+
h3
n

)∣∣∣
≤ nPn

(
1
ζ̂n<Z≤ζ̂n+

h3
n

)
(|α̂n − α0|+ |β̂n − β0|)|ξ|

P−→ 0.

It follows that EX

(
eiξΛn

)
has a limit in probability if and only if

nPn
(

(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
has a limit in probability. But a necessary condition for the latter to happen is

that its real part,

nPn
(

Re(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
17



converges in probability. Since Re(eiξ(2Y−β0−α0)−1) ≤ 0 we can conclude from (iv)

of Lemma 4.4 that nPn
(

Re(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h3
n

)
does not converge in

probability for all h3 ≥ h∗ for some h∗ > 0 large enough. This in turn implies that,

for all h3 ≥ h∗, the conditional characteristic function in (15) does not converge in

probability and hence E∗n(0, 0, h3) has no weak limit in probability.

Hence, if K is any compact rectangle containing (0, 0, h∗) the finite dimensional

dimensional distributions of E∗n on K do not have a weak limit in probability.

Therefore, E∗n does not have a weak limit in probability on DK . �

Note that(√
n(α∗n − α̂n),

√
n(β∗n − β̂n), n(ζ∗n − ζ̂n)

)
= sargmax

h∈R3

{
Ên(h)

}
.

Thus, the fact that the sequence (Ên)∞n=1 doesn’t have a weak limit in probability

makes the existence of a weak limit in probability for n(ζ∗n − ζ̂n) very unlikely.

However, we do not have the a rigorous mathematical proof this statement. The

main difficulty in such a proof is that the argmax functional is non-linear and that

Ên depends on h3 through indicator functions that do not converge in the limit.

Remark: It must be noted in this connection that the bootstrap scheme estimates

the distribution of (
√
n(α∗n − α̂n),

√
n(β∗n − β̂n)) correctly, and in fact, valid boot-

strap based inference can be conducted to obtain CIs for α0 and β0. This follows

from the fact that, asymptotically, the maximizers of Ên(·, ·, h3) do not depend on

h3 (see the expressions for Â∗n, B̂n, A∗n, B∗n).

We next provide an alternative additional argument that illustrates the inconsis-

tency of the ECDF bootstrap. Our approach is similar to that of Kosorok (2008a)

and relies on the asymptotic unconditional behavior of

∆̃∗n := (
√
n(α∗n − α0),

√
n(β∗n − β0), n(ζ∗n − ζ0)).

For h ∈ R3, we write ϑ̃n,h := θ0 +
(
h1√
n
, h2√

n
, h3

n

)
and

Ẽn(h) := nP∗n
[
mϑ̃n,h

−mθ0

]
. (16)
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This corresponds to centering the objective function around θ0. As in (10), we can

define the processes

Ξ̃n(t) =



Ξ̃
(1)
n (t)

Ξ̃
(2)
n (t)

Ξ̃
(3)
n (t)

Ξ̃
(4)
n (t)

Ξ̃
(5)
n (t)

Ξ̃
(6)
n (t)


:=



√
nP∗n(ε1Z≤ζ0)√
nP∗n(εn1Z>ζ0)

nP∗n(1ζ0+ t
n
<Z≤ζ0)

nP∗n(ε1ζ0+ t
n
<Z≤ζ0)

nP∗n(1ζ0<Z≤ζ0+ t
n
)

nP∗n(ε1ζ0<Z≤ζ0+ t
n
)


(17)

and just as in that case, we can also define the process Ẽ∗n by

Ẽ∗n(h) := 2h1Ξ̃(1)
n (h3)− h2

1P∗n(Z ≤ ζ0) + 2h2Ξ̃(2)
n (h3)− h2

2P∗n(Z > ζ0)

+ 2(β0 − α0)Ξ̃(4)
n (h3)− (α0 − β0)2Ξ̃(3)

n (h3)

+ 2(α0 − β0)Ξ̃(6)
n (h3)− (α0 − β0)2Ξ(5)

n (h3).

Then, it can be shown that Ẽn−Ẽ∗n
P−→ 0 in DK for any compact rectangle K ⊂ R3

and that the sequence (Ẽ∗n)∞n=1 is tight in DK .

In what follows we will describe the limiting distribution of Ẽ∗n, namely Ẽ∗, and

show that the (unconditional) asymptotic distribution of ∆̃∗n is that of the small-

est argmax of Ẽ∗. This result will help us show that the ECDF bootstrap is

inconsistent.

We start by introducing some notation. Recall the definitions of the random

elements Z1, Z2, ν1, ν2, u and v as in the discussion preceding (11). Also let

τ = (τn)∞n=1 and κ = (κn)∞n=1 two sequences of i.i.d. Poisson(1) random variables.

Assume, in addition, that Z1, Z2, ν1, ν2, v, u, τ and κ are all mutually independent.

Then, define the process Ξ̃ = (Ξ̃(1), . . . , Ξ̃(6))′ as

Ξ̃(t) :=



Z1

Z2∑
0<j≤ν1(−t) κj1t<0∑

0<j≤ν1(−t) vjκj1t<0∑
0<j≤ν2(t) τj1t≥0∑

0<j≤ν2(t) ujτj1t≥0


(18)

for t ∈ R and let Ẽ∗ be given by

Ẽ∗(h) = 2h1Ξ̃(1)(h3)− h2
1P(Z ≤ ζ0) + 2h2Ξ̃(2)(h3)− h2

2P(Z > ζ0)

+ 2(β0 − α0)Ξ̃(4)(h3)− (α0 − β0)2Ξ̃(3)(h3)

+ 2(α0 − β0)Ξ̃(6)(h3)− (α0 − β0)2Ξ̃(5)(h3) (19)
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for h = (h1, h2, h3) ∈ R3. Additionally define the S–valued (pure jump) processes

J̃n, J̃∗n and J̃∗ as

J̃∗n(t) = J̃n(t) := nP∗n(1ζ0+ t
n
<Z≤ζ0) + nP∗n(1ζ0<Z≤ζ0+ t

n
), (20)

J̃∗(t) := ν1(−t)1t<0 + ν2(t)1t≥0. (21)

Lemma 4.6 (proved in Section A.2.11) now states the asymptotic distribution of

Ẽn and of n(ζ∗n − ζ0).

Lemma 4.6 Consider the processes Ξ̃n, Ẽn, J̃n, Ξ̃, Ẽ∗ and J̃∗ as defined in (17),

(16), (20), (18), (19) and (21), respectively. Then, unconditionally,

(i) Ξ̃n  Ξ̃ in R2 ×D4
I for any compact interval I ⊂ R;

(ii) (Ẽn, J̃n)  (Ẽ∗, J̃∗) in DK × SI for any compact interval I ⊂ R and any

compact rectangle K = A×B × I ⊂ R3;

(iii) ∆̃∗n = sargmaxh∈R3{Ẽn(h)} sargmaxh∈R3{Ẽ∗(h)}.

As a consequence, if the ECDF bootstrap is consistent, the variance of sargmaxh∈R3{Ẽ∗(h)}
must be twice that of sargmaxh∈R3{E∗(h)}.

As analytic expressions for the asymptotic variances of n(ζ∗n − ζ0) and n(ζ̂n − ζ0)

are not known, we use simulations to compute them. As an illustration, we take

ε ∼ N(0, 1), Z ∼ N(0, 1), α0 = −1, β0 = 1 and ζ0 = 0 in (1). We approximate the

limiting variances with the sample variances computed from 20,000 observations

from each of the two asymptotic distributions. Our results are summarized in the

following table, which immediately shows that the asymptotic variance of n(ζ∗n−ζ0)

is not twice that of n(ζ̂n − ζ0). Thus the ECDF bootstrap cannot be consistent.

Random variable Asymptotic Variance

n(ζ̂n − ζ0) 7.620948

n(ζ∗n − ζ0) 63.98377

4.2 Scheme 2 (Bootstrapping “residuals”)

Another resampling procedure that arises naturally in a regression setup is boot-

strapping “residuals”. As with scheme 1, bootstrapping the “residuals” fixing the

covariates is also inconsistent. Heuristically speaking, the resampling distribution

fails to approximate the density of the predictor at the change-point ζ0 at rate-n,

and this leads to the inconsistency.
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We recall the notation of Section 2. There we described the basic elements of the

traditional fixed-design bootstrap of residuals and how to compute the bootstrap

estimates θ∗n. We first show that these bootstrap estimators converge conditionally

in probability (almost surely) to the true value of the parameter. Then, we will

provide a strong argument against the consistency of this bootstrap scheme. For

notational convenience, we introduce the process Rn given by

Rn(θ) := − 1

n

n∑
j=1

(
Y ∗n,j − α1Zj≤ζ − β1Zj>ζ

)2 ∀ θ ∈ Θ.

We start by showing that the “centered” empirical distribution for the least squares

residuals, Pεn, converges to the distribution of ε in total variation distance with

probability one and its second moment is an almost surely consistent estimator

of σ2. This lemma will also be useful for the analysis of the smoothed bootstrap

procedure. The proof can be found in Section A.2.12.

Lemma 4.7 Let G and ϕ be, respectively, the distribution and characteristic func-

tions of ε. Then,

(i) for any η > 0 we have that sup
|ξ|≤η

{∣∣∣∣∫ eiξxdPεn(x)− ϕ (ξ)

∣∣∣∣} a.s.−→ 0;

(ii) ‖Pεn −G‖R
a.s.−→ 0;

(iii)

∫
x2dPεn(x)

a.s.−→ σ2;

(iv)

∫
|x|dPεn(x)

a.s.−→ P(|ε|);

(v) if ε has a finite third moment under P, then

lim
n→∞

∫
|x|3dPεn(x) <∞ almost surely.

The next result (proved in Section A.2.13) shows that the bootstrapped least

squares estimators converge conditionally in probability with probability one.

Proposition 4.2 Let K ⊂ Θ be a compact rectangle. Then,

(i) ‖Rn + P∗n(ε̃2n)−Mn − σ2‖K
PX−→
a.s. 0;

(ii) ‖Rn + P∗n(ε̃2n)−M − σ2‖K
PX−→
a.s. 0;
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(iii) θ∗n
PX−→
a.s. θ0 and θ∗n − θ̂n

PX−→
a.s. 0.

where Mn and M are defined as in (3) and the subsequent paragraph.

Consider the following process

Ên(h) = −
n∑
j=1

(
Y ∗n,j −

(
α̂n +

h1√
n

)
1
Zj≤ζ̂n+

h3
n

−
(
β̂n +

h2√
n

)
1
Zj>ζ̂n+

h3
n

)2

+
n∑
j=1

(ε∗n,j)
2.

Then for n large enough we have that(√
n(α∗n − α̂n),

√
n(β∗n − β̂n), n(ζ∗n − ζ̂n)

)
= sargmax

h∈R3

{
Ên(h)

}
.

Next we argue that the sequence (Ên)∞n=1 does not have a weak limit in probability

and therefore distributional convergence of their corresponding smallest minimizers

seems unreasonable. We refer the reader to Section A.2.14 for a complete proof of

the statement.

Lemma 4.8 There is a compact rectangle K ⊂ R3 such that the sequence of pro-

cesses (Ên)∞n=1 does not have a weak limit in probability in DK.

5 Consistent bootstrap procedures

Here we will prove that the “smoothed bootstrap” (scheme 3) and the m out

of n bootstrap (scheme 4) procedures yield consistent methods for constructing

confidence intervals around the parameters.

5.1 Scheme 3 (Smoothed Bootstrap)

To show that scheme 3 (smoothed bootstrap + bootstrapping residuals) achieves

consistency we appeal to Propositions 3.1, 3.2 and 3.3 by proving that the regularity

conditions (I)-(VIII) of Section 3 hold for this scheme. Recall the description of this

bootstrap procedure given in Section 2. Let f̂n and F̂n be the estimated smoothed

density and distribution function of Z, respectively. For I := [c, d] ⊂ R, a compact

interval such that ζ0 ∈ (c, d), we require the following two properties of f̂n and F̂n:

‖F̂n − F‖R
a.s.−→ 0; (22)

‖f̂n − f‖I
a.s.−→ 0. (23)

We would want to highlight that these conditions are fulfilled by many density

estimation procedures. In particular, they hold when the density f is continuous
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and we let f̂n be the kernel density estimator constructed from a suitable choice

of kernel and bandwidth (e.g., see Silverman (1978)).

Let θn = θ̂n, mn = n and Qn be the distribution that generates the bootstrap

sample. Observe that under Qn, ε̃n and Z are independent and that Z is a contin-

uous random variable with density f̂n. The next result (proved in Section A.2.15)

shows that the bootstrapped least squares estimators achieve the right rate of

convergence.

Proposition 5.1 If (22) and (23) hold, then w.p.1, the sequence of conditional

distributions of
(√

n(α∗n − α̂n),
√
n(β∗n − β̂n), n(ζ∗n − ζ̂n)

)
is tight.

Scheme 3 uses an approximation to the density of Z and this turns out to be

crucial. The bootstrap measures now satisfy property (VI) on Section 3 and the

bootstrap procedure is strongly consistent, as shown in the next result (proved in

Section A.2.16).

Proposition 5.2 For scheme 3, provided that (22) and (23) hold, conditions (I)–

(VIII) are satisfied with probability one, and thus,
√
n(α∗n − α̂n)
√
n(β∗n − β̂n)

n(ζ∗n − ζ̂n)

 sargmax
h∈R3

{E∗(h)} almost surely.

5.2 Scheme 4 (m out of n bootstrap)

For this scheme we will again use the framework established in Section 3. We

take (mn)∞n=1 to be any sequence of natural numbers which increases to infinity,

θ̂n = θn and Qn = Pn. The next result (proved in Section A.2.17) shows the weak

consistency of this procedure.

Proposition 5.3 If mn = o(n) and mn →∞, then conditions (I)–(VIII) hold (in

probability) and we have
√
mn(α∗n − α̂n)
√
mn(β∗n − β̂n)

mn(ζ∗n − ζ̂n)

 sargmax
h∈R3

{E∗(h)} in probability. (24)

Remark: To prove Proposition 5.3, we will, in fact, show that for every subse-

quence (nk)
∞
k=1, there is a further subsequence (nks)

∞
s=1, such that (I)-(VIII) hold

w.p. 1 for (nks)
∞
s=1 and (24) holds almost surely along the subsequence (nks)

∞
s=1.
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6 Simulation experiments

In this section we report the finite sample performance of the different bootstrap

schemes on simulated data. We simulated random draws from four different mod-

els following (1). Each of these corresponded to choosing different pairs (F,G)

of distributions for Z and ε (having mean 0), respectively. The pairs consid-

ered were (N(0, 2), N(0, 1)), (4B(4, 6) − 2, N(0, 1)), (4B(4, 6) − 2,Unif(−1, 1)),

and (4B(4, 6)−2,Γ(4, 2)−2), where B(·, ·) and Γ(·, ·) denote the beta and gamma

distributions respectively.

For each of these models, we considered 1000 random samples of sizes n = 50, 100, 200, 500.

For each sample, and for each of the bootstrap schemes, we took 4n bootstrap repli-

cates to approximate the bootstrap distribution. The following table provides the

estimated coverage proportions of nominal 95% CIs and average lengths of the CIs

obtained using the 4 different bootstrap schemes for each of the four models.

At this point, we want to make some remarks about the computation of the es-

timators. We used a kernel density estimator based on the Gaussian kernel and

chose the bandwidth by the so-called “normal reference rule” (see Scott (1992),

page 131). In the case of the m out of n bootstrap, we did not use any data driven

choice of mn, but tried 3 different possibilities: dn 4
5 e, dn 9

10 e and dn 14
15 e. We will

refer to the fixed-design bootstrapping of residuals scheme by FDR.

Z ∼ N(0, 2), ε ∼ N(0, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length
ECDF 0.83 1.14 0.79 0.22 0.81 0.08

Smoothed 0.94 0.94 0.95 0.19 0.95 0.07
FDR 0.83 0.76 0.86 0.16 0.90 0.06

dn4/5e 0.87 0.87 0.91 0.23 0.91 0.08

dn9/10e 0.85 1.02 0.87 0.21 0.87 0.079

dn14/15e 0.85 1.05 0.84 0.21 0.86 0.08

Z ∼ 4B(4, 6)− 2, ε ∼ N(0, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length
ECDF 0.80 0.54 0.80 0.11 0.81 0.04

Smoothed 0.96 0.46 0.94 0.11 0.95 0.47
FDR 0.73 0.32 0.77 0.08 0.79 0.03

dn4/5e 0.88 0.53 0.89 0.11 0.90 0.04

dn9/10e 0.85 0.54 0.86 0.11 0.88 0.04

dn14/15e 0.83 0.55 0.84 0.11 0.87 0.04

Z ∼ 4B(4, 6)− 2, ε ∼ Unif(−1, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length
ECDF 0.80 0.40 0.80 0.08 0.81 0.03

Smoothed 0.94 0.33 0.95 0.08 0.96 0.04
FDR 0.75 0.26 0.77 0.06 0.81 0.02

dn4/5e 0.88 0.36 0.88 0.09 0.91 0.04

dn9/10e 0.85 0.39 0.85 0.08 0.87 0.03

dn14/15e 0.83 0.39 0.84 0.08 0.85 0.03
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Z ∼ 4B(4, 6)− 2, ε ∼ Γ(4, 2)− 2

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length
ECDF 0.80 0.49 0.80 0.09 0.81 0.04

Smoothed 0.93 0.36 0.95 0.08 0.96 0.03
FDR 0.76 0.30 0.77 0.06 0.80 0.02

dn4/5e 0.87 0.43 0.88 0.10 0.91 0.03

dn9/10e 0.85 0.46 0.84 0.09 0.88 0.03

dn14/15e 0.83 0.48 0.85 0.09 0.85 0.03

We can see from the table that the smoothed bootstrap scheme outperforms all

the others in terms of coverage. It must also be noted that this is achieved without

a relative increase in the lengths of the intervals. The m out of n bootstrap with

dn4/5e also performs reasonably well. It clearly outperforms all other m out of n

schemes as well as ECDF and FDR bootstrap procedures (which are inconsistent).

Figure 1 shows the histograms of the distribution of n(ζ̂n − ζ0) (obtained from

1000 random samples) and its bootstrap estimates obtained from the 4 different

bootstrap schemes (using 2000 bootstrap samples each) from a single data set of

size n = 500 from model (1) with Z ∼ 4B(4, 6)− 2, ε ∼ Γ(4, 2)− 2, α0 = −1, β0 =

1, ζ0 = 0. The histograms clearly show that the smoothed bootstrap (top right

panel) provides, by far, the best approximation to both, the actual (top middle

panel) and the limiting distributions (top left panel). In fact, the histograms of

the distribution of n(ζ̂n− ζ0) and the corresponding smoothed bootstrap estimate

are almost indistinguishable. The m out of n approach, although guaranteed to

converge, lacks the efficiency of the smoothed bootstrap. This may be due to the

fact that we do not have an optimal way of choosing the tuning parameter mn.

The smoothed bootstrap also requires the choice of a tuning parameter, namely,

the smoothing bandwidth, but the in our analysis the results were very insensitive

to the choice of the bandwidth. This is certainly an advantage for the smoothed

bootstrap procedure.

7 More general change-point regression models

In this section we mention some of the broader implications of our analysis of (1)

in the context of more general change-point models in regression. We can consider

a model of the form

Y = ψα0(W,Z)1Z≤ζ0 + ξβ0(W,Z)1Z>ζ0 + ε, (25)

where Z is a continuous random variable; W is a random vector of covariates;

α0 ∈ Rp and β0 ∈ Rq are two unknown Euclidian parameters; ψα(w, z) and ξβ(w, z)

are known real-valued functions continuous in (w, z) and twice continuously differ-
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Figure 1: Histograms of the distribution of n(ζ̂n− ζ0) and its bootstrap estimates:
the asymptotic distribution of n(ζ̂n − ζ0) (top left); the actual distribution of
n(ζ̂n − ζ0) (top middle); the distribution of n(ζ∗n − ζ̂n) for the smoothed (top
right), ECDF (bottom middle) and FDR (bottom right) schemes; the distribution

of mn(ζ∗n − ζ̂n), mn = dn 4
5 e (bottom left).

entiable in α and β respectively; ζ0 ∈ [a, b] ⊂ supp(Z) ⊂ R is the change-point; ε

is a continuous random variable, independent of (W,Z) with zero expectation and

finite variance σ2 > 0. We assume that ψα0(W,Z) is identifiable from ξβ0(W,Z)

and that the least squares problems

min
α∈Rp

∑
Zj≤ζ

(Yj − ψα(Wj, Zj))
2

 and min
β∈Rq

∑
Zj>ζ

(Yj − ξβ(Wj, Zj))
2


are well-posed for every possible data set {(Y1, Z1,W1), . . . , (Yn, Zn,Wn)} and any

ζ ∈ supp(Z)◦. We also assume that ψα0(w, ζ0) 6= ξβ0(w, ζ0) for every value of w.

Like in the simple case, the method of least squares can be used to compute

estimators α̂n, β̂n and ζ̂n. One simply takes the minimizer (α̂n, β̂n, ζ̂n) of

n∑
j=1

(
Yj − ψα(Wj, Zj)1Zj≤ζ + ξβ(Wj, Zj)1Zj>ζ

)2

with the smallest ζ-component.
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Since the simple model (1) is a particular case of (25), one can immediately con-

clude from our analysis that the usual ECDF and residual bootstrap procedures

will not be consistent. However, the smoothed bootstrap can be adapted to pro-

duce consistent interval estimation. The modified scheme can be described as

follows:

1. Choose some procedure (e.g., kernel density estimation) to build a distribu-

tion F̂n with density f̂n such that f̂n → f uniformly on some open interval

containing ζ0 w.p. 1, where f is the density of Z. Let Pεn and PWn be the

empirical measures of the centered residuals (as in the description of Scheme

2 in Section 2) and W1, . . . ,Wn, respectively.

2. Get i.i.d. replicates Z∗n,1, . . . , Z
∗
n,n from F̂n and sample, independently, ε∗n,1, . . . , ε

∗
n,n

i.i.d.∼
Pεn and W ∗

n,1, . . . ,W
∗
n,n

i.i.d.∼ PWn . We could have also kept the Wi’s fixed, i.e.,

W ∗
n,i = Wi.

3. Define Y ∗n,j = ψα̂n(W ∗
n,j, Z

∗
n,j)1Z∗n,j≤ζ̂n

+ ξβ̂n(W ∗
n,j, Z

∗
n,j)1Z∗n,j>ζ̂n

+ ε∗n,j for all

j = 1, . . . , n.

4. Compute the bootstrap least squares estimators (α∗n, β
∗
n, ζ
∗
n) by taking the

minimizer of

n∑
j=1

(
Y ∗n,j − ψα(W ∗

n,j, Z
∗
n,j)1Z∗n,j≤ζ − ξβ(W ∗

n,j, Z
∗
n,j)1Z∗n,j>ζ

)2

with the smallest ζ-component.

5. Approximate the distribution of n(ζ̂n−ζ0) with the (conditional) distribution

of n(ζ∗n − ζ̂n).

Although our analysis indicates that this smoothed bootstrap procedure must be

consistent, it is difficult to use our methods to prove consistency in such generality.

However, the proof of consistency for the simple model (1) can be adapted to cover

the case of parametric additive models, i.e., when ψα(w, z) and ξβ(w, z) are of the

form

ψα(w, z) =

p∑
j=1

αjgj(w, z), and ξβ(w, z) =

q∑
k=1

βkhk(w, z),

where gj, hk, j = 1, . . . , p, k = 1, . . . , q are known smooth functions.
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A Appendix

In this appendix we provide the proofs of most of the results stated in the previous

sections. We start with some results that characterize convergence in the space

DK with metric dK .

A.1 The space DK
Recall that DK is the space of all functions on K ⊂ R3 that are continuous in the

first two co-ordinates and càdlàg in the third. We keep the notation introduced in

Section 3.

Lemma A.1 Let K = A× I ⊂ R3 be a compact rectangle where A ⊂ R2 and I ⊂
R. Let W a continuous function on K and (Wn)∞n=1 a sequence of elements in DK
such that dK (Wn,W )→ 0. Then, with the notation ‖x‖K = sup {|x (h) | : h ∈ K},
we have that ‖Wn −W‖K → 0.

Proof: Let ε > 0. Since K is compact, W is uniformly continuous on K and

therefore there is δ > 0 such that |W (θ)−W (ϑ)| < ε
2

whenever |θ− ϑ| < δ. Also,

there is ρ > 0 such that sup{|s− λ(s)| : s ∈ I} < δ whenever ‖λ‖ < ρ. It suffices

to choose ρ < 1
4
∧ δ

2L
where L is the length of I. To see this, assume I = [a, b] and

observe that for any τ ∈ (0, 1
4
), τ < 2τ − 4τ 2 ≤ log(1 + 2τ) and for any τ > −1,

log(1 + τ) ≤ τ . It follows that for any s ∈ I, log(1 − 2ρ) < −ρ ≤ log λs−a
s−a ≤ ρ <

2ρ− 4ρ2 ≤ log(1 + 2ρ) and thus, |λs− s| < 2(s− a)ρ ≤ 2Lρ.

Now, since dK (Wn,W )→ 0, there is N ∈ N such that for any n ≥ N there exists

λn ∈ ΛI with the property that ‖λn‖ < ρ ∧ ε
2

and

sup
(α,β,ζ)∈K

{|Wn (α, β, ζ)−W (α, β, λnζ)|} < ρ ∧ ε
2
. (26)

Then, for any θ = (α, β, ζ) ∈ K and any n ≥ N we have that |(α, β, λn(ζ)) −
(α, β, ζ)| = |λn(ζ)− ζ| < δ and thus, we can bound |Wn(θ)−W (θ)|, by

|Wn (α, β, ζ)−W (α, β, λn(ζ))|+ |W (α, β, ζ)−W (α, β, λn(ζ))|

< ε/2 + ε/2 = ε
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using (26) and the uniform continuity of W . From this it follows that ‖Wn −W‖ ≤
ε for any n ≥ N . �

Lemma A.1 shows that as long as the limit is continuous, convergence in the

uniform and Skorohod topologies are equivalent. The next result concerns the

continuity of the smallest argmax functional.

Lemma A.2 Let K ⊂ R3 be a compact rectangle and W ∈ DK be a continu-

ous function which has a unique maximizer θ∗ ∈ K. Then, the smallest argmax

functional is continuous at W (with respect to both, the uniform and Skorohod

topologies).

Proof: Let (Wn)∞n=1 be a sequence converging to W in the Skorohod topology.

Let ε > 0 be given. Let G be the open ball of radius ε around θ∗ and let δ :=(
W (θ∗)− supθ∈K\G {W (θ)}

)
/2 > 0. By Lemma A.1 we have ‖Wn −W‖K < δ for

all large n. If this condition is satisfied, then

W (θ∗) = 2δ + sup
θ∈K\G

{W (θ)} > δ + sup
θ∈K\G

{Wn(θ)} .

But ‖Wn −W‖K < δ also implies that sup
θ∈K
{Wn(θ)} > W (θ∗) − δ. The combi-

nation of these two facts shows that if ‖Wn −W‖K < δ, then any maximizer of

Wn must belong to G. Thus, |sargmaxϑ∈K{Wn(ϑ)} − θ∗| < ε for n large enough. �

A.1.1 A convergence theorem for the smallest argmax functional

Recall the definitions of S and SI , where I ⊂ R is any interval containing 0, which

were provided in Section 3. For a compact rectangle K = I1 × I2 × I3 ⊂ R3

containing the origin, consider the subspace D0
K of DK consisting of all functions

ψ ∈ DK which can be expressed as:

ψ (h1, h2, h3) = V0(h1, h2)1a−1≤h3<a1 +
∞∑
k=1

Vk(h1, h2)1ak≤h3<ak+1

+
∞∑
k=1

V−k(h1, h2)1a−k−1≤h3<a−k (27)

where (. . . < a−k−1 < a−k < . . . < a0 = 0 < . . . < ak < ak+1 < . . .)k∈N is a sequence

of jumps and (Vk)k∈Z is a collection of continuous functions. We writeD0 whenK =

R3. Observe that the representation in (27) is not unique. However, knowledge
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of the function ψ and of the jumps (ak) completely determines the continuous

functions (Vk)k∈Z. Associate with every ψ, expressed as in (27), a pure jump

function ψ̃ ∈ S whose sequence of jumps is exactly the ak’s, i.e.,

ψ̃ (t) =
∞∑
k=1

1ak≤t +
∞∑
k=1

1a−k>t. (28)

Finally, we denote by sargmax and largmax the smallest and largest argmax func-

tionals, respectively.

The next lemma, which mimics Lemma 3.1 of Lan et al. (2009), makes a statement

about the continuity of the smallest argmax functional on the space D0
K × SI3 .

Lemma A.3 Let C ∈ N, K = [−C,C]3 and
(
ψn, ψ̃n

)∞
n=1

, (ψ0, ψ̃0) be functions

in D0
K × S[−C,C] such that ψn satisfies (27) for the sequence of jumps of ψ̃n for

any n ≥ 0. Assume that (ψn, ψ̃n) → (ψ0, ψ̃0) in D0
K × S[−C,C] (with the product

topology). Suppose, in addition, that ψ0 can be expressed as (27) for the sequence

of jumps (. . . < a−k−1 < a−k < . . . < a0 = 0 < . . . < ak < ak+1 < . . .)k∈N of ψ̃0 and

some strictly concave functions (Vj)j∈Z with the property that for any finite subset

A ⊂ Z there is only one j ∈ A for which

max
m∈A

{
sup
h∈K
{Vm(h1, h2)}

}
= sup

h∈K
{Vj(h1, h2)} . (29)

Then, sargmax
h∈K

{ψn(h)} and largmax
h∈K

{ψn(h)} are well-defined for sufficiently large

n ∈ N and

(i) sargmax
h∈K

{ψn(h)} → sargmax
h∈K

{ψ0(h)} as n→∞

(ii) largmax
h∈K

{ψn(h)} → largmax
h∈K

{ψ0(h)} as n→∞.

Proof: We can write ψn in the form (27) with (. . . < an,−k−1 < an,−k <

. . . < an,0 = 0 < . . . < an,k < an,k+1 < . . .)k∈N being the sequence of jumps of ψn

and Vn,j being the continuous functions. Consequently, ψ̃n, the pure jump process

associated with ψn, can be expressed as (28) with jumps at (an,k)k∈Z.

Let Nr and Nl be the number of jumps of ψ̃0 in [0, C] and [−C, 0) respectively. Let

ρ > 0 be sufficiently small such that all the points of the form aj±ρ are continuity

points of ψ0, for −Nl ≤ j ≤ Nr. Since convergence in the Skorohod topology of

ψ̃n to ψ̃0 implies point-wise convergence for continuity points of ψ̃0 (see page 121

of Billingsley (1968)), and all of them are integer-valued functions, we see that
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ψ̃n(aj − ρ) = j − 1 and ψ̃n(aj + ρ) = j for any 1 ≤ j ≤ Nr, and ψ̃n(C) = Nr for

all sufficiently large n. Thus, for all but finitely many n’s we have that ψ̃n has

exactly Nr jumps between 0 and C and that the location of the j-th jump to the

right of 0 satisfies |an,j − aj| < ρ. The same happens to the left of zero: for all but

finitely many n’s, ψ̃n has exactly Nl jumps in [−C, 0) and the sequences of jumps

(an,−j)
∞
n=1, 1 ≤ j ≤ Nl, converge to the corresponding jumps a−j.

Let V ∗ = sup {Vj(h1, h2) : h ∈ K,−Nl ≤ j ≤ Nr}. Since all the Vj’s are continuous

and K is compact, this supremum is actually achieved at some value (h∗1, h
∗
2) ∈

[−C,C]2. By (29) and the strict concavity of the Vj’s, it is seen that (h∗1, h
∗
2)

is unique and that there is a unique “flat stretch” at which this supremum is

attained. Suppose, without loss of generality, that the maximum value is achieved

in an interval of the form [ak, ak+1 ∧ C) for a unique k ∈ {1, . . . , Nr}. Now, write

b0 = 0; bj =
aj+C∧aj+1

2
for 1 ≤ j ≤ Nr; and bj =

aj+(−C)∨aj−1

2
for −Nl ≤ j ≤ −1.

Note that the bj’s (for any value of the first two variables) are continuity points of

both ψ0 and ψ̃0.

Let κ = min−Nl≤j≤Nr+1(C∧aj− (−C)∨aj−1) be the length of the shortest stretch.

Take 0 < η, δ < κ/4. Considering the convergence of the jumps of ψn to those of

ψ0, there is N ∈ N such that for any n ≥ N , the following two statements hold:

(a) Consider ρ > 0 such that if ‖λ‖ < ρ, then

sup {|s− λ(s)| : s ∈ [−C,C]} < δ,

just as in the proof of Lemma A.1. By the convergence of ψn to ψ0 in the

Skorohod topology, there exists λn ∈ Λ[−C,C] such that ‖λn‖ < ρ and

sup
h∈K
{|ψn(h1, h2, λn(h3))− ψ0(h1, h2, h3)|} < η.

(b) For any 1 ≤ j ≤ Nr (respectively j = 0, −Nl ≤ j ≤ −1), bj lies somewhere

inside the interval (an,j + δ, C ∧ an,j+1 − δ) (respectively (an,−1 + δ, an,1 − δ),
((−C) ∨ an,j−1 + δ, an,j − δ)). This follows from what was proven in the first

two paragraphs of this proof.

From (a) we see that |λn(bj) − bj| < δ for all −Nl ≤ j ≤ Nr. But (b) and the

size of δ in turn imply that bj and λn(bj) belong to the same “flat stretch” of ψn

and thus ψn(h1, h2, λn(bj)) = ψn(h1, h2, bj) = Vn,j(h1, h2) for all (h1, h2) ∈ [−C,C]2

and all −Nl ≤ j ≤ Nr. Considering again (b) and the second inequality in (a), we

conclude that ‖Vn,j − Vj‖[−C,C]2 < η for all −Nl ≤ j ≤ Nr and all n ≥ N . Hence,
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all the sequences (Vn,j)
∞
n=1 converge uniformly in [−C,C]2 to their corresponding

Vj. Consequently:

max
−Nl≤j≤Nr

j 6=k

{
sup

h1,h2∈[−C,C]

Vn,j(h1, h2)

}
−→ max

−Nl≤j≤Nr
j 6=k

{
sup

h1,h2∈[−C,C]

Vj(h1, h2)

}
,

max
h1,h2∈[−C,C]

{Vn,k(h1, h2)} −→ max
h1,h2∈[−C,C]

{Vk(h1, h2)} = Vk(h
∗
1, h
∗
2),

argmax
h1,h2∈[−C,C]

{Vn,k(h1, h2)} −→ argmax
h1,h2∈[−C,C]

{Vk(h1, h2)} = (h∗1, h
∗
2),

lim max
−Nl≤j≤Nr

j 6=k

{
sup

h1,h2∈[−C,C]

Vn,j(h1, h2)

}
< lim max

h1,h2∈[−C,C]
{Vn,k(h1, h2)} .

The above, together with (29) and the fact that an,k → ak and an,k+1 → ak+1,

imply that

sargmax
h∈K

{ψn(h)} → (h∗1, h
∗
2, ak) = sargmax

h∈K
{ψ0(h)}

largmax
h∈K

{ψn(h)} → (h∗1, h
∗
2, ak+1) = largmax

h∈K
{ψ0(h)}

as n→∞. �

A.2 Some useful lemmas and proofs

We first give an account of a series of technical lemmas which will aid us in the

proof of Propositions 3.1, 3.2 and 3.3.

Lemma A.4 Let α 6= β ∈ R. Consider the class of functions from R2 to R given

by

A =
{
φ(y, z) := (y − α1(−∞,ζ](z)− β1(ζ,∞](z))1I(z)|ζ ∈ R, I ⊂ R is an interval

}
.

Then, A is a VC-subgraph class with envelope |y| + |α| + |β|. There is an upper

bound for the VC-index of A that is independent of α and β. Moreover, there is

a continuous, increasing function JA with JA (1) < ∞, which is also independent

of α and β, and satisfies the following property: If D ⊂ A is a subclass with

envelope B and W1, . . . ,Wn is a random sample, defined on some probability space

(Ω,A,P), from a distribution µ for which µ(B2) < ∞ and µn is the empirical

measure defined by the sample, then∫
sup
ϕ∈D
{|(µn − µ)(ϕ)|} dP ≤ JA (1)√

n

√
µ(B2).
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Proof: We use the same notation as in Lemmas 2.6.17 and 2.6.18, page 147 of

Van der Vaart and Wellner (1996). Consider the classes of functions H = {y −
α1(−∞,ζ](z)−β1(ζ,∞](z) : ζ ∈ R} and K =

{
1(−∞,ζ](z) : ζ ∈ R

}
. Then, K is a VC

class with VC-index 2. It follows that H = (β−α) ·K +(y−β) is also VC. Recall

that F = {1I(z) : I ⊂ R is an interval}. Letting [ϕ > t] := {(y, z, t) : ϕ(y, z) > t}
for ϕ ∈ A , we see that

{[ϕ > t] : ϕ ∈ A } =

(
R× {F ≤ 0} × (−∞, 0)

)⊔
(
{[ψ > t] : ψ ∈H } u (R× {F > 0} × R)

)
from which it follows that A is VC. Moreover, the VC-indexes of K and F are

two and three for any choice of α and β. Hence, the corresponding VC-indexes of

H and A both have upper bounds independent of α and β. The existence of the

function JA is a consequence of the maximal inequality 3.1 in Kim and Pollard

(1990). Note that JA only depends on the VC-index of the class A , which in turn

has an upper bound independent of α and β. �

Lemma A.5 Suppose that (I)-(IV) hold. Then,

(i)
∥∥Qn(ε̃2n1Z≤(·)∧ζn)− σ2P(Z ≤ (·) ∧ ζ0)

∥∥
[a,b]
→ 0,

(ii)
∥∥Qn(|ε̃n|1Z≤(·)∧ζn)− P(|ε|)P(Z ≤ (·) ∧ ζ0)

∥∥
[a,b]
→ 0,

(iii)
∥∥Qn(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]
→ 0, and

(iv)
∥∥Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)

∥∥
[a,b]
→ 0.

Also, these statements are true if 1Z≤(·)∧ζn is replaced by any of 1(·)<Z≤ζn, 1ζn<Z≤(·)

or 1Z>(·)∨ζn.

Proof: Since ζn → ζ0 and Z is continuous, for any ζ ∈ [a, b], we obtain∣∣P(Y 21Z≤ζ∧ζn)− P(Y 21Z≤ζ∧ζ0)
∣∣ ≤ P(Y 2|1Z≤ζn − 1Z≤ζ0|)→ 0,

|P(|Y − α0|1Z≤ζ∧ζn)− P(|Y − α0|1Z≤ζ∧ζ0)| ≤ P(|Y ||1Z≤ζn − 1Z≤ζ0|)→ 0,

|P(Y 1Z≤ζ∧ζn)− P(Y 1Z≤ζ∧ζ0)| ≤ P(|Y ||1Z≤ζn − 1Z≤ζ0|)→ 0,

|P(1Z≤ζ∧ζn)− P(1Z≤ζ∧ζ0)| ≤ P(|1Z≤ζn − 1Z≤ζ0|)→ 0.
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Also note that the convergence is uniform in ζ ∈ [a, b]. Thus,∥∥Qn(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)
∥∥

[a,b]
≤ ‖Qn − P‖H

+
∥∥P(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)

∥∥
[a,b]
→ 0

as n → ∞ by (III). Similarly, we also obtain that ‖Qn(|Y − α0|1Z≤(·)∧ζn) −
P(|Y − α0|1Z≤(·)∧ζ0)‖[a,b] → 0, ‖Qn(Y 1Z≤(·)∧ζn) − P(Y 1Z≤(·)∧ζ0)‖[a,b] → 0 and

‖Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)‖[a,b] → 0. This proves (iv).

Finally, (i), (ii) and (iii) follow as consequence of the convergence αn → α0 and

of the following inequalities:∥∥Qn(ε̃2n1Z≤(·)∧ζn)− σ2P(Z ≤ (·) ∧ ζ0)
∥∥

[a,b]

≤
∥∥Qn(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)

∥∥
[a,b]

+ 2|αn − α0|Qn(|Y |) + |α2
n − α2

0|

+ 2|α0|
∥∥Qn(Y 1Z≤(·)∧ζn)− P(Y 1Z≤(·)∧ζ0)

∥∥
[a,b]

+ α2
0

∥∥∥Qn(1Z≤(·)∧ζ̂n)− P(1Z≤(·)∧ζ0)
∥∥∥

[a,b]

and ∥∥Qn(|ε̃n|1Z≤(·)∧ζn)− P(|ε|1Z≤(·)∧ζn)
∥∥

[a,b]
≤∥∥Qn(|Y − α0|1Z≤(·)∧ζn)− P(|Y − α0|1Z≤(·)∧ζ0)

∥∥
[a,b]

+ |αn − α0|.

and ∥∥Qn(ε̃n1Z≤(·)∧ζn)
∥∥

[a,b]
≤
∥∥Qn(Y 1Z≤(·)∧ζn)− P(Y 1Z≤(·)∧ζ0)

∥∥
[a,b]

+|αn − α0|+ |α0|
∥∥Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)

∥∥
[a,b]

.

The other three cases follow from similar arguments. �

Lemma A.6 Suppose that (I)-(IV) hold. Then,

(i)
∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

P−→ 0,

(ii)
∥∥(P∗n −Qn)(1Z≤(·)∧ζn)

∥∥
[a,b]

P−→ 0.

Also, these statements are true if 1Z≤(·)∧ζn is replaced by any of 1(·)<Z≤ζn, 1ζn<Z≤(·)

or 1Z>(·)∨ζn.

Proof: By the maximal inequality 3.1 from Kim and Pollard (1990) and Lemma

A.4 we see that:

E
(∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JA (1)
√
mn

√
Qn(ε̃2n)

E
(∥∥(P∗n −Qn)(1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JF(1)
√
mn

.
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The lemma now follow directly as Qn(ε̃2n) → σ2 (a consequence of Lemma A.5).

The other statements are proven similarly. �

A.2.1 Proof of Proposition 3.1

Noting that ε̃n = Y − αn1Z≤ζn − βn1Z>ζn , we write

mθ(X) = −(ε̃n + αn − α)21Z≤ζn∧ζ − (ε̃n + βn − α)21ζn<Z≤ζ

−(ε̃n + αn − β)21ζ<Z≤ζn − (ε̃n + βn − β)21Z>ζn∨ζ , (30)

and therefore

− P∗n(ε̃2n) = M∗
n(θn) ≤M∗

n(θ∗n)

≤ −P∗n[(ε̃n − α∗n + αn)21Z<a]− P∗n[(ε̃n − β∗n + βn)21Z>b].

Letting γ∗n = (α∗n, β
∗
n), noticing that M∗

n(θ̂n) = −P∗n (ε̃2n), and by rearranging the

terms in the above inequality, we get

|γ∗n − γn|2P∗n(Z < a) ∧ P∗n(Z > b) ≤ P∗n
(
ε̃2n1a≤Z≤b

)
+2|γ∗n − γn| (|P∗n (ε̃n1Z<a) |+ |P∗n (ε̃n1Z>b) |) .

Consider P∗n(Z < a). By (ii) of Lemma A.6 we see that |(P∗n − Qn)(Z < a)| P→ 0

and by (iv) of Lemma A.5 we can show that |(Qn − P)(Z < a)| → 0. Thus,

combining the two, we have P∗n(Z < a)
P−→ P(Z < a). Similarly, we can show

that P∗n(Z < a) ∧ P∗n(Z > b)
P−→ P(Z < a) ∧ P(Z > b) > 0 and also that

|P∗n (ε̃n1Z<a) |+ |P∗n (ε̃n1Z>b) |
P−→ 0. Also, observe that E (P∗n(ε̃2n)) = Qn(ε̃2n)→ σ2,

by assumptions (I)-(III) and so P∗n(ε̃2n) is bounded in L1. Hence, we can write

|γ∗n − γn|2 ≤ OP(1) + |γ∗n − γn|oP(1)

and therefore |γ∗n − γn| = OP(1) (and, consequently, |γ∗n − γ0| = OP(1)).

We first rewrite mθ(X) as follows:

mθ(X) = −ε̃2n − 2(αn − α)ε̃n1Z≤ζ∧ζn − (αn − α)21Z≤ζ∧ζn

−2(βn − α)ε̃n1ζn<Z≤ζ − (βn − α)21ζn<Z≤ζ

−2(αn − β)ε̃n1ζ<Z≤ζn − (αn − β)21ζ<Z≤ζn

−2(βn − β)ε̃n1Z>ζ∨ζn − (βn − β)21Z>ζ∨ζn . (31)
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We can then decompose M∗
n as in (31), and use Lemmas A.6 and A.5 and the fact

that θn → θ0, to obtain∥∥M∗
n + P∗n(ε̃2n)−Mn −Qn(ε̃2n)

∥∥
K

P−→ 0.∥∥M∗
n + P∗n(ε̃2n)−M − σ2

∥∥
K

P−→ 0

for every compact K ⊂ Θ. But θ0 is also the unique maximizer of M + σ2 and

|γ∗n − γ0| = OP(1). Therefore, the conditions of Corollary 3.2.3 (ii), page 287 of

Van der Vaart and Wellner (1996), hold and we obtain that θ∗n
P−→ θ0 (and also

that θ∗n − θn
P−→ 0). �

A.2.2 Proof of Proposition 3.2

We will apply Theorem 3.4.1 of Van der Vaart and Wellner (1996) to prove the

result. Let d : R3×R3 → R be given by d(θ, ϑ) = |(θ1, θ2)− (ϑ1, ϑ2)|+
√
|θ3 − ϑ3|.

Consider η, ρ, L > 0 as in (V) and a compact rectangle K ⊂ Θ such that {θ ∈ Θ :

d(θ, θn) < η for some n ∈ N} ⊂ K. We can take L large enough so L > 1 ∨
sup {|θ1 − ϑ2| ∨ |θ2 − ϑ1| : θ, ϑ ∈ K}. Pick n large enough so we can fix some δ ∈
( 2
√

2

m
1/4
n

, η). Then, taking also (I)-(IV) into account and possibly making η smaller,

we can find positive constants c1, c2 > 0 and N ∈ N such that for any n ≥ N , we

have (5), (6), (7) and the inequalities:

inf
d(θ,θn)<δ

{
|αn − β|2 ∧ |βn − α|2

}
> c1,

Qn(Z ≤ a) ∧Qn(Z > b) > c2.

Also, let Mn(θ) := M∗
n(θ) + P∗n(ε̃2n) and Mn(θ) := Mn(θ) + Qn(ε̃2n) for all θ ∈ Θ.

Choose n ≥ N and θ ∈ Θ with δ
2
< d(θ, θn) < δ. Then, considering the properties

of the constants just defined and the expression

Mn(θ)−Mn(θn) = −2(αn − α)Qn(ε̃n1Z≤ζ∧ζn)− (αn − α)2Qn(1Z≤ζ∧ζn)

− 2(βn − α)Qn(ε̃n1ζn<Z≤ζ)− (βn − α)2Qn(1ζn<Z≤ζ)

− 2(αn − β)Qn(ε̃n1ζ<Z≤ζn)− (αn − β)2Qn(1ζ<Z≤ζn)

− 2(βn − β)Qn(ε̃n1Z>ζ∨ζn)− (βn − β)2Qn(1Z>ζ∨ζn) (32)

it is seen that the sum of the 1st, 3rd, 5th, and 7th terms in (32) can be bounded
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from above by 8L2δ√
mn

. While we also have,

(αn − α)2Qn(1Z≤ζ∧ζn) ≥ c2(αn − α)2,

(βn − β)2Qn(1Z>ζ∨ζn) ≥ c2(βn − β)2,

(βn − α)2Qn(1ζn<Z≤ζ) ≥ c1ρ|ζ − ζn|, if |ζ − ζn| ≥
δ2

8
>

1
√
mn

,

(αn − β)2Qn(1ζ<Z≤ζn) ≥ c1ρ|ζ − ζn|, if |ζ − ζn| ≥
δ2

8
>

1
√
mn

,

and therefore, noting that either (α−αn)2 +(β−βn)2 ≥ δ2

8
or |ζ−ζn| ≥ δ2

8
, letting

c = 1
16
c2 ∧ (c1ρ) and adding all the terms in the previous display, we get

sup
δ
2
<d(θ,θn)<δ

{Mn(θ)−Mn(θn)} ≤ 8L2

√
mn

δ − 2cδ2 ∀n ≥ N.

Hence, setting δn = 8L2

c
√
mn
∧ 2

√
2

m
1/4
n

we get that

sup
δ
2
<d(θ,θn)<δ

{Mn(θ)−Mn(θn)} ≤ −cδ2 ∀ δn ≤ δ < η, ∀n ≥ N. (33)

Next we will show

√
nE

(
sup

d(θ,θn)<δ

{|(Mn −Mn)(θ)− (Mn −Mn)(θn)|}

)
.

√
n

√
mn

δ. (34)

Note that, using the expansion (31), Mn(θn) =Mn(θn) = 0. To control the term

(Mn−Mn)(θ) observe that it admits a very similar expansion as (32) with the Qn

replaced by (P∗n − Qn); in particular, we can write the difference Mn(θ) −Mn(θ)

(by re-arranging the terms) as

− 2(αn − α)(P∗n −Qn)(ε̃n1Z≤ζ∧ζn)− 2(βn − β)(P∗n −Qn)(ε̃n1Z>ζ∨ζn)

−2(βn − α)(P∗n −Qn)(ε̃n1ζn<Z≤ζ)− 2(αn − β)(P∗n −Qn)(ε̃n1ζ<Z≤ζn)

−(αn − α)2(P∗n −Qn)(1Z≤ζ∧ζn)− (βn − β)2(P∗n −Qn)(1Z>ζ∨ζn)

−(αn − β)2(P∗n −Qn)(1ζ<Z≤ζn)− (βn − α)2(P∗n −Qn)(1ζn<Z≤ζ). (35)

Each of these terms can be controlled by using Lemma A.4 as

E
(∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JA (1)
√
mn

√
Qn(ε̃2n)

E
(∥∥(P∗n −Qn)(ε̃n1(·)<Z≤ζn)

∥∥
|ζ−ζn|<δ2

)
≤ JA (1)
√
mn

√
Qn(ε̃2n1ζn−δ2<Z≤ζn+δ2).
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Lemma A.5 implies that Qn(ε̃2n1ζn−δ2<Z≤ζn+δ2) → σ2P(ζ0 − δ2 < Z ≤ ζ0 + δ2) =

σ2{2f(ζ0)δ2+o(δ2)}. Hence, there is a constantR > 0 such that the right side of the

above equations are bounded by R/
√
mn and R

√
δ2 + o(δ2)/

√
mn. Using similar

arguments, we can in fact make R large enough so that the following inequalities

hold too

E
(∥∥(P∗n −Qn)(ε̃n1Z>(·)∨ζn)

∥∥
[a,b]

)
≤ R
√
mn

(36)

E
(∥∥(P∗n −Qn)(ε̃n1ζn<Z≤(·))

∥∥
|ζ−ζn|<δ2

)
≤ R
√
mn

√
δ2 + o(δ2). (37)

We also assume that R > JF(1). Using (36), (37), the discussion preceding the

display, and grouping two consecutive terms at a time in the expansion (35), it is

easily seen that

√
nE

(
sup

d(θ,θn)<δ

{|(Mn −Mn)(θ)− (Mn −Mn)(θn)|}

)
.

4R
√
n

√
mn

δ

+
4RL
√
n

√
mn

√
δ2 + o(δ2) +

2R
√
n

√
mn

δ2 +
2RL2f(ζ0)

√
n

√
mn

(δ2 + o(δ2)).

Thus by taking η > 0 small enough we can show that (34) holds for every n ≥ N

and any δ ∈ [δn, η), with δn and N defined as in (33). Defining φn(δ) =
√
n√
mn
δ and

rn =
√
mn, the hypotheses of Theorem 3.4.1 of Van der Vaart and Wellner (1996)

are satisfied (note that Proposition 3.1 implies that d(θn, θ
∗
n)

P−→ 0). Therefore,

rnd(θn, θ
∗
n) =

√
mn(α∗n − αn)2 +mn(β∗n − βn)2 +

√
mn|ζ∗n − ζn| = OP(1). �

A.2.3 Proof of Lemma 3.1

Let η > 0 be an upper bound for the norm of the elements in K. The maximal

inequality from Kim and Pollard (1990) and Lemma A.4 imply

√
mnE

(∥∥∥(P∗n −Qn)(ε̃n1ζn+
(·)
mn

<Z≤ζn)
∥∥∥
K

)
≤ JA (1)

√
Qn(ε̃2n1ζn− η

mn
<Z≤ζn)

√
mnE

(∥∥∥(P∗n −Qn)(1
ζn+

(·)
mn

<Z≤ζn)
∥∥∥
K

)
≤ JF(1)

√
Qn(1ζn− η

mn
<Z≤ζn).

By (i) and (iv) of Lemma A.5 applied with 1Z≤(·)∧ζn in place of 1(·)<Z≤ζn , we see

that the righthand side of both the above inequalities go to zero. On the other

hand, using (8) and (9) it is easy to see that both
√
mn‖Qn(ε̃2n1ζn+

(·)
mn

<Z≤ζn)‖K
and
√
mn‖Qn(1

ζn+
(·)
mn

<Z≤ζn)‖K converge to zero. Now, note that
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√
mn

∥∥∥P∗n (ε̃n1ζn+
(·)
mn

<Z≤ζn

)∥∥∥
K

is bounded by

√
mn

∥∥∥(P∗n −Qn)(ε̃n1ζn+
(·)
mn

<Z≤ζn)
∥∥∥
K

+
√
mn

∥∥∥Qn

(
|ε̃n|1ζn+

(·)
mn

<Z≤ζn

)∥∥∥
K

and thus
√
mn

∥∥∥P∗n (ε̃n1ζn+
(·)
mn

<Z≤ζn

)∥∥∥
K

L1−→ 0. Similarly we can bound

√
mn

∥∥∥P∗n (1ζn+
(·)
mn

<Z≤ζn

)∥∥∥
K

and show that it converges to zero in mean. Finally,

from the expressions

A∗n(h1)− Ân(h1, h3) = 2h1

√
mnP∗n

(
ε̃n1ζn+

h3
mn

<Z≤ζn

)
− h2

1P∗n
(
1
ζn+

(h3
mn

<Z≤ζn

)
,

C∗n(h3)− Ĉn(h2, h3) = 2h2

√
mnP∗n

(
ε̃n1ζn+

h3
mn

<Z≤ζn

)
−
(
2h2

√
mn(αn − βn)− h2

2

)
P∗n
(
1
ζn+

h3
mn

<Z≤ζn

)
we get that

∥∥∥A∗n − Ân∥∥∥
K

L1−→ 0 and
∥∥∥C∗n − Ĉn∥∥∥

K

L1−→ 0. With completely anal-

ogous arguments, it is seen that
∥∥∥B∗n − B̂n

∥∥∥
K

L1−→ 0 and
∥∥∥D∗n − D̂n

∥∥∥
K

L1−→ 0 as

well. Observing that Ên = Ân + B̂n + Ĉn + D̂n−P∗n(ε̃2n) completes the proof of the

result. �

A.2.4 Proof of Lemma 3.2

It suffices to show that each of the components of (Ξn)∞n=1 is tight. Write ε̃n,j =

ε̃n(Zn,j, Yn,j) and let

rn = mnQn

(
e
i ξ√

mn
ε̃n1Z≤ζn − 1− i ξ

mn

√
mnε̃n1Z≤ζn +

ξ2

2mn

ε̃2n1Z≤ζn

)
≤ m

−1/2
n ξ3Qn|ε̃n|3

6
.

Then, assumption (VIII) implies that rn → 0 as n → ∞. Since the characteristic

function of
√
mnP∗n(ε̃n1Z≤ζn) is given by

E
(
eiξ
√
mnP∗n(ε̃n1Z≤ζn )

)
=

(
1 + i

ξ
√
mn

Qn (ε̃n1Z≤ζn)− ξ2

2mn

Qn

(
ε̃2n1Z≤ζn

)
+

rn
mn

)mn
taking the limit as n→∞ we can conclude that

√
mnP∗n(ε̃n1Z≤ζn) N(0,P(Z ≤

ζ0)σ2) by using (VII) and the fact that (1 + βn/n)n → eβ if βn → β. With similar

arguments, it is seen that
√
mnP∗n(ε̃n1Z>ζn) N(0,P(Z > ζ0)σ2), so the first two

components of the random vector of interest are uniformly tight.
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Consider now the processes Γn(t) = mnP∗n(1ζn<Z≤ζn+ t
mn

) and

Ψn(t) = mnP∗n(ε̃n1ζn<Z≤ζn+ t
mn

). For any process Ψ ∈ D̃I , I ⊂ R compact interval,

δ > 0, we write

w
′′

Ψ (δ) = sup {|Ψ(t1)−Ψ(t)| ∧ |Ψ(t2)−Ψ(t)|}

where the supremum is taken over all t1 ≤ t ≤ t2 ∈ I with 0 ≤ t2−t1 ≤ δ. Also, for

any A ⊂ I, define wΨ (A) = sup
s,t∈A
{|Ψ(t)−Ψ(s)|}. This agrees with the notation

defined in Chapter 14 of Billingsley (1968). Let η > 0 be an upper bound for the

absolute values of the elements of I, consider any ρ > 0, and define the numbers

aρΨ and aρΓ by,

aρΨ =
1

ρ
sup
n∈N

{
mnQn

(
|ε̃n|1ζn<Z≤ζn+ η

mn

)}
aρΓ =

1

ρ
sup
n∈N

{
mnQn

(
1ζn<Z≤ζn+ η

mn

)}
.

Then, using Markov’s inequality,

lim
n→∞

P

(
sup
t∈I
{|Ψn(t)|} > aρΨ

)
≤ ρ (38)

lim
n→∞

P

(
sup
t∈I
{|Γn(t)|} > aρΓ

)
≤ ρ. (39)

Now, let ρ, γ > 0 be any pair of positive numbers and assume that I = [a, b].

Then, choose δ < γ
8|b−a|f(ζ0)2

∧ |b−a|
4
∧ 1

f(ζ0)
so there is an integer N ≥ 2 such

that δ < |b−a|
N

< 2δ. Define sj = a + j
N

(b − a) and consider the partition

{a = s0 < s1 < . . . < sN = b} of I. Notice that if Ψ is a step function on I, for

w
′′
Ψ (δ) to be positive, we need at least two jumps in an interval of size at most δ.

Then, the probability that at least two jumps of the process Ψn happens on any

interval (sj−2, sj] is bounded from above by

aj,mn := P

( ⋃
1≤k<l≤mn

[
mn(Zn,k − ζn),mn(Zn,l − ζn) ∈ (sj−2, sj]

])

≤ m2
n

2
Qn

(
ζn +

sj−2

mn

< Z ≤ ζn +
sj
mn

)2

and hence the limit superior of the probability that either Ψn or Γn has two jumps

in any interval of the form (sj−2, sj] is bounded from above by 2|b− a|2f(ζ0)2/N2

by (VI). Therefore, the probability that at least two jumps happen in any interval
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of size at most δ is asymptotically bounded from above by

N∑
i=2

aj,mn ≤
N∑
i=2

2|b− a|2f(ζ0)2/N2 ≤ 4(N − 1)f(ζ0)2|b− a|δ/N ≤ γ.

Thus,

lim
n→∞

P
(
w
′′

Ψn (δ) > ρ
)

< γ (40)

The exact same argument can be used to show that

lim
n→∞

P
(
w
′′

Γn (δ) > ρ
)

< γ. (41)

Now, note that

P (wΨn ([a, a+ δ)) > ρ) ≤ P

(
mn⋃
j=1

mn(Zn,j − ζn) ∈ [a, a+ δ) > ρ

)

≤ mnQn

(
ζn +

a

mn

< Z ≤ ζn +
a+ δ

mn

)
which implies that

lim
n→∞

P (wΨn ([a, a+ δ)) > ρ) ≤ δf(ζ0) < γ. (42)

A similar analysis leads to the following bounds

lim
n→∞

P (wΨn ([b− δ, b)) > ρ) < γ (43)

lim
n→∞

P (wΓn ([a, a+ δ)) > ρ) < γ (44)

lim
n→∞

P (wΓn ([b− δ, b)) > ρ) < γ. (45)

Putting together (38), (39), (40), (41), (42), (43), (44) and (45) and using Theorem

15.3 of Billingsley (1968) we obtain that both sequences (Ψn)∞n=1 and (Γn)∞n=1 are

uniformly tight in D̃I . Similar arguments show the tightness of the third and fourth

components of the process. Therefore, (Ξn)∞n=1 is uniformly tight. The uniform

tightness of (E∗n)∞n=1 now follows from the fact that (Ξn)∞n=1 is uniformly tight and

E∗n is a continuous function of Ξn. �

A.2.5 Proof of Lemma 3.3

In view of Lemma 3.2, to show (i) it suffices to show convergence of the finite

dimensional distributions. To this end, consider the real numbers t−N− < . . . <
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t−1 < 0 = t0 < t1 < . . . < tN+ and the linear combination

Wn = µ
√
mnP∗n(ε̃n1Z≤ζn) + λ

√
mnP∗n (ε̃n1Z>ζn)

+

N−∑
j=1

{
ξ−jmnP∗n

(
ε̃n1ζn+

t−j
mn

<Z≤ζn

)
+ η−jmnP∗n

(
1
ζn+

t−j
mn

<Z≤ζn

)}

+

N+∑
j=1

{
ξjmnP∗n

(
ε̃n1ζn<Z≤ζn+

tj
mn

)
+ ηjmnP∗n

(
1
ζn<Z≤ζn+

tj
mn

)}
(46)

where µ, λ and the ξj’s and the ηj’s are arbitrary real numbers. Now, set ξ0 =

η0 = 0 and define

µ±j =

N±∑
k=j

η±k and λ±j =

N±∑
k=j

ξ±k. (47)

Then grouping terms appropriately we can rewrite Wn as

Wn = µ
√
mnP∗n

(
ε̃n1

Z≤ζn+
t−N−
mn

)
+ λ
√
mnP∗n

(
ε̃n1

Z>ζn+
tN+
mn

)
+

N−∑
j=1

(λ−jmn + µ
√
mn)P∗n

(
ε̃n1ζn+

t−j
mn

<Z≤ζn+
t−j+1
mn

)

+

N−∑
j=1

µ−jmnP∗n
(
1
ζn+

t−j
mn

<Z≤ζn+
t−j+1
mn

)

+

N+∑
j=1

(λjmn + λ
√
mn)P∗n

(
ε̃n1ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)

+

N+∑
j=1

µjmnP∗n
(
1
ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)
.

Using the independence of Xn,1, . . . , Xn,mn , the characteristic function of Wn is

E
(
eisWn

)
=

[
1 +

N−∑
j=1

Qn

(
(e
is( µ√

mn
+λ−j)ε̃n+isµ−j − 1)1

ζn+
t−j
mn

<Z≤ζn+
t−j+1
mn

)
+Qn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
+ Qn

(
(e
i sλ√

mn
ε̃n − 1)1

Z>ζn+
tN+
mn

)
+

N+∑
j=1

Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)]mn
. (48)

Let rn be given by

rn = mnQn

[(
e
i sµ√

mn
ε̃n − 1− i sµ

√
mn

ε̃n +
s2µ2

2mn

ε̃2n

)
1
Z≤ζn+

t−N−
mn

]
≤ s3Qn|ε̃3n|

6
√
mn

.
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Condition (VIII) now implies that rn = o(1). But note that

Qn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
= i

sµ

mn

√
mnQn

(
ε̃1

Z≤ζn+
t−N−
mn

)
−s

2µ2

2mn

Qn

(
ε̃2n1Z≤ζn+

t−N−
mn

)
+

rn
mn

and so (i) of Lemma A.5 together with condition (VII) and (8) imply that

mnQn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
= −s

2µ2

2
σ2P(Z ≤ ζ0) + o(1). (49)

Following a completely analogous argument one can show that

mnQn

((
e
i sλ√

mn
ε̃n − 1

)
1
Z>ζn+

tN+
mn

)
= −s

2λ2

2
σ2P(Z > ζ0) + o(1). (50)

Now, take 1 ≤ j ≤ N+, and observe that equation (8) implies

mn

∣∣∣∣Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − eisλj ε̃n+isµj)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)∣∣∣∣
≤ |sλ|

√
mnQn

(
|ε̃n|1ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)
→ 0.

Using (VI) we can write

mnQn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)
= (ϕ(sλj)e

isµj − 1)f(ζ0)(tj − tj−1) + o(1)

where ϕ is the characteristic function of ε (under P). Thus,

mn

N+∑
j=1

Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)

=

N+∑
j=1

(tj − tj−1)f(ζ0)(ϕ(sλj)e
isµj − 1) + o(1). (51)

Similarly, one can prove that

mn

N−∑
j=1

Qn

(
(e
is( µ√

mn
+λ−j)ε̃n+isµ−j − 1)1

ζn+
t−j
mn

<Z≤ζn+
t−j+1
mn

)

=

N−∑
j=1

(t−j+1 − t−j)f(ζ0)(ϕ(sλ−j)e
isµ−j − 1) + o(1). (52)
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So putting (46), (47), (48), (49), (50), (51) and (52) together we see that,

E
(
eisWn

)
→ exp

[
N−∑
j=1

f(ζ0)(t−j+1 − t−j)

{
ϕ

(
s(

N−∑
k=j

ξ−k)

)
eis

∑N−
k=j η−k − 1

}

−s
2µ2σ2

2
P(Z ≤ ζ0)− s2λ2σ2

2
P(Z > ζ0)

+

N+∑
j=1

f(ζ0)(tj − tj−1)

{
ϕ

(
s(

N+∑
k=j

ξk)

)
e
is
(∑N+

k=j ηk

)
− 1

}]
. (53)

But the right-hand side of (53) is precisely E
(
eisW

)
where, with the notation of

(11), W is given by

W = µZ1 + λZ2 +

N−∑
k=1

ξ−k ∑
0<j≤ν1(−t−k)

vk1t−k<0 + η−kν1(−t−k)1t−k<0


+

N+∑
k=1

ξk ∑
0<j≤ν2(tk)

uk1tk≥0 + ηkν2(tk)1tk≥0


and thus Wn  W . From the fact that µ, λ, the ξj’s and the ηj’s were arbitrarily
chosen, by the Cramer-Wold device(

Ξn(t−N−), . . . ,Ξn(t−1),Ξn(t1), . . . ,Ξn(tN+)
)′
 
(
Ξ(t−N−), . . . ,Ξ(t−1),Ξ(t1), . . . ,Ξ(tN+)

)′
.

This gives the convergence of the finite dimensional distributions, proving (i). An

application of the continuous mapping theorem shows that (i) implies (ii). Further,

Lemma 3.1 and (ii) now imply (iii). �

A.2.6 Proof of Lemma 3.4

Every sample path of E∗ = E∗(h1, h2, h3) can be written as

2h1Z1 − h2
1P(Z ≤ ζ0) + 2h2Z2 − h2

2P(Z > ζ0) + 1h3<02(α0 − β0)

ν1(−h3)∑
j=1

vj

−(α0 − β0)2ν1(−h3)1h3<0 + 1h3≥02(β0 − α0)

ν2(h3)∑
j=1

uj − 1h3≥0(α0 − β0)2ν2(h3).

From this last expression it is obvious that for any fixed h3, the E∗(·, ·, h3) gets

maximized at φ∗1 = Z1/P(Z ≤ ζ0) and φ∗2 = Z2/P(Z > ζ0). The independence

of the three co-ordinates follows from the fact that φ∗1 depends only on Z1, φ∗2
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depends only on Z2, and φ∗3 depends only on u, v, ν1 and ν2. Since E∗ is piecewise

constant in the third argument h3, to complete the proof it is enough to show that

E∗(φ∗1, φ
∗
2, h3) → −∞ as |h3| → ∞. But this follows from the law of the iterated

logarithm (applied to the random walks defined by the vi’s and ui’s) together with

the fact that ν1(t) ∧ ν2(t)
a.s.−→ ∞ as t → ∞. Note that

∑ν1(−h3)
j=1 vj is of order

O(
√
ν1 log log ν1) a.s. as h3 →∞. �

A.2.7 Proof of Proposition 3.3

Lemma 3.4 and the fact that the ui’s and the vi’s come from a continuous distri-

bution, show that (E∗, J∗) satisfy the hypotheses of Lemma A.3, and in particular

that (29) holds. Moreover, Proposition 3.2 shows that the sequence (
√
mn(α∗n −

αn),
√
mn(β∗n − βn),mn(ζ∗n − ζn)) is tight. Now, consider C ∈ N and let φn, φn,C

and φC be the smallest maximizers of Ên, Ên|[−C,C]3 and E∗|[−C,C]3 . To prove the

result, we will apply Lemma A.3 and Lemma 3.3 of Lan et al. (2009). Using the

notation of the latter, set ε = 1
C

, Wnε = φn,C , Wε = φC , Wn = φn and W = φ∗.

From Proposition 3.2 we see that lim
ε→0

lim
n→∞

P (Wnε 6= Wn) = 0. Lemma 3.4 implies

that lim
ε→0

P (Wε 6= W ) = 0. Finally, Lemma A.3 and an application of Skorohod’s

Representation Theorem (see Theorem 1.8, page 102 of Ethier and Kurtz (2005))

show that Wnε  Wε and hence, from Lemma 3.3 of Lan et al. (2009), we conclude

that φn  φ∗. �

A.2.8 Proof of Lemma 4.1

We expand mθ(X) as in (30) but with ε = Y −α01Z≤ζ0 − β01Z>ζ0 in place of ε̃n to

get

mθ(X) = −(ε+ α0 − α)21Z≤ζ0∧ζ − (ε+ β0 − α)21ζ0<Z≤ζ

−(ε+ α0 − β)21ζ<Z≤ζ0 − (ε+ β0 − β)21Z>ζ0∨ζ . (54)

Letting γ̂n = (α̂n, β̂n), we can also bound Mn(θ0) using a similar argument as in

the proof of Proposition 3.1 to obtain

|γ̂n − γ0|2Pn(Z < a) ∧ Pn(Z > b)

≤ Pn
(
ε21a≤Z≤b

)
+ 2|γ̂n − γ0| (|Pn (ε1Z<a) |+ |Pn (ε1Z>b) |) .
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By the strong law of large numbers

Pn(Z < a) ∧ Pn(Z > b)
a.s.−→ P(Z < a) ∧ P(Z > b)

Pn
(
ε21a≤Z≤b

) a.s.−→ σ2P (a ≤ Z ≤ b) and

|Pn (ε1Z<a) |+ |Pn (ε1Z>b) |
a.s.−→ 0.

Therefore, w.p. 1 we can write

|γ̂n − γ0|2 ≤ O(1) + |γ̂n − γ0|o(1)

and thus the sequence (γ̂n − γ0)∞n=1 is bounded w.p. 1.

Now, take any compact set K ⊂ Θ and consider the classes of functions

K1 =
{

(ε+ α0 − α)2 1(−∞,ζ∧ζ0]

}
θ∈K

K2 =
{

(ε+ β0 − α)2 1(ζ0,ζ]

}
θ∈K

K3 =
{

(ε+ α0 − β)2 1(ζ,ζ0]

}
θ∈K

K4 =
{

(ε+ β0 − β)2 1(ζ∨ζ0,∞)

}
θ∈K .

If A∗ is an upper bound for the norm of the elements in K, we can see that each of

these classes is a VC-subgraph class with integrable envelope (|ε|+A∗+|γ0|)2. With

the notation ‖Q‖F = sup {|Qf | : f ∈ F} for classes of functions F and probability

measures Q, a combination of Theorems 2.6.7 and 2.4.3 of Van der Vaart and

Wellner (1996) shows that all four quantities ‖Pn − P‖Kj , j = 1, 2, 3, 4, converge

to zero almost surely. Therefore using (54), we get the inequality

‖Mn −M‖K ≤
∑

1≤j≤4

‖Pn − P‖Kj

which now implies (i) ( Since Mn,M ∈ DK , ‖Mn −M‖K is measurable.). The

second assertion follows immediately from (ii).

Consider a family of compact rectangles Θn ⊂ Θn+1 such that Θ = ∪∞n=1Θn. Then,

since the sequence (γ̂n − γ0)∞n=1 is almost surely bounded, w.p. 1 we have that there

is some m ∈ N such that Θm contains both θ0 and the entire sequence (θ̂n)∞n=1.

Finally, from (31) with θn replaced by θ0 it is seen that

M(θ) = −σ2 − (α0 − α)2P(Z ≤ ζ ∧ ζ0)− (α0 − β)2P(ζ < Z ≤ ζ0)

−(α− β0)2P(ζ0 < Z ≤ ζ)− (β0 − β)2P(Z > ζ ∨ ζ0).

As α0 6= β0 and Z has a strictly positive density on [a, b], the last equation shows

that M satisfies the conditions of Lemma A.2. Since the event that Mn → M
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in DΘk for all k ∈ N has probability one, Lemma A.2 allows us to conclude that

sargmax(Mn) = θ̂n
a.s.−→ θ0. �

A.2.9 Proof of Lemma 4.2

Let ρ, δ > 0. We know from Corollary 3.1 that the sequences (
√
n(α̂n − α0))

∞
n=1,(

n(ζ̂n − ζ0)
)∞
n=1

and
(
nPn

(
ζ0 − h

n
< Z ≤ ζ0 + h

n

))∞
n=1

, for any h > 0, are all stochas-

tically bounded. Thus, sincemn = O(n) there is L > 0 such that P
(
mn|ζ̂n − ζ0| > L

)
<

ρ and P
(√

mn|α̂n − α0| > L
)
< ρ for any n ∈ N. Therefore,

P

(
mγ
n

∥∥∥∥Pn(ζ̂n +
(·)
mn

< Z ≤ ζ̂n)

∥∥∥∥
K

> δ

)
≤ mγ

n

δ
E

(
Pn
(
ζ0 −

L+ η

mn

< Z ≤ ζ0 +
L

mn

))
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ f(ζ0)

η + 2L

δ
mγ−1
n + o

(
mγ−1
n

)
+ ρ,

so by letting n→∞ and then ρ→ 0 we get (i).
We prove (ii) for when p = 1, the case p = 2 follows from similar arguments. Note

that if mn|ζ̂n − ζ0| ≤ L, then mγ
n‖Pn(|ε̃n|1ζ̂n+

(·)
mn

<Z≤ζ̂n)‖K can be bounded by

mγ
n

∥∥∥Pn (|ε|1ζ0− L
mn

+
(·)
mn

<Z≤ζ0+ L
mn

)∥∥∥
K

+mγ
n|α̂n − α0|

∥∥∥∥Pn(ζ0 −
L

mn
+

(·)
mn

< Z ≤ ζ0 +
L

mn
)
∥∥∥∥
K

.

But just as in the proof of (i), we have

P
(
mγ
n

∥∥∥Pn(|ε|1
ζ̂n+

(·)
mn

<Z≤ζ̂n
)
∥∥∥
K
> δ

)
≤ P

(
mγ
n

∥∥∥Pn (|ε|1ζ0− L
mn

+
(·)
mn

<Z≤ζ0+ L
mn

)∥∥∥
K
>
δ

2

)
+

P
(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ 2mγ

n

δ
E
(
Pn
(
|ε|1ζ0− L

mn
+ η
mn

<Z≤ζ0+ L
mn

))
+

P
(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ f(ζ0)E (|ε|) 2(η + 2L)

δ
mγ−1
n + o

(
mγ−1
n

)
+

P
(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ ρ.

The result follows again by letting n→∞ and ρ→ 0. �

The next results will be useful to support our conjecture of inconsistency of some

of our bootstrap scenarios.
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Lemma A.7 Let λ,B > 0, ρ ∈ (0, 1
2
) and Hλ be the distribution function of

a Poisson random variable with mean λ. For each value of λ write Lρλ+B =

min {n ∈ N : Hλ+B(n) > ρ} and Uρ
λ = max {n ∈ N : 1−Hλ(n) > ρ}. Then, there

is λ∗ > 0 such that Lρλ+B < Uρ
λ for all λ ≥ λ∗.

Proof: Let cλ be the median (i.e. cλ = min{n ∈ N : Hλ(n) > 1
2
}.) of Hλ. Observe

that cλ ≤ Uρ
λ . According to Hazma (1995), |cλ − λ| < log(2) for any positive λ.

Letting bxc denote the greatest integer less than or equal to x, we have

|Hλ+B(cλ+B)−Hλ+B(cλ)|

≤ |Hλ+B(λ+B + log(2))−Hλ+B(λ− log(2))|

≤ (B + 2 log(2))e−(λ+B) (λ+B)bλ+Bc

bλ+Bc!
→ 0 as λ→∞.

as the Poisson mass function has a maximum at bλ+Bc. Therefore,

limλ→∞Hλ+B(Uρ
λ) ≥ 1/2. But we also note that supn∈N{Hλ+B(n+1)−Hλ+B(n)} →

0 as λ→∞. Thus,

lim
λ→∞

Hλ+B(Lρλ+B + 1) = ρ <
1

2
≤ lim

λ→∞
Hλ+B(Uρ

λ).

It follows that Uρ
λ > Lρλ+B for all λ sufficiently large. �

Lemma A.8

Let λ,B > 0, 0 < ρ < 1
2
, µ and ν be two nondegenerate Borel probability

measures on R and Hµ,λ denote the compound Poisson distribution with inten-

sity λ and compounding distribution µ. For each value of λ write Lρν,λ+B =

inf {s ∈ R : Hν,λ+B(s) ≥ ρ} and Uρ
µ,λ = sup {s ∈ R : 1−Hµ,λ(s) ≥ ρ}. In addition,

assume that
∫
x2ν(dx),

∫
x2µ(dx) <∞ and that

∫
xν(dx) ≤

∫
xµ(dx). Then there

is λ∗ > 0 such that Lρν,λ+B < Uρ
µ,λ for all λ ≥ λ∗. Moreover, let 0 < r < 1, suppose

that there is another Borel probability measure γ on R and define νγ := rB
λ+B

γ +
λ+(1−r)B
λ+B

and the corresponding constant Lρνγ ,λ+B = inf
{
s ∈ R : Hνγ ,λ+B(s) ≥ ρ

}
.

Then there is λ∗ > 0 such that Lρνγ ,λ+B < Uρ
µ,λ for all λ ≥ λ∗.

Proof: Denote by Φ the standard normal distribution and zα the lower α-quantile

of Φ (i.e. Φ(zα) = α). Also, write cµ :=
∫
xµ(dx), dµ :=

∫
x2µ(dx) and define the

corresponding quantities cν and dν for ν. For any possible value of λ and µ denote

by Tµ,λ a random variable with distribution Hµ,λ. And also consider a sequence of
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positive numbers κn ↑ 1. It is easily seen (as, for instance, in Theorem 2.1 of Möhle

(2005)) that Sµ,λ :=
Tµ,λ − λcµ√

λdµ
 Φ as λ → ∞. Note that since the standard

normal distribution is continuous, the distributions of Sµ,λ converge uniformly on

R to Φ as λ→∞.

Fix n ∈ N. Then, there are λ1, λ2 > 0 such that for any λ > λ1 ∨ λ2 we have

1− Φ

(
κ−1
n Uρ

µ,λ − λcµ√
λdµ

)
< ρ,

Φ

(
κnL

ρ
ν,λ+B − (λ+B)cν√

(λ+B)dν

)
< ρ.

These two inequalities in turn imply that

κ−1
n Uρ

µ,λ > λcµ −
√
λdµzρ,

κnL
ρ
ν,λ+B < (λ+B)cν +

√
λdνzρ.

Since as long as cµ ≥ cν we can find λ3 such that

(λ+B)cν +
√
λdνzρ < λcµ −

√
λdµzρ ∀ λ ≥ λ3

the first part of the result follows by taking λ∗ := λ1 ∨ λ2 ∨ λ3 and letting n→∞.

To prove the result for the measure νγ it suffices to see that we also have
Tνγ ,λ − (λ+B)cνγ√

(λ+B)dνγ
 

Φ, as λ → ∞ (this is easily seen by analyzing the characteristic functions). The

rest follows from the same argument used to prove the first part of the lemma. �

A.2.10 Proof of Lemma 4.4

Proof of (i): Let s < t. Note that (Zn)∞n=1 is a collection of i.i.d. random variables

and nPn(ζ0+ s
n
< Z ≤ ζ0+ t

n
) is permutation invariant, so the Hewitt-Savage 0-1 law

(see page 304 of Billingsley (1986)) implies that any convergent subsequence must

converge to a constant. On the other hand, Lemma 3.3 implies that nPn(ζ0 + s
n
<

Z ≤ ζ0 + t
n
)  Poisson((t − s)f(ζ0)). Therefore,

(
nPn(ζ0 + s

n
< Z ≤ ζ0 + t

n
)
)∞
n=1

has no almost surely convergent subsequence.

Proof of (ii): Now, let δ ∈ (0, 1
4
). From Proposition 3.2 we know that there is

Bδ > 0 such that P
(
n|ζ̂n − ζ0| ≤ Bδ

)
> 1 − δ for any n ∈ N. Choose h > 2Bδ

and take any increasing sequence of natural numbers nk. Write T̂k = nkPnk(ζ̂nk <
Z ≤ ζ̂nk + h

nk
), Sk = nkPnk(ζ0 − Bδ

nk
< Z ≤ ζ0 + h+Bδ

nk
) and Tk = nkPnk(ζ0 + Bδ

nk
<
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Z ≤ ζ0 + h−Bδ
nk

). Then,
{
nk|ζ̂nk − ζ0| ≤ Bδ

}
⊂
{
Sk ≥ T̂k ≥ Tk

}
and therefore we

have P
(
T̂k ≥ Tk

)
∧P

(
Sk ≥ T̂k

)
> 1− δ for all k.

We know that Tk  Poisson((h − 2Bδ)f(ζ0)) and Sk  Poisson((h + 2Bδ)f(ζ0)),

so in view of Lemma A.7 with B = 4Bδf(ζ0) and λ = (h − 2Bδ)f(ζ0), there

is a number h∗ > 2Bδ large enough so that whenever h ≥ h∗ we can find two

numbers N1,h < N2,h ∈ N with the property that, limk→∞P (Tk > N2,h) > 2δ

and limk→∞P (Sk ≤ N1,h) > 2δ. Thus, for h ≥ h∗, P (Tk > N2,h) > 2δ and

P (Sk ≤ N1,h) > 2δ for all but a finite number of k’s. Therefore, for any k large

enough, P (Tk > N2,h)∧P (Sk ≤ N1,h) > 2δ. Using the fact that P
(
Sk ≥ T̂k ≥ Tk

)
>

1−δ we get that P
(
T̂k ≥ Tk > N2,h

)
∧P

(
N1,h ≥ Sk ≥ T̂k

)
> δ for all but finitely

many k’s. Thus, whenever h ≥ h∗,

P
(
T̂k ≥ Tk > N2,h, i.o.

)
> δ and P

(
N1,h ≥ Sk ≥ T̂k, i.o.

)
> δ.

But for every k ∈ N, the events
{
T̂k ≥ Tk > N2,h

}
and

{
N1,h ≥ Sk ≥ T̂k

}
are

permutation-invariant on the i.i.d. random vectorsX1, . . . , Xnk . Hence, the Hewitt-

Savage 0-1 law implies that P
(
T̂k ≥ Tk > N2,h, i.o.

)
= 1 and P

(
N1,h ≥ Sk ≥ T̂k, i.o.

)
=

1. Since N1,h < N2,h it follows that T̂k = nkPnk(ζ̂nk < Z ≤ ζ̂nk + h/nk) does not

have an almost sure limit. But the choice of the subsequence nk was arbitrary

and independent of h∗ so we can conclude that for any h ≥ h∗, the sequence{
nPn(ζ̂n < Z ≤ ζ̂n + h

n
)
}∞
n=1

does not converge in probability. Proceeding analo-

gously, we can prove the same for
{
nPn(ζ̂n − h

n
< Z ≤ ζ̂n)

}∞
n=1

.

Proof of (iii): We introduce some notation, for any two Borel probability mea-

sures µ and ν on R we write µFν for their convolution and for λ > 0 we write

CPoisson(µ, λ) for the compound Poisson distribution with intensity λ and com-

pounding distribution µ. Let µα and µβ be, respectively, the distributions under

P of φ(ε+ α0) and φ(ε+ β0).

Observe that depending on whether t < 0, s < 0 < t or s > 0 we have that

nPn(φ(Y )1ζ0+ s
n
<Z≤ζ0+ t

n
) converges weakly to CPoisson(µα, (t−s)f(ζ0)), CPoisson(µα, sf(ζ0))FCPoisson(µβ, tf(ζ0))

or CPoisson(µβ, (t − s)f(ζ0)), respectively. This follows easily from convergence

of the corresponding characteristic functions. Considering that {(Yn, Zn)}∞n=1 is a

collection of i.i.d. random vectors and that nPn(φ(Y )1ζ0+ s
n
<Z≤ζ0+ t

n
) is permuta-

tion invariant for (Y1, Z1), . . . , (Yn, Zn) the same argument as in (i) applies here as

well.

Proof of (iv): We keep the notation used in the proof of (iii). The argument here

is quite similar to the one used to show (ii). Assume without loss of generality
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that φ ≤ 0.

Now, let δ ∈
(
0, 1

4

)
and N ∈ N. From Proposition 3.2 we know that there

is Bδ > 0 such that P
(
n|ζ̂n − ζ0| ≤ Bδ

)
> 1 − δ for any n ∈ N. Choose

h > 2Bδ and take any increasing sequence of natural numbers nk. Write T̂ φk,h =

nkPnk(φ(Y )1ζ̂nk<Z≤ζ̂nk+ h
nk

), Sφk,h = nkPnk(φ(Y )1
ζ0−

Bδ
nk
<Z≤ζ0+

h+Bδ
nk

) and T φk,h = nkPnk(φ(Y )1
ζ0+

Bδ
nk
<Z≤ζ0+

h−Bδ
nk

).

Then,
{
nk|ζ̂nk − ζ0| ≤ Bδ

}
⊂
{
Sφk,h ≤ T̂ φk,h ≤ T φk,h

}
and therefore we have P

(
T̂ φk,h ≤ T φk,h

)
∧

P
(
Sφk,h ≤ T̂ φk,h

)
> 1− δ for all k.

We know that T φk,h  CPoisson(µβ, (h− 2Bδ)f(ζ0)) and

Sφk  CPoisson(µα, 2Bδf(ζ0))FCPoisson(µβ, (h+Bδ)f(ζ0))

≡ CPoisson

(
Bδ

h+ 2Bδ

µα +
h+Bδ

h+ 2Bδ

µβ, (h+ 2Bδ)f(ζ0)

)
,

as k →∞.

An application of Lemma A.8 with µ = ν = µβ, γ = µα, B = 4Bδf(ζ0), r = 1
4

and λ = (h− 2Bδ)f(ζ0), shows the existence of an h∗ > 2Bδ large enough so that

whenever h ≥ h∗ we can find two numbers R1,h > R2,h ∈ N with the property that

limk→∞P
(
T φk,h < R2,h

)
> 2δ and limk→∞P

(
Sφk,h ≥ R1,h

)
> 2δ. Thus, for h ≥ h∗,

P
(
T φk,h < R2,h

)
> 2δ and P

(
Sφk,h ≥ R1,h

)
> 2δ for all but a finite number of k’s.

Therefore, for any k large enough, P
(
T φk,h < R2,h

)
∧P

(
Sφk,h ≥ R1,h

)
> 2δ. Using

the fact that P
(
Sφk,h ≤ T̂ φk,h ≤ T φk,h

)
> 1− δ we get that P

(
T̂ φk,h ≤ T φk,h < R2,h

)
∧

P
(
R1,h ≤ Sφk,h ≤ T̂ φk,h

)
> δ for all but finitely many k’s. Thus, whenever h ≥ h∗,

P
(
T̂ φk,h ≤ T φk,h < R2,h, i.o.

)
> δ and P

(
R1,h ≤ Sφk,h ≤ T̂ φk,h, i.o.

)
> δ.

The argument relying on the Hewitt-Savage 0-1 law applied in the proof of (ii) can

be used to finish this proof. A completely analogous proof applies for
{
nPn(φ(Y )1ζ̂n− hn<Z≤ζ̂n

)
}∞
n=1

.

�

A.2.11 Proof of Lemma 4.6

We start by computing the characteristic functions of the weak limits of the last

two components of the process Ξ̃n as defined in (17). Let gn(ξ) and ψn(ξ) be the

(unconditional) characteristic functions of nP∗n(1ζ0<Z≤ζ0+ t
n
) and nP∗n(ε1ζ0<Z≤ζ0+ t

n
),
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respectively. Fix ξ ∈ R and write

Λn := EX

(
e
iξnP∗n(ε1

ζ0<Z≤ζ0+ t
n

)
)
,

Ψn := nPn
((

eiξε − 1
)
1ζ0<Z≤ζ0+ t

n

)
,

Ψ∗ξ :=
∑

1≤k≤ν(t)

(
eiξεk − 1

)
,

where (ν(s))s≥0 is a Poisson process with rate f(ζ0) independent of (εn)∞n=1. Then,

ψn(ξ) = E (Λn) and |Λn| ≤ 1. By the conditional independence of the bootstrap

samples, we have

Λn =

(
1 +

1

n
Ψn

)n
.

We now consider the characteristic functions of the complex-valued random vari-
ables Ψn. Taking into account the independence of the X’s, we obtain that for any
η ∈ R2,

E
(

eiη1Re(Ψn)+iη2Im(Ψn)
)

=
(

1 +
1
n

P
(

eiη1(cos(ξε)−1)+iη2 sin(ξε) − 1
)(

nP(1ζ0<Z<ζ0+ t
n

)
))n

E
(

eiη1Re(Ψn)+iη2Im(Ψn)
)
→ etf(ζ0)E(eiη1(cos(ξε)−1)+iη2 sin(ξε)−1) = E

(
eiη1ReΨ∗ξ+iη2ImΨ∗ξ

)
.

Therefore, Ψn  Ψ∗ξ and, from the continuous mapping theorem, Λn  eΨ∗ξ . Thus,

Lebesgue’s Dominated Convergence Theorem implies

ψn(ξ) = E (Λn)→ E
(
eΨ∗ξ
)

= e
tf(ζ0)

(
E
(

eeiξε−1
)
−1
)
∀ ξ ∈ R. (55)

With simpler arguments, we can also show that

gn(ξ)→ e
tf(ζ0)

(
e(eiξε−1)−1

)
∀ ξ ∈ R. (56)

While (56) is immediately recognized as the characteristic function of a compound

Poisson process with rate f(ζ0) and compounding distribution Poisson(1), the char-

acteristic function in (55) can be shown to correspond to another compound Pois-

son process which can be written as ∑
1≤j≤ν(t)

εjτj, (57)

where (τn)∞n=1
i.i.d.∼ Poisson(1), (ν(s))s≥0 is a Poisson process with rate f(ζ0), and

(τn)∞n=1, (εn)∞n=1 and (ν(s))s≥0 are mutually independent.
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Therefore, the fifth and sixth components of Ξ̃n as defined in (17) converge, re-

spectively, to a compound Poisson process with rate f(ζ0) and Poisson(1) as com-

pounding distribution and to the process described in (57). A similar analysis

shows the analogous results for the third and fourth components of Ξ̃n. The first

and second components of Ξ̃n can easily be seen (by using the Lindeberg-Feller

Central Limit Theorem) to be asymptotically normal with mean 0 and variances

σ2P(Z ≤ ζ0) and σ2P(Z > ζ0), respectively.

All these facts indicate that the finite dimensional distributions of the limiting

process of Ξ̃n match those of the process Ξ̃. In fact, we can proceed as in the proof

of Proposition 3.3 (i.e., proving tightness and convergence of the finite dimensional

distributions using the Cramer-Wold device) to show (i) and (ii). For the sake of

brevity, we omit the full technical details.

Then, arguing as in Proposition 3.2 one can show that the sequence (
√
n(α∗n −

α0),
√
n(β∗n− β0), n(ζ∗n− ζ0)) is stochastically bounded and then conclude that the

(unconditional) asymptotic distribution of (
√
n(α∗n − α0),

√
n(β∗n − β0), n(ζ∗n − ζ0)

is that of sargmaxh∈R3{Ẽ∗(h)}, with Ẽ∗(h) as defined in (18) and (19). For the

sake of brevity we omit the full technical details of these arguments.

As n(ζ∗n−ζ0) = n(ζ∗n− ζ̂n)+n(ζ̂n−ζ0), and if the ECDF bootstrap were consistent,

the conditional distribution of n(ζ∗n − ζ̂n) (given the data) and the unconditional

distribution of n(ζ̂n − ζ0) would have had the same weak limit. Then, as a conse-

quence of Lemma 3.1 in Sen et al. (2008) (also see Theorem 2.2 in Kosorok (2008a))

the unconditional asymptotic distribution of n(ζ∗n− ζ0) must be that of the sum of

two independent copies of the asymptotic distribution of the n( ˆzetan − ζ0). The

result now follows. �

A.2.12 Proof of Lemma 4.7

Let Gn be the ECDF of ε1, . . . , εn. We first observe that∫
eiξxdPεn(x) = e−iξε̄nPn

(
eiξε̃n

)
and hence, for any ξ ∈ R with |ξ| ≤ η we have,∣∣∣∣∫ eiξxdPεn(x)− e−iξε̄n

∫
eiξxdGn(x)

∣∣∣∣ =
∣∣Pn (eiξε̃n)− Pn

(
eiξε
)∣∣

≤ |η|Pn (|ε̃n − ε|)

but Pn (|ε̃n − ε|) is bounded from above by

|α̂n − α0|+ (|α0|+ |β0|) |Pn(1Z≤ζ̂n − 1Z≤ζ0)|+ |β̂n − β0|
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which goes to zero almost surely as consequence of Lemmas 4.1 and A.5 (iv), with

Qn = Pn. Thus,

sup
|ξ|≤η

{∣∣∣∣∫ eiξxdPεn(x)− e−iξε̄n
∫
eiξxdGn(x)

∣∣∣∣} a.s.−→ 0

and (i) follows immediately because ε̄n = Pn(ε̃n)
a.s.−→ 0 and Gn converges to G in

total variation distance with probability one. The second assertion is seen to be

true at once because G is assumed to be continuous and condition (i) implies that

the characteristic functions of Pεn converge to the characteristic function of G on the

entire real line with probability one. Statements (ii) and (iii) are straightforward:

On the one hand, we have shown that conditions (I)-(IV) hold for the ECDF, so

Lemma A.5 implies that

∫
x2dPεn(x) = Pn(ε̃2n) − Pn(ε̃n)2 a.s.−→ σ2. On the other

hand, ∣∣∣∣∫ |x|dPεn − ∫ |ε|dPn∣∣∣∣ = |Pn(|ε̃n − ε̄n| − |ε|)|

≤ Pn(|ε̃n − ε|) + |ε̄n|
a.s.−→ 0.

To prove (iv), we first notice that∫
|x|3dPεn(x) ≤ |ε̄n|3 + 3|ε̄n|2Pn (|ε̃n|) + 3|ε̄n|Pn

(
ε̃2n
)

+ Pn
(
|ε̃n|3

)
.

Then, from Lemma A.6 all but the last summand on the right-hand side converge

almost surely. Hence, it suffices to show that lim Pn (|ε̃n|3) < ∞ w. p. 1. With

this in mind, let Ln = |α0|+ |α̂n|+ |β0|+ |β̂n| and observe that

Pn
(
|ε̃n|3

)
≤ Pn

(
|ε|3
)

+ 3Pn
(
|ε|2
)
Ln + 3Pn (|ε|)L2

n + L3
n.

The result then is an immediate consequence of the third moment assumption on

ε, the strong law of large numbers and the almost sure convergence of the least

squares estimators. �

A.2.13 Proof of Proposition 4.2

Just as in the proof of Proposition 3.1 we have

− 1

n

n∑
k=1

(ε̃∗n,j)
2 = Rn(θ̂n)

≤ Rn(θ∗n) ≤ − 1

n

n∑
j=1

(ε̃∗n,j + α̂n − α∗n)21Zj<a + (ε̃∗n,j + β̂n − β∗n)21Zj>b
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from which we can see that

|γ∗n − γn|2Pn(Z < a) ∧ Pn(Z > b) ≤

1

n

n∑
j=1

(ε̃∗n,j)
21a≤Zj≤b +

2

n
|γ∗n − γn|

(∣∣∣∣∣
n∑
j=1

ε̃∗n,j1Zj<a

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

ε̃∗n,j1Zj>b

∣∣∣∣∣
)
.

But the first of the terms on the right-hand side of the previous inequality is

conditionally bounded in L1 (an upper bound for the conditional expectations is

sup
n∈N

{∫
x2dPεn(x)

}
< ∞). The terms

1

n

n∑
j=1

ε̃∗n,j1Zj<a and
1

n

n∑
j=1

ε̃∗n,j1Zj>b both

have zero conditional expectation and conditional variances equal to
1

n
Pn(Z <

a)

∫
x2dPεn(x) and

1

n
Pn(Z > b)

∫
x2dPεn(x) respectively. So we have that

∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj<a

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj>b

∣∣∣∣∣ PX−→
a.s. 0.

Thus,

|γ∗n − γ̂n| = OPX
(1) almost surely. (58)

Now, let Z(k) be the k-th order statistic from the sample (Z1, . . . , Zn) and rk a

number such that Z(k) = Zrk . For any ζ ∈ [a, b] define mζ = max{1 ≤ j ≤ n :

Z(j) ≤ ζ ∧ ζ̂n} and observe that we have

1

n

n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n =
1

n

∑
1≤j≤mζ

ε̃∗n,rj , (59)

and thus

sup
ζ∈[a,b]

{∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n

∣∣∣∣∣
}
≤ max

1≤k≤n

{
1

n

∣∣∣∣∣ ∑
1≤j≤k

ε̃∗n,rj

∣∣∣∣∣
}
. (60)

But the indexes rk and the order statistics are functions of Z1, . . . , Zn and there-

fore X-measurable. Hence, conditionally,
∑

1≤j≤k

ε̃∗n,rj1Zrj≤ζ∧ζ̂n
is a square integrable

martingale with zero expectation. Hence, from Doob’s submartingale inequality

(see Williams (1991), Theorem 14.6, page 137) we get

PX

(
max

1≤k≤n

{
1

n

∣∣∣∣∣ ∑
1≤j≤k

ε̃∗n,rj

∣∣∣∣∣
}
> ρ

)
≤ 1

nρ2
Pn(ε̃2n)
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and consequently, equations (59) and (60) show that

PX

∥∥∥∥∥ 1

n

n∑
j=1

ε̃∗n,j1Zj≤(·)∧ζ̂n

∥∥∥∥∥
[a,b]

> ρ

 ≤ 1

ρ2n
Pn(ε̃2n)

a.s.−→ 0. (61)

Similar arguments give that (61) is also true if we replace 1Zj≤(·)∧ζ̂n by any of

1(·)<Zj≤ζ̂n , 1ζ̂n<Zj≤(·) or 1Zj>(·)∨ζ̂n . Now, if we write Rn like

Rn(θ) = −P∗n(ε̃2n)− 2

n
(α̂n − α)

n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n − (α̂n − α)2Pn(1Z≤ζ∧ζ̂n)

− 2

n
(β̂n − α)

n∑
j=1

ε̃∗n,j1ζ̂n<Z≤ζ − (β̂n − α)2Pn(1ζ̂n<Z≤ζ)

− 2

n
(α̂n − β)

n∑
j=1

ε̃∗n,j1ζ<Z≤ζ̂n − (α̂n − β)2Pn(1ζ<Z≤ζ̂n)

− 2

n
(β̂n − β)

n∑
j=1

ε̃∗n,j1Z>ζ∨ζ̂n − (β̂n − β)2Pn(1Z>ζ∨ζ̂n), (62)

(ii) follows immediately from (61), applied for all the four possible types of indi-

cator functions. Note that the four terms on the far right of all the rows in the

previous display vanish when we subtract Mn from Rn. Lemma 4.1 shows that

(ii) implies (i), while Corollary 3.2.3 (ii), page 287, of Van der Vaart and Wellner

(1996) together with (58) allows one to derive (iii) from (i) and (ii). �

A.2.14 Proof of Lemma 4.8

The proof is analogous to the proof of Lemma 4.5. We again consider the number

h∗ > 0 defined in the statement of Lemma 4.4 and take K ⊂ R3 to be any compact

rectangle containing the point (0, 0, h∗). To prove the theorem it suffices to show

that the sequence (Ên(0, 0, h3))∞n=1 does not have a weak limit in probability when-

ever h3 ≥ h∗ and (0, 0, h3) ∈ K. But in view of Lemma 4.4 this is straightforward

because the (conditional) characteristic function of Ên(0, 0, h3) is given by(∫
ei2(α̂n−β̂n)ξx−iξ(α̂n−β̂n)2dPεn(x)

)nPn(ζ̂n<Z≤ζ̂n+
h3
n

)

.

and Lemma 4.7 and the strong consistency of the least squares estimator imply

that ∫
ei2(α̂n−β̂n)ξx−iξ(α̂n−β̂n)2dPεn(x)

a.s.−→ e−iξ(α0−β0)2ϕ (2(α0 − β0)ξ) .
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Thus, for all ξ in a neighborhood of the origin, this characteristic function will

converge if and only if nPn(ζ̂n < Z ≤ ζ̂n + h3

n
) converges. We know that this is not

the case from Lemma 4.4. �

A.2.15 Proof of Proposition 5.1

We will show that conditions (I)-(V) in Section 3 hold w.p. 1 for the bootstrap

measures arising in this scheme. Note that (IV) is a consequence of Lemma 4.1.

That ‖Qn − P‖F
a.s.−→ 0 follows immediately from the fact that ‖F̂n − F‖∞

a.s.−→ 0.

Now, for any g = yψ ∈ G with ψ ∈ F , we have

Qn(g) = α̂nQn(1Z≤ζ̂nψ) + β̂nQn(1Z>ζ̂nψ),

P(g) = α0P(1Z≤ζ0ψ) + β0P(1Z>ζ0ψ),

from which we see that

‖Qn − P‖G ≤
(
|α̂n − α0|+

∣∣∣β̂n − β0

∣∣∣)+ (|α0|+ |β0|) ‖Qn − P‖F

+ (|α0|+ |β0|)
∫

R
|1z≤ζ̂n − 1z≤ζ0|f̂n(z)dz.

Lebesgue’s dominated convergence theorem shows that the last integral goes al-

most surely to zero and the strong consistency of the least squares estimators and

property (I) now yields ‖Qn − P‖G
a.s.−→ 0. Finally, we can write any h ∈ H in the

form h = y2ψ for some ψ ∈ F . Using this representation we obtain,

Qn(h) = α̂2
nQn(1Z≤ζ̂nψ) + β̂2

nQn(1Z>ζ̂nψ) + Pεn(ε̃2n)Qn(ψ),

P(h) = α2
0P(1Z≤ζ0ψ) + β2

0P(1Z>ζ0ψ) + σ2P(ψ),

and the triangle inequality then implies that

‖Qn − P‖H ≤ (|α̂2
n − α2

0|+ |β̂2
n − β2

0 |) + (α2
0 + β2

0 + σ2) ‖Qn − P‖F
+ |Pεn(ε̃2n)− P(ε2)|+ (α2

0 + β2
0)

∫
R
|1z≤ζ̂n − 1z≤ζ0|f̂n(z)dz

a.s.−→ 0.

It remains to show (V). Observe that (6) and (7) hold automatically because under

Qn, ε̃n and Z are independent. Hence, we only require to show that (5) holds w.p.

1. As (23) holds, we have

inf
ζ∈[c,d]

{
f̂n(ζ)

}
a.s.−→ inf

ζ∈[c,d]
{f(ζ)} > 0.
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The mean value theorem implies that for any ζ, ξ ∈ [c, d], there is ϑ ∈ [0, 1] such

that |F̂n(ζ) − F̂n(ξ)| = |ξ − ζ|f̂n(ζ + ϑ(ξ − ζ)). It follows that for η > 0 small

enough,

inf
0<|ζ−ζ̂n|<δ2

{
1

|ζ − ζ̂n|
|F̂n(ζ)− F̂n(ζ̂n)|

}
≥ inf

ζ∈[c,d]

{
f̂n(ζ)

}
∀ n ∈ N

and consequently (V) holds w.p.1 for all δ < η for all large n. �

A.2.16 Proof of Proposition 5.2

We already know that conditions (I)-(V) hold w.p. 1. Condition (VII) holds

automatically because Z and ε̃n are independent under Qn and Qn(ε̃n) = 0. Lemma

4.7 (v) implies that condition (VIII) holds a.s. It remains to prove (VI).

Write I = [c, d] and consider the sequence of events {AN}N∈N given by

AN =

[
ζ̂n −

δ

n
, ζ̂n +

η

n
∈ I, almost always, ∀ δ, η ∈ (0, N)

]
∩
[
‖f̂n − f‖I → 0

]
.

Fix N ∈ N, let ψ be the function ψ(x) = eiξx for some ξ ∈ R or the function

ψ(x) = |x|p, p = 1, 2, and η, δ > 0 be any positive real numbers smaller than N .

Then,

mnQn(ψ(ε̃n)1ζn− δ
n
<Z≤ζn+ η

n
) = nPεn (ψ)

∫ ζ̂n+ η
n

ζ̂n− δ
n

f̂n(x)dx.

Lemma 4.7 implies that Pεn (ψ)
a.s.−→ P (ψ(ε)). And, when AN holds, we also have

n

∣∣∣∣∣
∫ ζ̂n+ η

n

ζ̂n− δ
n

f̂n(x)dx−
∫ ζ̂n+ η

n

ζ̂n− δ
n

f(x)dx

∣∣∣∣∣ ≤ 2N
∥∥∥f̂n − f∥∥∥

[c,d]
→ 0.

Hence, condition (VI) holds for all 0 < δ, η < N on AN . But the strong consistency

of the least squares estimators and the conditions on f̂n imply that each of these

events have probability one. Therefore, P (∩N∈NAN) = 1. Hence, condition (VI)

holds w.p.1 and the result follows from an application of Proposition 3.3. �

A.2.17 Proof of Proposition 5.3

Since Qn is just the ECDF, the validity of conditions (I)-(IV) follows from the

result established for the regular ECDF bootstrap and Lemma 4.1. (VIII) is a

consequence of the strong law of large numbers. It remains to show (V)-(VII).

We start with (VI). First observe thatmnP(ψ(ε)1ζ0− δ
mn

<Z≤ζ0+ η
mn

)→ (δ+η)f(ζ0)P(ψ(ε)).

We will proceed as follows: we will first use this simple observation just made to

show that the following equations are true,
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mn

∥∥∥Pn(ψ(ε)1
ζ0− (·)

mn
<Z≤ζ0

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (63)

mn

∥∥∥Pn(ψ(ε)1
ζ0<Z≤ζ0+

(·)
mn

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (64)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n− (·)

mn
<Z≤ζ̂n)− Pn(ψ(ε)1

ζ0− (·)
mn

<Z≤ζ0
)
∥∥∥
K

P−→ 0 (65)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(ψ(ε)1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥
K

P−→ 0 (66)

for any compact interval K ⊂ R. All these facts put together will give

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n− (·)

mn
<Z≤ζ̂n)− (·)P(ψ(ε))f(ζ0)

∥∥∥
K

P−→ 0 (67)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (68)

for any compact interval K ⊂ R. Having achieved this, we will be able to conclude
that (VI) holds in probability. For if (67) and (68) are both true, we can take
an increasing sequence of compacts (Kn)∞n=1 whose union is R and then for any
subsequence (nk)

∞
k=1 find a further subsequence (nks)

∞
s=1 such that

P

(
mnks

∥∥∥∥Pnks (ψ(ε̃nks )1
ζ̂nks

− (·)
mnks

<Z≤ζ̂nks
)− (·)P(ψ(ε))f(ζ0)

∥∥∥∥
Ks

>
1
s

)
<

1
s2

P

(
mnks

∥∥∥∥Pnks (ψ(ε̃nks )1
ζ̂nks

<Z≤ζ̂nks+
(·)

mnks

)− (·)P(ψ(ε))f(ζ0)
∥∥∥∥
Ks

>
1
s

)
<

1
s2
.

The Borel-Cantelli Lemma will then imply that (VI) holds almost surely for the

subsequence (nks)
∞
s=1. Therefore, it suffices to show (63), (64), (65) and (66).

First consider the case where ψ(·) = | · | and a positive number η > 0. Let t ∈ R
and write

rn = nP
(
ei
mn
n
t|ε| − 1− mn

n
t|ε|
)

P(1ζ0<Z≤ζ0+ η
mn

).

Then, |rn| ≤ t2σ2mn
n
mnP(1ζ0<Z≤ζ0+ η

mn
)→ 0. The characteristic function of

mnPn(|ε|1ζ0<Z≤+ η
mn

) can be written as

ϕn(t) =
(

1 + i
mn

n
tP(|ε|)P(1ζ0<Z≤ζ0+ η

mn
) +

rn
n

)n
→ eitηP(|ε|)f(ζ0)

and therefore

mnPn(|ε|1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(|ε|).

But

sup
n∈N

{
E

(
mn

∥∥∥Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]

)}
<∞
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and hence the sequence of processes
(
mnPn(|ε|1

ζ0<Z≤ζ0+
(·)
mn

)
)∞
n=1

is tight in D[0,η].

It follows that

mnPn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

) (·)f(ζ0)P(|ε|) in D[0,η]

but since the limiting process is continuous and deterministic we actually obtain∥∥∥mnPn(|ε|1ζ0<Z≤ζ0+ ·
mn

)− (·)f(ζ0)P(|ε|)
∥∥∥

[0,η]

P−→ 0. (69)

And with similar arguments one can also prove that∥∥∥mnPn(|ε|1
ζ0− (·)

mn
<Z≤ζ0

)− (·)f(ζ0)P(|ε|)
∥∥∥

[0,η]

P−→ 0. (70)

Pick a positive number η > 0. Taking into account that ε1ζ0<Z≤ζ0+ η
mn

= (y −
β0)1ζ0<Z≤ζ0+ η

mn
and the analogous result for ε̃n with ζ̂n and β̂n instead of ζ0 and

β0 we see that

mn

∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤

mn

∥∥∥Pn (|Y − β̂n|(1ζ̂n<Z≤ζ̂n+
(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

+

mn

∥∥∥Pn ((|Y − β̂n| − |Y − β0|
)

1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

and consequently

mn

∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤

mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

+

|β̂n − β0|mn

∥∥∥Pn (1ζ̂n<Z≤ζ̂n+
(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

+

|β̂n − β0|mn

∥∥∥Pn (1ζ0<Z≤ζ0+
(·)
mn

)∥∥∥
[0,η]

. (71)

We will show that each of the terms on the right-hand side of (71) goes to zero in

probability. Since n(ζ̂n− ζ0) = OP(1), we know that for any δ > 0 there is Rδ > 0

such that P
(
n|ζ̂n − ζ0| > Rδ

)
< δ. Then,

P

(
mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
≤ δ+

P

(
mnPn

(
|ε|1

ζ0−
Rδ
n
<Z≤ζ0

)
>
δ

3

)
+
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P

(
mn

∥∥∥Pn (|ε|1ζ0<Z≤ζ0+
(·)
mn

+
Rδ
n

)∥∥∥
[0,η]

>
δ

3

)
+

P

(
mn|α0 − β0|Pn

(
1
ζ0−

Rδ
n
<Z≤ζ0

)
>
δ

3

)
but from equations (69) and (70), and the fact that mn

n
→ 0, we actually get that

all the terms of the right-hand side are asymptotically smaller than δ
3
. Thus,

lim
n→∞

P

(
mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
< 2δ. (72)

An argument similar in spirit to the one just employed gives

lim
n→∞

P

(
mn

∥∥∥Pn ((1ζ̂n<Z≤ζ̂n+
(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
< δ (73)

while equation (74), for ξ = 0, and the strong consistency of the least squares

estimator give

|β̂n − β0|mn

∥∥∥Pn (1ζ0<Z≤ζ0+
(·)
mn

)∥∥∥
[0,η]

P−→ 0.

Then, combining the last identity with (71), (72) and (73) we get

lim
δ→0

lim
n→∞

mnP

(∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
> δ

)
= 0.

Completely analogous arguments prove that

mn

∥∥∥Pn(|ε̃n|1ζ̂n− (·)
mn

<Z≤ζ̂n)− Pn(|ε|1
ζ0− (·)

mn
<Z≤ζ0

)
∥∥∥

[0,η]

P−→ 0.

Since η > 0 was arbitrarily chosen, we have shown (IV) for ψ(·) = | · |. The case

ψ = | · |2 is proven in a very similar manner. For the sake of brevity, we omit the

proof.

Now, we consider the case where ψ(x) = eiξx for some ξ ∈ R. Again, fix η > 0.

We will proceed in the same way as before. Let t ∈ R and write

ρn = nP
(
ei
mn
n
t cos(ξε) − 1− mn

n
t cos (ξε)

)
P(1ζ0<Z≤ζ0+ η

mn
).

Then, |ρn| ≤ t2mn
n
mnP(1ζ0<Z≤ζ0+ η

mn
)→ 0. The characteristic function of

mnPn(cos (ξε) 1ζ0<Z≤+ η
mn

) can be written as

ϕn(t) =
(

1 + i
mn

n
tP(cos (ξε))P(1ζ0<Z≤ζ0+ η

mn
) +

rn
n

)n
→ eitηP(cos(ξε))f(ζ0)

and therefore

mnPn(cos (ξε) 1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(cos (ξε)).
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Applying the same arguments to the function sin (ξε) we obtain that

mnPn(sin (ξε) 1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(sin (ξε)).

and hence

mnPn(eiξε1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)ϕξ = ηf(ζ0)P(eiξε).

The same tightness argument that was applied to prove (69) can be used here to

conclude that ∥∥∥mnPn(eiξε1ζ0<Z≤ζ0+ ·
mn

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0 (74)

and similarly ∥∥∥mnPn(eiξε1
ζ0− (·)

mn
<Z≤ζ0

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0. (75)

Using the triangular inequality together with the definition of ε̃n we get

mn

∥∥∥Pn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(eiξε1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤

mn

∥∥∥Pn (1ζ̂n<Z≤ζ̂n+
(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

+

mn

∥∥∥Pn ((eiξ(Y−β̂n) − eiξ(Y−β0))1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

.

But (70) implies that

mn

∥∥∥Pn (1ζ̂n<Z≤ζ̂n+
(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

P−→ 0

while (74) applied when ξ = 0 and the strong consistency of β̂n yield

mn

∥∥∥Pn ((eiξ(Y−β̂n) − eiξ(Y−β0))1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]
≤

|β̂n − β0|mn

∥∥∥Pn (1ζ0<Z≤ζ0+
(·)
mn

)∥∥∥
[0,η]

P−→ 0.

Therefore,

mn

∥∥∥Pn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(eiξε1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]

P−→ 0

which together with (74) proves that∥∥∥mnPn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0.
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With completely analogous arguments one shows

mn

∥∥∥Pn(eiξε̃n1
ζ̂n− (·)

mn
<Z≤ζ̂n)− (·)f(ζ0)P(eiξε)

∥∥∥
[0,η]

P−→ 0.

This proves that (VI) holds in probability.

We now proceed to prove that (V) and (VII) hold in probability. Before embarking

in this task, we want to make the following remark. Consider that class of func-

tions C := {ε1I(z) : I ⊂ R is an interval}. Then, this class has a square integrable

envelope |ε| and P(ψ) = 0 for any ψ ∈ C. Therefore, the maximal inequality 3.1

from Kim and Pollard (1990) implies that ‖Pn‖C = OP

(
n−

1
2

)
. Similar observa-

tions also show that ‖Pn − P‖F = OP

(
n−

1
2

)
. All these considerations, in addition

with Corollary 3.1, (65), (66), (63) and (64) show that

√
mn(α̂n − α0)

P−→ 0 (76)
√
mn(β̂n − β0)

P−→ 0 (77)

mn(ζ̂n − ζ0)
P−→ 0 (78)

√
mn ‖Pn‖C

P−→ 0 (79)
√
mn

∥∥∥Pn(|ε|1
ζ0− (·)

mn
<Z≤ζ0+

(·)
mn

)
∥∥∥
K

P−→ 0 (80)

√
mn

∥∥∥Pn(|ε̃n|1ζ̂n− (·)
mn

<Z≤ζ̂n+
(·)
mn

)
∥∥∥
K

P−→ 0 (81)

√
mn ‖Pn − P‖F

P−→ 0 (82)

for any compact set K ⊂ R.

Let η > 0 be fixed. Take any subsequence (nk)
∞
k=1 and find a further subsequence

(nks)
∞
s=1 such that all the statements in the previous display happen almost surely

with the compact set K taken to be K = [ζ0 − 2η, ζ0 + 2η]. Now, for such a

subsequence, there is N ∈ N such that mnks
|ζ0− ζ̂nks | < η ∀ s ≥ N . Then, for any

δ > 0 and s ≥ N , the following inequalities are true

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )|

}
≤ |α̂nks − α0|+ |β̂nks − β0|+

Pnks (|ε̃nks |1ζ̂nks− η
mnks

<Z≤ζ̂nks+ η
mnks

) + Pnks (|ε|1ζ0− 2η
mnks

<Z≤ζ0+ 2η
mnks

) +
∥∥Pnks∥∥C

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1Z≤ζ∧ζ̂nks )|+ |Pnks (ε̃nks1Z>ζ∨ζ̂nks )|

}
≤ |α̂nks − α0|+ |β̂nks − β0|+

Pnks (|ε̃nks |1ζ̂nks− η
mnks

<Z≤ζ̂nks+ η
mnks

) + Pnks (|ε|1ζ0− 2η
mnks

<Z≤ζ0+ 2η
mnks

) +
∥∥Pnks∥∥C .
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These last inequalities together with (76)-(82) imply that

lim
s→∞

√
mnks

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )|

}
= 0 a.s.

lim
s→∞

√
mnks

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1Z≤ζ∧ζ̂nks )|+ |Pnks (ε̃nks1Z>ζ∨ζ̂nks )|

}
= 0 a.s.

The previous equations show that (6) and (7) in (V) as well as (VII) hold with

probability one for the subsequence (nks)
∞
s=1. We conclude by noting that if κ =

inf
z∈[a,b]

{f(z)}, then the mean value theorem implies

inf
1√
mnks

≤|ζ−ζ̂nks |<δ
2

{
1

|ζ − ζnks |
Pnks (1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )

}
≥ κ−√mnks

∥∥Pnks − P
∥∥
F

which in consequence shows

lim
s→∞

inf
1√
mnks

≤|ζ−ζ̂nks |<δ
2

{
1

|ζ − ζnks |
Pnks (1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )

}
≥ κ > 0 a. s.

This finishes the proof. �
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